
t

When

y
ys the
are

anoth-

e) or
e
e

an a
ICI Technical Description

Version 1.1

Tim Long

Portions © 1992-1998 Canon Information Systems Research Australia
Portions © 1997-1999 University of Cambridge

Portions © 1992-1995 Tim Long

Permission granted to reproduce provided copyright notices are preserved.

The ICI interpreter'sexecution enginecalls on theparserto read and compile a statemen
from an input stream. The parser in turns calls on thelexical analyser to read tokens.
Upon return from the parser the execution engine executes the compiled statement.
the statement has finished execution, the execution engine repeats the sequence.

The lexical analyser

The ICI lexical analyser breaks the input stream into tokens, optionally separated b
white-space (which includes comments as described below). The next token is alwa
longest string of following characters which could possibly be a token. The following
tokens:

/ /= $ @ () { }
, ~ ~~ ~~= ~~~ [] .
* *= % %= ^ ^= + +=
++ - -= -- -> > >= >>
>>= < <= <=> << <<= = ==
! != !~ & && &= | ||
|= ; ? :

The following are also tokens:

• The character '#' followed by any sequence of characters except a newline, then
er '#'. This token is aregular-expression.

• The character ' (single quote) followed by a single character (other than a newlin
a singlebackslash character sequence (described below), followed by another singl
quote. This token is acharacter-code. A single quote followed by other than the abov
sequence will result in an error.

• The character " (double quote) followed by any sequence of characters (other th
newline) andbackslash character sequences, up to another double quote character.
This token is astring.

A backslash character sequence is any of the following:

\n newline (ASCII 0x0A)
\t tab (ASCII 0x09)
\v vertical tab (ASCII 0x0B)
\b back space (ASCII 0x08)
\r carriage return (ASCII 0x0D)
1

ICI Technical Description Page1 of 88 Last Updated: October 18, 1999

orm a

ber
er
gs:

rtain

 until

e in
.

ch
rily.

 can
o
 that

cope.
ard

n exe-
de.

t by
od-
\f form feed (ASCII 0x0C)
\a audible bell (ASCII 0x07)
\e escape (ASCII 0x1B)
\\ backslash (ASCII 0x5C)
\' single quote (ASCII 0x27)
\" double quote (ASCII 0x22)
\? question mark (ASCII 0x3F)
\cx control-x
\xx.. the character with hex codex...
\n the character with octal coden. (1, 2 or 3 octal digits)

Consecutive string-literals, seperated only by white-space, are concatenated to f
single strings-literal.

• Any upper or lower case letter, any digit, or '_' (underscore) followed by any num
of the same (or other characters which may be involved in a floating point numb
while that is a valid interpretation). A token of this form may be one of three thin

If it can be interpreted as an integer, it is aninteger-number.

Otherwise, if it can be interpreted as a floating point number, it is afloating-point-num-
ber.

Otherwise, it is anidentifier.

Notice that keywords are not recognised directly by the lexical analyser. Instead, ce
identifiers are recognised as keywords by the parser as described below.

Comments (which are white-space) are started with the characters /* and continue
the next */. Also, lines which start with a # character are ignored.

An introduction to variables, modules and scope

Variables are simple identifiers which have a value associated with them. They ar
themselves typeless, depending on the type of the value currently assigned to them

The termmodule in ICI refers to a collection of functions, declarations and code whi
share the same variables. Typically each source file is a module, but not necessa

In ICI, modules may be nested in a hierarchical fashion. Within a module, variables
be declared as eitherstaticor extern. When a variable is declared as static it is visible t
code defined in the module of its definition, and to code defined in sub-modules of
one. This is termed thescope of the variable.

When a variable is defined asextern it is declaredstatic in the parent module. Thus the
parent module and all sub-modules of the parent module have that variable in their s
Variables of this type, whether originally declared extern or static, will be henceforw
referred to as static variables.

Static variables are persistent variables. That is they remain in existence even whe
cution completely leaves their scope, despite not being visible to any executing co
They are visible again when code flow again enters their scope.

The scoping of static variables is strictly governed by the nesting of the modules, no
the flow of execution. For example. Suppose two neighbouring modules (call them m
2

ICI Technical Description Page2 of 88 Last Updated: October 18, 1999

being
iables
dur-

has ref-
efine

at the

te a

am-
tent

iven
yntax

r, but
 seen
to be
. The
uleA and moduleB) each define a variable calledtheVariable. When some code in mod-
uleA calls a function defined in moduleB and that function refers totheVariable; it is
referring to the version oftheVariable defined in moduleB, not the one defined in mod-
uleA.

Variables in sub scopes hide variables of the same name defined in outer scopes.

The second type of variable in ICI is theautomatic, orauto, variable. Automatic variables
are not persistent. They last only as long as a module is being parsed or a function is
executed. For instance, each time a function is entered a copy is made of the auto var
which were declared in the function. This group of variables generally only persists
ing the execution of the function; once the function returns they are discarded.

The parser

The parser uses the lexical analyser to read a source input stream. The parser also
erence to the variable-scope within which this source is being parsed, so that it may d
variables.

The parser will define variables within the current scope, and, when code is parsed
outermost level, return it to the execution engine for execution.

For some constructs the parser will in turn call upon the execution engine to evalua
sub-construct within a statement.

The following sections will work through the syntax of ICI with explanations and ex
ples. Occasionally constructs will be used ahead of their full explanation. Their in
should be obvious.

The following notation is used in the syntax in these sections. Note that the syntax g
in the text is not always exact, but rather designed to aid comprehension. The exact s
is given in a later section.

bold Thebold text is literal ASCII text.
italic The italic text is a construct further described elsewhere.
[xxx] The xxx is optionally present.
xxx... The xxx may be present zero or more times.

As noted previously there are no reserved words recoginsed by the lexical anaylyse
certain identifiers will be recognised by the parser in certain syntactic positions (as
below). While these identifiers are not otherwise restricted, special action may need
taken if they are used as simple variable names. They probably should be avoided
complete list is:

NULL auto break case
continue default do else
extern for forall if
in onerror return static
switch try while

We now turn our attention to the syntax itself.
3

ICI Technical Description Page3 of 88 Last Updated: October 18, 1999

tated
t at a
rity):

which
ents:

 the

its

on
ed so
Firstly consider the basic statement which is the unit of operation of the parser. As s
earlier the execution engine will call on the parser to parse one top-level statemen
time. We split the syntax of a statement into two categories (purely for semantic cla

statement executable-statement
declaration

That is, a statement is either anexecutable-statementor adeclaration. We will first con-
sider theexecutable-statement.

These are statements that, at the top-level of parsing, can be translated into code
can be returned to the execution engine. This is by far the largest category of statem

executable-statement expression;
compound-statement
if (expression) statement
if (expression) statementelse statement
while (expression) statement
do statementwhile (expression) ;
for ([expression]; [expression]; [expression]) statement
forall (expression [, expression]in expression) statement
switch (expression) compound-statement
caseparser-evaluated-expression:
default ;
break ;
continue ;
return [expression];
try statementonerror statement
;

These are the basic executable statement types. Many of these involveexpressions, so
before examining each statement in turn we will examine theexpression. We will do this
by starting with the most primitive elements of expressions and working back up to
top level.

The lowest level building block of an expressions is thefactor:

factor integer-number
character-code
floating-point-number
string
regular-expression
identifier
NULL
(expression)
[array expression-list]
[set expression-list]
[struct [: expression,] assignment-list]
[func function-body]

The constructsinteger-number, character-code, floating-point-number, string, andregu-
lar-expressionare primitive lexical elements (described above). Each is converted to
internal form and is an object of type int, int, float, string, or regexp respectively.

A factorwhich is anidentifier is a variable reference. But its exact meaning depends up
its context within the whole expression. Variables in expressions can either be plac
that their value is being looked up, such as in:
4

ICI Technical Description Page4 of 88 Last Updated: October 18, 1999

sim-
ed an
plest
ions:

riable
n oper-

ich
me

n
athe-

al de-

keted
start-
nda-

n prop-
asic

y be
nt:
a + 1

Or they can be placed so that their value is being set, such as in:

a = 1

Or they can be placed so that their value is being both looked up and set, as in:

a += 1

Only certain types of expression elements can have their value set. A variable is the
plest example of these. Any expression element which can have its value set is term
lvaluebecause it can appear on the left hand side of an assignment (which is the sim
expression construct which requires an lvalue). Consider the following two express

1 = 2 /* WRONG */
a = 2 /* OK */

The first is illegal because an integer is not an lvalue, the second is legal because a va
reference is an lvalue. Certain expression elements, such as assignment, require a
and to be an lvalue. The parser checks this.

The next factor in the list above isNULL . The keyword NULL stands for the value
NULL which is the general undefined value. It has its own type, NULL. Variables wh
have no explicit initialisation have an initial value of NULL. Its other uses will beco
obvious later in this document.

Next is the construct(expression). The brackets serve merely to make the expressio
within the bracket act as a simple factor and are used for grouping, as in ordinary m
matics.

Finally we have the four constructs surrounded by square brackets. These are textu
scriptions of more complex data items; typically known asliterals. For example the fac-
tor:

[array 5, 6, 7]

is an array of three items, that is, the integers 5, 6 and 7. Each of these square brac
constructs is a textual description of a data type named by the first identifier after the
ing square bracket. A full explanation of these first requires an explanation of the fu
mental aggregate types.

An introduction to arrays, sets and structs

There are three fundamental aggregate types in ICI: arrays, sets, and structs. Certai
erties are shared by all of these (and other types as will be seen later). The most b
property is that they are each collections of other values. The next is that they ma
"indexed" to reference values within them. For example, consider the code fragme

a = [array 5, 6, 7];
i = a[0];
ICI Technical Description Page5 of 88 Last Updated: October 18, 1999

signs

xing",
low.

f val-
alues
e frag-

ved

lues.
e

r, the
sider

e as-
The first line assigns the variable a an array of three elements. The second line as
the variable i the value currently stored at thefirst element of the array. The suffixing of
an expression element by an expression in square brackets is the operation of "inde
or referring to a sub-element of an aggregate, and will be explained in more detail be

Notice that thefirst element of the array has indexzero. This is a fundamental property
of ICI arrays.

The next ICI aggregate we will examine is the set. Sets are unordered collections o
ues. Elements "in" the set are used as indexes when working with the set, and the v
looked up and assigned are interpreted as a booleans. Consider the following cod
ment:

s = [set 200, 300, "a string"];
if (s[200])

printf("200 is in the set\n");
if (s[400])

printf("400 is in the set\n");
if (s["a string"])

printf("\"a string\" is in the set\n");
s[200] = 0;
if (s[200])

printf("200 is in the set\n");

When run, this will print:

200 is in the set
"a string" is in the set

Notice that there was no second printing of "200 is in the set" because it was remo
from the set on the third last line by assigning zero to it.

Now consider structs. Structs are unordered collections of values indexed by any va
Other properties of structs will be discussed later. The typical indexes of structs ar
strings. For this reason notational shortcuts exist for indexing structures by simple
strings. Also, because each element of a struct is actually an index and value pai
syntax of a struct literal is slightly different from the arrays and sets seen above. Con
the following code fragment:

s = [struct a = 123, b = 456, xxx = "a string"];
printf("s[\"a\"] = %d\n", s["a"]);
printf("s.a = %d\n", s.a);
printf("s.xxx = \"%s\"\n", s.xxx);

Will print:

s["a"] = 123
s.a = 123
s.xxx = "a string"

Notice that on the second line the structure was indexed by the string "a", but that th
6

ICI Technical Description Page6 of 88 Last Updated: October 18, 1999

-
he
the

igned
r out-

 full
iation
signment in the struct literal did not have quotes around thea. This is part of the notation-
al shortcut which will be discussed further, below. Also notice the use ofs.ain place of
s["a"]. This is a similar shortcut, also discussed below.

Back to expression syntax

The aggregate literals, which in summary are:

[array expression-list]
[set expression-list]
[struct [: expression,] assignment-list]
[func function-body]

involve three further constructs, theexpression-list,which is a comma separated list of ex
pressions; theassignment-list, which is a comma separated list of assignments; and t
function-body, which is the argument list and code body of a function. The syntax of
first of these is:

expression-list empty
expression [,]
expression, expression-list

Theexpression-listis fairly simple. The constructemptyis used to indicate that the whole
list may be absent. Notice the optional comma after the last expression. This is des
to allow a more consistent formatting when the elements are line based, and simple
put from programmatically produced code. For example:

[array
"This is the first element",
"This is the second element",
"This is the third element",

]

The assignment list has similar features:

assignment-list empty
assignment [,]
assignment, assignment-list

assignment struct-key= expression

struct-key identifier
(expression)

Eachassignment is either an assignment to a simple identifier or an assignment to a
expression in brackets. The assignment to an identifier is merely a notational abbrev
for an assignment to a string. The following two struct literals are equivalent:

[struct abc = 4]
[struct ("abc") = 4]

The syntax of afunction-body is:

function-body (identifier-list) compound-statement

identifier-list empty
ICI Technical Description Page7 of 88 Last Updated: October 18, 1999

il be-
ota-

ssion
object

sult as-
les
identifier [,]
identifier , identifier-list

That is, anidentifier-list is an optional comma separated list ofidentifierswith an optional
trailing comma. Literal functions are rare in most programs; functions are normally
named and defined with a special declaration form which will be seen in more deta
low. The following two code fragments are equivalent; the first is the abbreviated n
tion:

static fred(a, b){return a + b;}

and:

static fred = [func (a, b){return a + b;}];

The meaning of functions will discussed in more detail below.

Aggregates in general, and literal aggregates in particular, are fully nestable:

[array
[struct a = 1, c = 2],
[set "a", 1.2, 3],
"a string",

]

Note that aggregate literals are entirely evaluated by the parser. That is, each expre
is evaluated and reduced to a particular value, these values are then used to build an
of the required type. For example:

[struct a = sin(0.5), b = cos(0.5)]

Causes the functions sin and cos to be called during the parsing process and the re
signed to the keysaandb in the struct being constructed. It is possible to refer to variab
which may be in existence while such a literal is being parsed

1
.

This ends our consideration of the lowest level element of an expression, thefactor.

A simple factor may be adorned with a sequence ofprimary-operations to form aprima-
ry-expression. That is:

primary-expression factor primary-operation...

primary-operation [expression]
. identifier
. (expression)
-> identifier
-> (expression)
(expression-list)

1.Literal aggregates are analagous to literal strings in K&R C. And likewise they have the property

that modifications to the literal are persistent. Returning to the original use of the literal after it has

been modified does not magically restore it to its original value.
8

ICI Technical Description Page8 of 88 Last Updated: October 18, 1999

ex-

tions
time

e not

g

ater.
The firstprimary-operation (above) we have already seen. It is the operation of "ind
ing" which can be applied to aggregate types. For example, ifxxx is an array:

xxx[10]

refers to the element of xxx at index 10. The parser does not impose any type restric
(because typing is dynamic), although numerous type restrictions apply at execution
(for instance, arrays may only be indexed by integers, and floating point numbers ar
able to be indexed at all).

The second form,. identifier, is a notational abbreviation of[" identifier"] , as seen pre-
viously. Similarly the third form is again just a notational variation. Thus the followin
are all equivalent:

xxx["aaa"]
xxx.aaa
xxx.("aaa")

And the following are also equivalent to each other:

xxx[1 + 2]
xxx.(1 + 2)

Note that factors may be suffixed by any number ofprimary-operations. The only restric-
tion is that the types must be right during execution. Thus:

xxx[123].aaa[10]

is legal.

The two constructs

-> identifier
-> (expression)

are again notational variations. In general, constructs of the form:

primary-expression -> identifier
primary-expression-> (expression)

are re-written as:

(* primary-expression) . identifier
(* primary-expression) . (expression)

The unary operator* used here is the indirection operator, its meaning is discussed l

The last of theprimary-operations:

(expression-list)
9

ICI Technical Description Page9 of 88 Last Updated: October 18, 1999

y the
:

erms:

ix
th

. As
types

ith in

ely at
ely by
speed
is the function call operation. Although, as usual, no type checking is performed b
parser; at execution time the thing it is applied to must be a function. For example

my_function(1, 2, "a string")

and

xxx.array_of_funcs[10]()

are both function calls. Function calls will be discussed in more detail below.

This concludes the examination of aprimary-expression.

Primary-expressions are combined with prefix and postfix unary operators to make t

term [prefix-operator...] primary-expression [postfix-operator...]

prefix-operator Any of:
* & - + ! ~ ++ -- @ $

postfix-operator Any of:
++ --

That is, atermis aprimary-expressionsurrounded on both sides by any number of pref
and postfix operators. Postfix operators bind more tightly than prefix operators. Bo
types bind right-to-left when concatenated together. That is: -!x is the same as -(!x)
in all expression compilation, no type checking is performed by the parser, because
are an execution-time consideration.

Some of these operators touch on subjects not yet explained and so will be dealt w
detail in later sections. But in summary:

Prefix operators

* Indirection; applied to a pointer, gives target of the pointer.
& Address of; applied to any lvalue, gives a pointer to it.
- Negation; gives negative of any arithmetic value.
+ Positive; no real effect.
! Logical not; applied to 0 or NULL, gives 1, else gives 0.
~ Bit-wise complement.

++ Pre-increment; increments an lvalue and gives new value.
-- Pre-decrement; decrements an lvalue and gives new value.
@ Atomic form of; gives the (unique) read-only version of any value.
$ Immediate evaluation; see below.

Postfix operators

++ Post-increment; increments an lvalue and gives old value.
-- Post-increment; decrements an lvalue and gives old value.

One of these operators, $, is only a pseudo-operator. It actually has its effect entir
parse time. The $ operator causes its subject expression to be evaluated immediat
the parser and the result of that evaluation substituted in its place. This is used to
10

ICI Technical Description Page10 of 88 Last Updated: October 18, 1999

t con-
mple,

ted.

t to

n
ich

ns or
 vari-
ari-

e the
.

e is to

ven
iffer-
g

rst

vel
later execution, to protect against later scope or variable changes, and to construc
stant values which are better made with running code than literal constants. For exa
an expression involving the square root of two could be written as:

x = y + 1.414213562373095;

Or it could be written more clearly, and with less chance of error, as:

x = y + sqrt(2.0);

But this construct will call the square root function each time the expression is evalua
If the expression is written as:

x = y + $sqrt(2.0);

The square root function will be called just once, by the parser, and will be equivalen
the first form.

When the parser evaluates the subject of a $ operator it recursively invokes the executio
engine to perform the evaluation. As a result there is no restriction on the activity wh
can be performed by the subject expression. It may reference variables, call functio
even read files. But it is important to remember that it is called at parse time. Any
ables referenced will be immediately interrogated for their current value. Automatic v
ables of any expression which is contained in a function will not be available, becaus
function itself has not yet been invoked; in fact it is clearly not yet even fully parsed

The $ operator as used above increased speed and readability. Another common us
avoid later re-definitions of a variable. For instance:

($printf)("Hello world\n");

Will use theprintf function which was defined at the time the statement was parsed, e
if it is latter re-defined to be some other function. It is also slightly faster, but the d
ence is small when only a simple variable look-up is involved. Notice the bracketin
which has been used to bind the$ to the wordprintf. Function calls are primary opera-
tions so the$ would have otherwise referred to the whole function call as it did in the fi
example.

This concludes our examination of aterm(remember that the full meaning of other prefix
and postfix operators will be discussed in later sections). We will now turn to the top le
of expressions whereterms are combined with binary operators:

expression term
expression infix-operator expression

infix-operator Any of:
@
* / %
+ -
>> <<
< > <= >=
== != ~ !~ ~~ ~~~
11

ICI Technical Description Page11 of 88 Last Updated: October 18, 1999

ated
g rules

higher
tors
econd

rs)

But
&
^
|
&&
||
:
?
= += -= *= /= %= >>= <<= &= ^= |= ~~= <=>
,

That is, anexpression can be a simpleterm, or twoexpressions separated by aninfix-op-
erator. The ambiguity amongst expressions built from several binary-operator separ
expressions is resolved by assigning each operator a precedence and also applyin
for order of binding amongst equal precedence levels

2
. The lines of binary operators in

the syntax rules above summarise their precedence. Operators on higher lines have
precedence than those on lower lines. Thus 1+2*3 is the same as 1+(2*3). Opera
which share a line have the same precedence. All operators except those on the s
last line group left-to-right. Those on the second last line (the assignment operato
group right-to-left. Thus

a * b / c

is the same as:

(a * b) / c

But:

a = b += c

is the same as:

a = (b += c)

As with unary operators, the full meaning of each will be discussed in a later section.
in summary:

Binary operators

@ Form pointer
* Multiplication, Set intersection
/ Division

% Modulus
+ Addition, Set union
- Subtraction, Set difference

>> Right shift (shift to lower significance)
<< Left shift (shift to higher significance)
< Logical test for less than, Proper subset
> Logical test for greater than, Proper superset

<= Logical test for less than or equal to, Subset
>= Logical test for greater than or equal to, Superset

2.The precedences and rules are identical to those of C.
12

ICI Technical Description Page12 of 88 Last Updated: October 18, 1999

ion to
rded.
 func-
ical

ucing
== Logical test for equality
!= Logical test for inequality
~ Logical test for regular expression match
!~ Logical test for regular expression non-match
~~ Regular expression sub-string extraction
~~~ Regular expression multiple sub-string extraction
& Bit-wise and
^ Bit-wise exclusive or
| Bit-wise or

&& Logical and
|| Logical or
: Choice separator (must be right hand subject of? operator)
? Choice (right hand expression must use: operator)
= Assignment

+= Add to
-= Subtract from
*= Multiply by
/= Divide by

%= Modulus by
>>= Right shift by
<<= Left shift by
&= And by
^= Exclusive or by
|= Or by

~~= Replace by regular expression extraction
<=> Swap values

, Multiple expression separator

This concludes our consideration ofexpressions.  We will now move on to each of the
executable statement types in turn.

Simple expression statements

The simple expression statement:

expression;

Is simply an expression followed by a semicolon. The parser translates this express
its executable form. Upon execution the expression is evaluated and the result disca
Typically the expression will have some side-effect such as assignment, or make a
tion call which has a side-effect, but there is no explicit requirement that it do so. Typ
expression statements are:

printf("Hello world.\n");
x = y + z;
++i;

Note that an expression statement which could have no side-effects other than prod
an error may be completely discarded and have no code generated for it.
13

ICI Technical Description Page13 of 88 Last Updated: October 18, 1999



y curly
to be

vel
types.

ing
the

n to

uses
Compound statements

The compound statement has the form:

{ statement... }

That is, a compound statement is a series of any number of statements surrounded b
braces. Apart from causing all the sub-statements within the compound statement 
treated as a syntactic unit, it has no effect.  Thus:

printf("Line 1\n");
{

printf("Line 2\n");
printf("Line 3\n");

}
printf("Line 4\n");

When run, will produce:

Line 1
Line 2
Line 3
Line 4

Note that the parser will not return control to the execution engine until all of a top-le
compound statement has been parsed. This is true in general for all other statement

The if  statement

The if statement has two forms:

if ( expression) statement
if ( expression) statementelse statement

The parser converts both to an internal form. Upon execution, theexpressionis evaluated.
If the expression evaluates to anything other than 0 (integer zero) or NULL, the follow
statement is executed; otherwise it is not. In the first form this is all that happens, in
second form, if the expression evaluated to 0 or NULL the statement following theelseis
executed; otherwise it is not.

The interpretation of both 0 and NULL as false, and anything else as true, is commo
all logical operations in ICI.  There is no special boolean type.

The ambiguity introduced by multiple if statements with an lesser number of else cla
is resolved by binding else clauses with their closest possible if.  Thus:

if (a) if (b) dox(); else doy();

If equivalent to:

if (a)
{

if (b)
14

ICI Technical Description Page14 of 88 Last Updated: October 18, 1999



ithin
d

k
ts, as

ithin

and

s

dox();
else

doy();
}

The while statement

Thewhile statement has the form:

while  ( expression ) statement

The parser converts it to an internal form. Upon execution a loop is established. W
the loop theexpressionis evaluated, and if it is false (0 or NULL) the loop is terminate
and flow of control continues after thewhilestatement. But if theexpressionevaluates to
true (not 0 and not NULL) thestatementis executed and then flow of control moves bac
to the start of the loop where the test is performed again (although other statemen
seen below, can be used to modify this natural flow of control).

The do-while statement

Thedo-while statement has the following form:

do statementwhile ( expression) ;

The parser converts it to an internal form. Upon execution a loop is established. W
the loop thestatementis executed. Then theexpressionis evaluated and if it evaluates to
true, flow of control resumes at the start of the loop. Otherwise the loop is terminated
flow of control resumes after thedo-while statement.

The for statement

Thefor statement has the form:

for ( [ expression ]; [ expression ]; [ expression ]) statement

The parser converts it to an internal form. Upon execution the firstexpressionis evaluat-
ed (if present).  Then, a loop is established.  Within the loop: If the secondexpression is
present, it is evaluated and if it is false the loop is terminated. Next thestatementis exe-
cuted. Finally, the thirdexpressionis evaluated (if present) and flow of control resume
at the start of the loop.  For example:

for (i = 0; i < 4; ++i)
printf("Line %d\n", i);

When run will produce:

Line 0
Line 1
Line 2
Line 3

The forall  statement

Theforall statement has the form:
1

ICI Technical Description Page15 of 88 Last Updated: October 18, 1999



st ex-

st

te-

t ele-
sion

nt is ex-

. If
 is pre-
dict-
ing or
dict-

 with
the ele-
forall ( expression [,expression ]in expression ) statement

The parser converts it to an internal form. In doing so the first and secondexpressions are
required to be lvalues (that is, capable of being assigned to). Upon execution the fir
pression is evaluated and that storage location is noted. If the secondexpressionis present
the same is done for it. The thirdexpressionis then evaluated and the result noted; it mu
evaluate to an array, a set, a struct, a string, or NULL; we will call thisthe aggregate. If
this is NULL, theforall statement is finished and flow of control continues after the sta
ment; otherwise, a loop is established.

Within the loop, an element is selected from the noted aggregate.  The value of tha
ment is assigned to the location given by the first expression.  If the second expres
was present, it is assigned the key used to access that element. Then the stateme
ecuted.  Finally, flow of control resumes at the start of the loop.

Each arrival at the start of the loop will select a different element from the aggregate
no as yet unselected elements are left, the loop terminates.  The order of selection
dictable for arrays and strings, namely first to last. But for structs and sets it is unpre
able.  Also, while changing the values of the structure members is acceptable, add
deleting keys, or adding or deleting set elements during the loop will have an unpre
able effect on the progress of the loop.

As an example:

forall (colour in [array "red", "green", "blue"])
printf("%s\n", colour);

when run will produce:

red
green
blue

And:

forall (value, key in [struct a = 1, b = 2, c = 3])
printf("%s = %d\n", key, value);

when run will produce (possibly in some other order):

c = 3
a = 1
b = 2

Note in particular the interpretation of the value and key for a set.  For consistency
the access method and the behavior of structs and arrays, the values are all 1 and
ments are regarded as the keys, thus:

forall (value, key in [set "a", "b", "c"])
printf("%s = %d\n", key, value);
16

ICI Technical Description Page16 of 88 Last Updated: October 18, 1999



"key"

nts"

xam-
ruc-

om-

 per-
ar
n

when run will produce:

c = 1
a = 1
b = 1

But as a special case, when the second expression is omitted, the first is set to each
in turn, that is, the elements of the set.  Thus:

forall (element in [set "a", "b", "c"])
printf("%s\n", element);

when run will produce:

c
a
b

When a forall loop is applied to a string (which is not a true aggregate), the "sub-eleme
will be successive one character sub-strings.

Note that although the sequence of choice of elements from a set or struct is at first e
ination unpredictable, it will be the same in a second forall loop applied without the st
ture or set being modified in the interim.

The switch, case, anddefaultstatements

These statements have the forms:

switch ( expression) compound-statement
caseexpression:
default:

The parser converts the switch statement to an internal form.  As it is parsing the c
pound statement, it notes anycase anddefault statements it finds at the top level of the
compound statement. When acasestatement is parsed theexpressionis evaluated imme-
diately by the parser.  As noted previously for parser evaluated expressions, it may
form arbitrary actions, but it is important to be aware that it is resolved to a particul
value just once by the parser.  As thecase anddefault statements are seen their positio
and the associated expressions are noted in a table.

Upon execution, theswitch statement'sexpression is evaluated.  This value is looked up
in the table created by the parser. If a matchingcasestatement is found, flow of control
immediately moves to immediately after thatcase statement.  If there is adefault state-
ment, flow of control immediately moves to just after that.  If there is no matchingcase
and nodefault statement, flow of control continues just after the entireswitch statement.

For example:

switch ("a string")
{
case "another string":

printf("Not this one.\n");
1

ICI Technical Description Page17 of 88 Last Updated: October 18, 1999



uction
ent.
con-

an be

case
ch, the
eaning

nt the
itch
ately

en-
r
e

eval-
e
s em-
case 2:
printf("Not this one either.\n");

case "a string":
printf("This one.\n");

default:
printf("And this one too.\n");

}

When run will produce:

This one.
And this one too.

Note that the case and default statements, apart from the part they play in the constr
of the look-up table, do not influence the executable code of the compound statem
Notice that once flow of control had transferred to the third case statement above, it
tinued through the default statement as if it had not been present.  This behavior c
modified by thebreak statement described below.

It should be noted that the "match" used to look-up the switch expression against the
expressions is the same as that used for structure element look-up. That is, to mat
switch expression must evaluate to the same object as the case expression. The m
of this will be made clear in a later section.

The break and continue statements

Thebreak andcontinue statements have the form:

break ;
continue ;

The parser converts these to an internal form.  Upon execution of a break stateme
execution engine will cause the nearest enclosing loop (a while, do, for or forall) or sw
statement within the same scope to terminate.  Flow of control will resume immedi
after the affected statement.  Note that abreak statement without a surrounding loop or
switch in the same function or module is illegal.

Upon execution of acontinue statement the execution engine will cause the nearest 
closing loop to move to the next iteration. Forwhileanddo loops this means the test. Fo
for loops it means the step, then the test. Forforall loops it means the next element of th
aggregate.

The return statement

Thereturn statement has the form:

return  [ expression ];

The parser converts this to an internal form. Upon execution, the execution engine
uates theexpressionif it is present. If it is not, the value NULL is substituted. Then th
current function terminates with that value as its apparent value in any expression it i
bedded in.  It is an error for there to be no enclosing function.
18

ICI Technical Description Page18 of 88 Last Updated: October 18, 1999



od-
cution

citly
fect
ue to
erated,

e

e

The try statement

Thetry statement has the form:

try   statementonerror  statement

The parser converts this to an internal form.  Upon execution, the firststatement is exe-
cuted. If this statement executes normally flow continues after thetry statement; the sec-
ondstatementis ignored. But if an error occurs during the execution of the firststatement
control is passed immediately to the secondstatement.

Note that "during the execution" applies to any depth of function calls, even to other m
ules or the parsing of sub-modules. When an error occurs both the parser and exe
engine unwind as necessary until an error catcher (that is, atry statement) is found.

Errors can occur almost anywhere and for a variety of reasons.  They can be expli
generated with thefail function (described below), they can be generated as a side-ef
of execution (such as division by zero), and they can be generated by the parser d
syntax or semantic errors in the parsed source. For whatever reason an error is gen
a message (a string) is always associated with it.

When any otherwise uncaught error occurs during the execution of the firststatement, two
things are done:

• Firstly, the string associated with the failure is assigned to the variableerror.  The as-
signment is made as if by a simple assignment statement within the scope of thtry
statement.

• Secondly, flow of control is passed to the statement following theonerror keyword.

Once the secondstatement finishes execution, flow of control continues as if the whol
try statement had executed normally.

For example:

static
div(a, b)
{

try
return a / b;

onerror
return 0;

}

printf("4 / 2 = %d\n", div(4, 2));
printf("4 / 0 = %d\n", div(4, 0));

When run will print:

4 / 2 = 2
4 / 0 = 0

The handling of errors which are not caught by anytry statement is implementation de-
19

ICI Technical Description Page19 of 88 Last Updated: October 18, 1999



 oc-

efini-
eir ef-
gine.
heir

rmi-

lished
els is

en
dis-

es it

d im-

 may
pendent.  A typical action is to prepend the file and line number on which the error
curred to the error string, print this, and exit.

The null statement

The null statement has the form:

;

The parser may convert this to an internal form. Upon execution it will do nothing.

Declaration statements

There are two types of declaration statements:

declaration storage-class declaration-list;
storage-class identifier function-body

storage-class extern
static
auto

The first is the general case while the second is an abbreviated form for function d
tions.  Declaration statements are syntactically equal to any other statement, but th
fect is made entirely at parse time.  They act as null statements to the execution en
There are no restriction on where they may occur, but their effect is a by-product of t
parsing, not of any execution.

Declaration statements must start with one of thestorage-classkeywords listed above
3
.

Considering the general case first, we next have adeclaration-list.

declaration-list identifier [= expression ]
declaration-list, identifier [ = expression ]

That is, a comma separated list of identifiers, each with an optional initialisation, te
nated by a semicolon.  For example:

static a, b = 2, c = [array 1, 2, 3];

The storage class keyword establishes which scope the variables in the list are estab
in, as discussed earlier. Note that declaring the same identifier at different scope lev
permissible and that they are different variables.

A declaration with no initialisation first checks if the variable already exists at the giv
scope.  If it does, it is left unmodified.  In particular, any value it currently has is un
turbed.  If it does not exist it is established and is given the value NULL.

A declaration with an initialisation establishes the variable in the given scope and giv
the given value even if it already exists and even if it has some other value.

Note that initial values are parser evaluated expressions.  That is they are evaluate

3.Note that, unlike C, function definitions must be prefixed by a storage class.  As executable code

occur anywhere, this is required to distinguish them from a function call.
20

ICI Technical Description Page20 of 88 Last Updated: October 18, 1999



le:

so

For

s not

red as
itial-

en
mediately by the parser, but may take arbitrary actions apart from that.  For examp

static
fibonacci(n)
{

if (n <= 1)
return 1;

return fibonacci(n - 1) + fibonacci(n - 2);
}

static fib10 = fibonacci(10);

The declaration offib10 calls a function.  But that function has already been defined 
this will work.

Note that the scope of a static variable is (normally) the entire module it is parsed in.
example:

static
func()
{

static aStatic = "The value of a static.";
}

printf("%s\n", aStatic);

when run will print:

The value of a static.

That is, despite being declared within a function, the declaration ofaStatic has the same
effect as if it had been declared outside the function. Also notice that the function ha
been called.  The act of parsing the function caused the declaration to take effect.

The behavior of extern variables has already been discussed, that is, they are decla
static in the parent module. The behavior of auto variables, and in particular their in
isation, will be discussed in a later section.

Abbreviated function declarations

As seen above there are two forms of declaration.  The second:

storage-class identifier function-body

is a shorthand for:

storage-class identifier= [ func function-body] ;

and is the normal way to declare simple functions.  Examples of this have been se
above.
21

ICI Technical Description Page21 of 88 Last Updated: October 18, 1999



are

e the
enti-
and

ed as

 posi-
e as-

o vari-
as-

static

the
If no

f the
 re-
are

main

r is-

which
hich
r ini-
rser
Functions

As with most ICI constructs there are two parts to understanding functions; how they
parsed and how they execute.

When a function is parsed four things are noted:

• the names and positions of the formal parameters;

• the names and initialisation of auto variables;

• the static scope in which the function is declared;

• the code generated by the statements in the function.

The formal parameters (that is, the identifiers in the bracket enclosed list just befor
compound statement) are actually implicit auto variable declarations. Each of the id
fiers is declared as an auto variable without an initialisation, but in addition, its name
position in the list is noted.

Upon execution (that is, upon a function call), the following takes place:

• The auto variables, as noted by the parser, along with any initialisations, are copi
a group.  This copy forms the auto variables of this invocation.

• Any actual parameters (that is, expressions provided by the caller) are matched
tionally with the formal parameter names, and the value of those expressions ar
signed to the auto variables of those names.

• If there were more actual parameters than formal parameters, and there is an aut
able calledvargs, the remaining argument values are formed into an array which is
signed tovargs.

• The variable scope is set such that the auto variables are the inner-most scope, the
variables noted with the function are the next outer scope etc.

• The flow of control is diverted to the code generated by parsing the function.

A return statement executed within the function will cause the function to return to 
caller and act as though its value were the expression given in the return statement.
expression was given in the return statement, or if execution fell through the bottom o
function, the apparent return value is NULL.  In any event, upon return the scope is
stored to that of the caller. All internal references to the group of automatic variables
lost (although as will be seen later explicit program references may cause them to re
active).

Simple functions have been seen in earlier examples.  We will now consider furthe
sues.

It is very important to note that the parser generates a prototype set of auto variables
are copied, along with their initial values, when the function is called.  The value w
an auto variable is initialised with is a parser evaluated expression just like any othe
tialisation. It is not evaluated on function entry. But on function entry the value the pa
determined is used to initialise the variable.  For example:

static myVar = 100;
22

ICI Technical Description Page22 of 88 Last Updated: October 18, 1999



se of
le as
on
en

the
l

d

hich
static
myFunc()
{

auto anAuto = myVar;

printf("%d\n", anAuto);
anAuto = 500;

}

myFunc();
myVar = 200;
myFunc();

When run will print:

100
100

Notice that the initial value ofanAuto was computed just once, changingmyVar before
the second call did not affect it. Also note that changinganAutoduring the function did
not affect its subsequent re-initialisation on the next invocation.

As stated above, formal parameters are actually uninitialised auto variables. Becau
the behavior of variable declarations it is possible to explicitly declare an auto variab
well as include it in the formal parameter list.  In addition, such an explicit declarati
may have an initialisation.  In this case, the explicit initialisation will be effective wh
there is no actual parameter to override it.  For example:

static
print(msg, file)
{

auto file = stdout; /* Default value. */

fprintf(file, "%s\n", msg);
}

print("Hello world");
print("Hello world", stderr);

In the first call to the functionprint there is no second actual parameter. In this case
explicit initialisation of the auto variablefile (which is the second formal parameter) wil
have its effect unmolested. But in the second call toprint a second argument is given. In
this case this value will over-write the explicit initialisation given to the argument an
cause the output to go tostderr.

As indicated above there is a mechanism to capture additional actual parameters w
were not mentioned in the formal parameter list.  Consider the following example:

static
sum()
{

23

ICI Technical Description Page23 of 88 Last Updated: October 18, 1999



igned
ch-

is
ions:

ef-

rmed
auto vargs;
auto total = 0;
auto arg;

forall (arg in vargs)
total += arg;

return total;
}

printf("1+2+3 = %d\n", sum(1, 2, 3));
printf("1+2+3+4 = %d\n", sum(1, 2, 3, 4));

Which when run will produce:

1+2+3 = 6
1+2+3+4 = 10

In this example the unmatched actual parameters were formed into an array and ass
to the auto variablevargs, a name which is recognised specially by the function call me
anism.

And also consider the following example where a default initialisation tovargsis made.
In the following example the functioncall is used to invoke a function with an array of
actual parameters, the functionarray is used to form an array at run-time, and addition
used to concatenate arrays; all these features will be further explained in later sect

static
debug(fmt)
{

auto fmt = "Reached here.\n";
auto vargs = [array];

call(fprintf, array(stderr, fmt) + vargs);
}

debug();
debug("Done that.\n");
debug("Result = %d, total = %d.\n", 123, 456);

When run will print:

Reached here.
Done that.
Result = 123, total = 456.

In the first call todebug no arguments are given and both explicit initialisations take 
fect. In the second call the first argument is given, but the initialisation ofvargsstill takes
effect.  But in the third call there are unmatched actual parameters, so these are fo
into an array and assigned tovargs, overriding its explicit initialisation.
24

ICI Technical Description Page24 of 88 Last Updated: October 18, 1999



r.

ary-
con-
key
ic dis-

ll op-
 the
used
t, is

t pa-
o the
s are

e su-
hared

ould
n our
ed
nces

ue of
MethodCalls

In addition to the above ICI has a simple mechanism for callingmethods— functions con-
tained within an object (typically astruct) that accept that object as their first paramete
The method call mechanism is enabled via a modification to thecall operator, "()", to add
semantics for calling a pointer object and through the addition of a new operator, bin
@, to form a pointer object from an object and a key. ICI pointers, described below,
sist of an object and a key. To indirect though the pointer the object is indexed by the
and the resulting object used as the result. This is the same operation used in dynam
patch in languages such as Smalltalk and Objective-C.

The call operator now accepts a pointer as its first operand (we may think of the ca
erator as a n-ary operator that takes a function or pointer object as its first operand
function parameters as the remaining operands). When a pointer is "called" the key is
to index the pointer’s container object and the result, which must be a function objec
called. In addition the container object within the pointer is passed as an implicit firs
rameter to the function (thus passing the actual object used to invoke the method t
method). Apart from the calling semantics the functions used to implemented method
in all respects normal ICI functions.

Struct objects are typically used as the "container" for objects used with methods. Th
per mechanism provides the hierarichal search needed to allow class objects to be s
by multiple instances and provide a natural means of encapsulating information.

A typical way of using methods is,

/*
 * Define a "class" object representing our class and
 * containing the class methods.
 */
static MyClass = [struct

    doubleX = [func (self)
    {
        return self.x * 2;
    }]

];

...

static a;
a = struct(@MyClass);
a.x = 21;
printf("%d\n", a@doubleX());

We first define a class by using a literal struct to contain our named methods. You c
also define class variables in this struct as it is shared by all instances of that class. I
class we’ve got a We first define a class by using a literal struct to contain our nam
methods. You could also define class variables in this struct as it is shared by all insta
of that class. In our class we’ve got a single method, doubleX, that doubles the val
2

ICI Technical Description Page25 of 88 Last Updated: October 18, 1999



truct
ich en-
create
eth-
rmed

e. We

nt:
an instance variable called x.

Later in the program we create an instance of a MyClass object by making a new s
object and setting its super struct to the class struct. The super is made atomic wh
sures all instances share the same object and makes it read-only for them. Then we
an "instance variable" within the object by assigning 21 to a.x and finally invoke the m
od. We do not pass any parameters to doubleX. The call through the pointer object fo
by the binary-@ operator passes "a" implicitly

Objects

Up till now few exact statements about the nature of values and data have been mad
will now examine values in more detail.  Consider the following code fragment:

static x;
static y;

x = [array 1, 2, 3, 4];
y = x;

After execution of this code the variablex refers to an array.  The assignment ofx to y
causesy to refer to the same array. Diagrammatically:

If the assignment:

y[1] = 200;

is performed, the result is:

We say thatx andy refer to the same object. Now consider the following code fragme

static x;
static y;

x = [array 1, 2, 3, 4];
y = [array 1, 2, 3, 4];

Diagrammatically:

x

y

1 2 3 4

x

y

1 200 3 4

x

y

1 2 3 4

1 2 3 4
26

ICI Technical Description Page26 of 88 Last Updated: October 18, 1999



tions
to.

 be
r the

.

such
tained
ns are
the
e fol-
In this case,x andy refer to different objects, despite that fact they are equal.

Now consider one of the unary operators which was only briefly mentioned in the sec
above. The@operator returns a read-only version of the sub-expression it is applied
Consider the following statement:

y = @y;

After this has been executed the result could be represented diagrammatically as:

The middle array now has no reference to it and the memory associated with it will
collected by the interpreter's standard garbage collection mechanism. Now conside
following statement:

x = @x;

This is similar to the previous statement, except that this timex is replaced by a read-only
version of its old value.  But the result of this operation is:

Notice thatx now refers to the same read-only array thaty refers to. This is a fundamental
property of the@operator. It returnsthe uniqueread-only version of its argument value
Such read-only objects are referred to asatomicobjects. The array whichx used to refer
to was non-atomic, but the array it refers to now is an atomic array. Aggregate types
as arrays, sets and structs are generally non-atomic, but atomic versions can be ob
(as seen above).  But most other types, such as integers floats, strings and functio
intrinsically atomic. That is, no matter how a number, say 10, is generated, it will be
same object as every other number 10 in the interpreter.  For-instance, consider th
lowing example:

x = "ab" + "cdefg";
y = "abcde" + "fg";

x

y

1 2 3 4

1 2 3 4

1 2 3 4
Read-only

x

y

1 2 3 4

1 2 3 4
Read-only
2

ICI Technical Description Page27 of 88 Last Updated: October 18, 1999



t and

these

is

jects.

que
t if

s, not
After this is executed the situation can be represented diagrammatically as:

It is important to understand when objects are the same object, when they are differen
the effects this has.

Equality

We saw above how two apparently identical arrays were each distinct object.  But 
two arrays wereequalin the sense of the equality testing operator== . If two values are
the same object they are said to beeq

4
, and there is a function of that name to test for th

condition.  Two objects areequal (that is== ) if:

• they are the same object; or

• they are both arithmetic (int and float) and have equivalent numeric values; or

• they are aggregates of the same type and all the sub-elements are the same ob

This definition of equality is the basis for resolving the merging of aggregates into uni
read-only (atomic) versions.  Two aggregates will resolve to the same atomic objec
they areequal.  That is, they must contain exactly the same objects as sub-element
just equal objects.  For example:

static x = [array 1, [array 2, 3], 4, 5];
static y = [array 1, [array 2, 3], 4, 5];

Could be represented diagrammatically as:

Now, if the following statements were executed:

x = @x;
y = @y;

4.As in LISP.

x

y
“abcdefg”

x

y

1 4 5

1 4 5

2 3

2 3
28

ICI Technical Description Page28 of 88 Last Updated: October 18, 1999



nly
tegers
 sub-
eded

s
he ele-
The result could be represented diagrammatically as:

That is, bothx andy refer to new read-only objects, but they refer to different read-o
objects because they have an element which is not the same object. The simple in
are the same objects because integers are intrinsically atomic objects.  But the two
arrays are distinct objects.  Being equal was not sufficient.  The top-level arrays ne
to have exactly the same objects as contents to makex andy end up referring to the same
read-only array.  In contrast to this consider the following similar situation:

static z = [array 2, 3];
static x = [array 1, z, 4, 5];
static y = [array 1, z, 4, 5];

This could be represented diagrammatically as:

Now, if the following statements were executed:

x = @x;
y = @y;

The result could be represented diagrammatically as:

In this case bothx andy refer to the same read-only array because the original array
where equal, that is, all their elements were the same objects.  Notice that one of t

x

y

1 4 5

1 4 5

2 3

2 3

Read-only

Read-only

x

y

1 4 5

1 4 5

2 3z

x

y

2 3

1 4 5
Read-only
29

ICI Technical Description Page29 of 88 Last Updated: October 18, 1999



el
ay can

in the
ments is still awriteable array.  The read-only property is only referring to the top lev
array.  The sub-array can be changed, but the reference to it from the top level arr
not.  Thus:

x[1][0] = 200;

will result in:

whereas the statement:

x[1] = 200;

will just result in an error.

Structure and set keys

Any object, not just a string, can be used as a key in a structure.  For instance:

static x = [struct];
static z = [array 10, 11];

x["abc"] = 1;
x[56] = 2;
x[z] = 3;

Could be represented diagrammatically as:

And the assignment:

x[z] = 300;

would replace the3 in the above diagram with300.  But the assignment:

x[[array 10, 11]] = 300;

would result in a new element being added to the structure because the array given
above statement is a different object from the one whichz refers to.

Similarly, elements of sets may be any objects.

x

y

200 3

1 4 5
Read-only

x

10 11

1 3

5“abc” 56
2

30

ICI Technical Description Page30 of 88 Last Updated: October 18, 1999



ly

ey, or

 new
ond

re is
ue
ct

for
ich
ith
uper
Indexing structures by complex aggregates is as efficient as indexing by intrinsical
atomic types such as strings and integers.

Structure super types

Up till now structures have been described as simple lookup tables which map a k
index, to a value.  But a structure may have associated with it asuper structure.

The functionsuper can be used to discover the current super of a struct and to set a
super.  With just one argument it returns the current super of that struct, with a sec
argument it also replaces the super by that value.

When a key is being looked-up in a structure for reading, and it is not found and the
asuper struct, the key is further looked for in the super struct, if it is found there its val
from that struct is returned. If it is not found it will be looked for in the next super stru
etc.  If no structures in thesuper chain contain the key, the special value NULL is re-
turned.

When a key is being looked up in a structure for writing, it will similarly be searched
in the super chain. If it is found in a writeable structure the value in the structure in wh
it was found will be set to the new value. If it was never found, it will be added along w
the given value to the very first struct, that is, the structure at the base, or root, of the s
chain.

Consider the following example:

static theSuper = [struct a = 1, b = 2, c = 3];
static theStruct = [struct x = 100, y = 200];

super(theStruct, theSuper);

After this statement the situation could be represented diagrammatically as:

then if the following statements were executed:

theStruct.a = 123;
theStruct.x = 456;
theStruct.z = 789;

100 200

1 3

5“a” “b”

2

“x” “y”

“c”

theStruct
31

ICI Technical Description Page31 of 88 Last Updated: October 18, 1999



nd
he su-

 situa-

super
ce.

to
the situation could be diagrammatically represented as:

If a super struct is not writeable (that is, it is atomic) values will not be written in it a
will lodge in the base structure instead. Thus consider what happens if we replace t
per structure in the previous example by its read-only version:

super(theStruct, @theSuper);

The situation could now be represented diagrammatically as:

If the assignment statement:

theStruct.a += 10;

were executed, the value of the elementa will first be readfrom the super structure, this
value will then have ten added to it, and the result will bewrittenback into the base struc-
ture; because the super structure is read-only and cannot be modified.  The finally
tion can be represented diagrammatically as:

Note that many structs may share the same super struct.  Thus a single read-only 
struct can be used hold initial values; saving explicit initialisations and storage spa

The functionassignmay be used to set a value in a struct explicitly, without reference

456 200

123 3

5“a” “b”

2

“x” “y”

“c”

theStruct
789

“z”

456 200

123 3

5“a” “b”

2

“x” “y”

“c”

theStruct
789

“z”

Read-only

133 456

123 3

5“a” “b”

2

“a” “x”

“c”

theStruct
200

“y”

Read-only

789

“z”
32

ICI Technical Description Page32 of 88 Last Updated: October 18, 1999



ic-

ritten

ut vari-

ified
is the
d suc-

truc-

plicit
hiding
ence
n a
n-

iable
r

with

cribed
the

truc-

f any-
nd oth-

exe-
any super structs; and the functionfetchmay be used to read a value from a struct expl
itly, without reference to any super structs.

Within astruct-literala colon prefixed expression after thestructidentifier is used as the
super struct. For example, the declarations used in the previous example could be w
as:

static theSuper = [struct a = 1, b = 2, c = 3];
static theStruct = [struct:theSuper, x = 100, y = 200];

An aside on variables and scope

Now that structs and their super have been described a more precise statement abo
ables and scope can be made.

ICI variables are entries in ordinary structs.  At all times, the current scope is ident
by a structure.  The auto variables are the entries in this base structure.  Its super 
struct containing the static variables. The next super struct contains the externs, an
cessive super structs are successive outer scopes.

Auto, static and extern declarations make explicit assignments to the appropriate s
ture.

In these terms it can be said that an un-adorned identifier in an expression is an im
reference to an element of the current scope structure. The inheritance and name
of the variable scope mechanism is a product of the super chain. But there is a differ
in the handling of undefined entries. Whereas normal lookup of undefined entries i
structure produces a default value of NULL or implicit creation, the implicit lookup of u
defined variables triggers an attempt to dynamically load a library to define the var
(seeUndefined variables and dynamic loadingbelow), and failing that, produce an erro
(“%s undefined”).

The functionscopecan be used to obtain the current scope structure; and to set it (use
care).

Note that when there is an atomic structure in the scope chain the mechanism des
at the end of the previous section does not operate correctly. Writing to a variable in
atomic struct will give a spurious undefined error rather than lodging it in the base s
ture.  This is a deficiency which will be corrected in a later release.

Pointers

Pointers are references to storage locations.  Storage locations are the elements o
thing which can be indexed. That is, array elements, set elements, struct elements a
ers (which we will see below) can be pointed to.  Variables (which are just struct
elements) can be pointed to.  In more general terms, any lvalue can be pointed to.

The&  operator is used to obtain a pointer to a location.  Thus if the following were 
cuted:

static x;
static y = [array 1, 2, 3];
33

ICI Technical Description Page33 of 88 Last Updated: October 18, 1999



-
e

s the

tion of
ven
cation
ur, or

e
be an
s part
gate

es el-
arith-
ers,

xact
ach of

e.  In
static p1 = &x;
static p2 = &y[1];

The variablep1would be a pointer tox and the variablesp2would be a pointer to the sec
ond element ofy.  Reference to the object a pointer points to can be obtained with th*
operator.  Thus if the following were executed:

*p1 = 123;
*p2 = 456;
printf("x = %d, y[1] = %d\n", x, y[1]);

the output would be:

x = 123, y[1] = 456

Pointers are really a bundle of two objects, one is the object pointed into, the other i
key used to access the location in question. For instance, in the example abovep2remem-
bers the array, and the number 1; that is, the aggregate and the index. The genera
a pointer does not affect the location being pointed to. In fact the location may not e
exist yet.  When a pointer is referenced the same operation takes place as if the lo
was referenced explicitly.  Thus a search down the super chain of a struct may occ
an array may be extended to include the index being written to, etc.

In addition to simple indirection (that is the* operator), pointers may be indexed. But th
index values must be an integer, and the key stored as part of the pointer must also
integer.  When a pointer is indexed, the index is added to the key which is stored a
of the pointer, the sum forms the actual index to use to when referencing the aggre
recorded by the pointer.  For instance, continuing the example above:

p2[1] = 789;

would set the last element of the array to 789, because the pointer currently referenc
ement 1, and the given index is 1, and 1 + 1 is 2 which is the last element. The index
metic provided by pointers will work with any types, as long as the indexes are integ
thus:

static s = [struct (20) = 1, (30) = 2, (40) = 3];
static p = &s[30];

p[-10] = -1;
p[0] = -2;
p[10] = -3;

Would replace each of the elements in the structs by their negative value.

This concludes the general discussion of ICI as a whole. We will now examine the e
nature of each of the data types, then each of the expression operators, and finally e
the standard functions.

Data types

ICI supports a base set of standard data types.  Each is identified by a simple nam
34

ICI Technical Description Page34 of 88 Last Updated: October 18, 1999



an

es
stand

to.

-

y,
summary these are:

array An ordered sequence of other objects.
file An open file reference.
float A double precision floating point number.
func A function.
int A signed 32 bit integer.
mem References to raw machine memory.
ptr A reference to a storage location.
regexp A compiled regular expression.
set An unordered collection of other objects.
string An ordered sequence of 8 bit characters.
struct An unordered set of pairs of objects.

A full explanation of the semantics of each type (including the semantics of indexing
object of that type) will be included in a future version of this document.

Operators

The following table details each of the unary and binary operators with all of the typ
they may be applied to. Within the first column the standard type names are used to
for operands of that type, along withany to mean any type andnum to mean anint or a
float. In general, where anint and afloat are combined in an arithmetic operation, theint
is first converted to afloat and then the operation is performed.

The following table is in precedence order.

*ptr Indirection: The result references the thing the pointer points 
The result is an lvalue.

& any Address of: The result is a pointer toany. If any is an lvalue the
pointer references that storage location. Ifanyis not an lvalue but
is atermother than a bracketed non-term, as described in the syn
tax above, a one element array containingany will be fabricated
and a pointer to that storage location returned. For example:

p = &1;

sets p to be a pointer to the first element of an un-named arra
which currently contains the number 1.

-num Negation: Returns the negation ofnum. The result is the same
type as the argument. The result is not an lvalue.

+any Has no effect except the result is not an lvalue.

!any Logical negation: Ifanyis 0 (integer) or NULL, 1 is returned, else
0 is returned.

~int Bit-wise complement: The bit-wise complement ofint is returned.
3

ICI Technical Description Page35 of 88 Last Updated: October 18, 1999



n
of

x-
-
tly

uiv-
y
ey

uiv-
y
ey

ds

 ap-
++any Pre-increment: Equivalent to(any+= 1). any must be an lvalue
and obey the restrictions of the binary+ operator.  See+ below.

--any Pre-decrement: Equivalent to(any-= 1). any must be an lvalue
and obey the restrictions of the binary- operator.  See- below.

@any Atomic form of: Returns the unique, read-only form ofany.  If
any is already atomic, it is returned immediately.  Otherwise a
atomic form ofany is found or generated and returned; this is 
execution time order equal to the number of elements inany. See
the section on objects above for more explanation.

$any Immediate evaluation: Recognised by the parser.  The sub-e
pressionany is immediately evaluated by invocation of the exe
cution engine. The result of the evaluation is substituted direc
for this expression term by the parser.

any++ Post-increment: Notes the value of any, then performs the eq
alent of(any+= 1), except any is only evaluated once, and finall
returns the original noted value. any must be an lvalue and ob
the restrictions of the binary+ operator.  See+ below.

any-- Post-increment: Notes the value of any, then performs the eq
alent of(any-= 1), except any is only evaluated once, and finall
returns the original noted value. any must be an lvalue and ob
the restrictions of the binary- operator.  See- below.

any1@ any2 Form pointer: Returns a pointer object formed from its operan
with the pointer’s aggregate being set fromany1and the pointer’s
key fromany2.

num1 * num2 Multiplication: Returns the product of the two numbers, if both
nums are ints, the result is int, else the result is float.

set1 * set2 Set intersection: Returns a set that contains all elements that
pear in bothset1 andset2.

num1 / num2 Division: Returns the result of dividingnum1 by num2.  If both
numbers are ints the result is int, else the result is float.  Ifnum2
is zero the errordivision by 0is generated, ordivision by 0.0if the
result would have been a float.

int1 % int2 Modulus: Returns the remainder of dividingint1 by int2.  If int2
is zero the errormodulus by 0 is generated.

num1 + num2 Addition: Returns the sum ofnum1 andnum2.  If both numbers
areints the result isint, else the result isfloat.
36

ICI Technical Description Page36 of 88 Last Updated: October 18, 1999



b-

the
.

na-

na-

if-

he
the

ter,

of

sec-
is

om
of

nts
-

-

ptr + int Pointer addition:ptr must point to an element of an indexable o
ject whose index is anint. Returns a new pointer which points to
an element of the same aggregate which has the index which is
sum ofptr's index andint.  The arguments may be in any order

string1 + string2 String concatenation: Returns the string which is the concate
tion of the characters ofstring1thenstring2. The execution time
order is  proportional to the total length of the result.

array1 + array2 Array concatenation: Returns a new array which is the concate
tion of the elements fromarray1thenarray2. The execution time
order is proportional to the total length of the result. Note the d
ference between the following:

a += [array 1];
push(a, 1);

In the first case a is replaced by a newly formed array which is t
original array with one element added. But in the second case
pushfunction (see below) appends an element to the arraya refers
to, without making a new array. The second case is much fas
but modifies an existing array.

struct1 + struct2 Structure concatenation: Returns a new struct which is a copy
struct1, with all the elements ofstruct2 assigned into it.  Obeys
the semantics of copying and assignment discussed in other 
tions with regard to super structs..  The execution time order 
proportional to the sum of the lengths of the two arguments.

set1 + set2 Set union: Returns a new set which contains all the elements fr
both sets. The execution time order is proportional to the sum
the lengths of the two arguments.

num1 - num2 Subtraction: Returns the result of subtractingnum2fromnum1. If
both numbers are ints the result isint, else the result isfloat.

set1 - set2 Set subtraction: Returns a new set which contains all the eleme
of set1, less the elements ofset2. The execution time order is pro
portional to the sum of the lengths of the two arguments.

ptr1 - ptr2 Pointer subtraction:ptr1 andptr2 must point to elements of in-
dexable objects whose indexs areints. Returns anint which is the
the index ofptr1 less the index ofptr2.

int1 >> int2 Right shift: Returns the result of right shiftingint1by int2. Equiv-
alent to division by 2**int2. int1 is interpreted as a signed quan
tity.

int1 << int2 Left shift: Returns the result of left shiftingint1 by int2. Equiva-
lent to multiplication by 2**int2.
3

ICI Technical Description Page37 of 88 Last Updated: October 18, 1999



nts
l
r

-
annot

oth
r
s are

r-

n

ing
of

le,
array << int Left shift array: Returns a new array which contains the eleme
of array from indexint onwards. Equivalent to the function cal
interval(array, int)(which is considered preferable, this operato
may disappear in future releases).

num1 < num2 Numeric test for less than: Returns 1 ifnum1 is less thannum2,
else 0.

set1 < set2 Test for subset: Returns 1 ifset1 contains only elements that are
in set2, else 0.

string1 < string2 Lexical test for less than: Returns 1 ifstring1is lexically less than
string2, else 0.

ptr1 < ptr2 Pointer test for less than:ptr1 andptr2 must point to elements of
indexable objects whose indexes areints. Returns 1 ifptr1 points
to an element with a lesser index thanptr2, else 0.

The>, <= and>= operators work in the same fashion as<, above. For sets > tests for one
set being a superset of the other. The<= and>= operators test for proper sub- or super
sets. That is one set can contain only those elements contained in the other set but c
be equal to the other set.

any1 == any2 Equality test: Returns 1 ifany1is equal toany2, else 0. Two ob-
jects are equal when: they are the same object; or they are b
arithmetic (int andfloat) and have equivalent numeric values; o
they are aggregates of the same type and all the sub-element
the same objects.

any1 != any2 Inequality test: Returns 1 ifany1is not equal toany2, else 0. See
above.

string ~ regexp Logical test for regular expression match: Returns 1 ifstringcan
be matched byregexp, else 0.  The arguments may be in any o
der.

string !~ regexp Logical test for regular expression non-match: Returns 1 ifstring
can not be matched byregexp, else 0.  The arguments may be i
any order.

string ~~regexp Regular expression sub-string extraction: Returns the sub-str
of stringwhich is matched by the first bracket enclosed portion
regexp, or NULL if there is no match orregexpdoes not contain
a (...) portion. The arguments may be in any order. For examp
a "basename" operation can be performed with:

argv[0] ~~= #([^/]*)$#;
38

ICI Technical Description Page38 of 88 Last Updated: October 18, 1999



 ar-

s-

e

s as

ag-
fied
nt

force
string ~~~regexp Regular expression multiple sub-string extraction: Returns an
ray of the the sub-strings ofstringwhich are matched by the (...)
enclosed portions ofregexp, or NULL if there is no match. The
arguments may be in any order.

int1 & int2 Bit-wise and: Returns the bit-wise and ofint1 andint2.

int1 ^ int2 Bit-exclusive or: Returns the bit-wise exclusive or ofint1 and
int2.

int1 | int2 Bit-wise or: Returns the bit-wise or ofint1 andint2.

any1 && any2 Logical and: Evaluates the expression which determinesany1, if
this evaluates to 0 or NULL (i.e.false), 0 is returned, elseany2is
evaluated and returned

5
. Note that ifany1 does not evaluate to a

true value, the expression which determinesany2 is never evalu-
ated.

any1 || any2 Logical or: Evaluates the expression which determinesany1, if
this evaluates to other than 0 or NULL (i.e.true), 1 is returned,
elseany2 is evaluated and returned. Note that ifany1 does not
evaluate to afalsevalue, the expression which determinesany2is
never evaluated.

any1? any2: any3 Choice: Ifany1 is neither 0 or NULL (i.e.true), the expression
which determinesany2is evaluated and returned, else the expre
sion which determinesany3is evaluated and returned. Only one
of any2andany3are evaluated. The result may be an lvalue if th
returned expression is.  Thus:

flag ? a : b = value

is a legal expression and will assignvalueto eithera or b depend-
ing on the state offlag.

any1 = any2 Assignment: Assignsany2to any1. any1must be an lvalue. The
behavior of assignment is a consequence of aggregate acces
discussed in earlier sections. In short, an lvalue (in this caseany1)
can always be resolved into an aggregate and an index into the
gregate. Assignment sets the element of the aggregate identi
by the index toany2. The returned result of the whole assignme
is any1, after the assignment has been performed.

The result is an lvalue, thus:

++(a = b)

will assignb to a and then incrementa by 1.

5.Note that this is different from C where the result is always completely resolved to a 0 or 1. Use !! to

a 0/1 value from a generic true/false.
39

ICI Technical Description Page39 of 88 Last Updated: October 18, 1999



oci-

e re-

e

,
t op-

-
h as
arts
g-
 to

e-
Note that assignment operators (this and following ones) ass
ate right to left, unlike all other binary operators, thus:

a = b += c -= d

Will subtractd from c, then add the result tob, then assign the fi-
nal value toa.

+= -= *= /= %= >>= <<= &= ^= |= ~~=

Compound assignments: All these operators are defined by th
writing rule:

any1 op= any2

is equivalent to:

any1= any1 op any2

except thatany1is not evaluated twice. Type restrictions and th
behavior oropwill follow the rules given with that binary opera-
tor above. The result will be an lvalue (as a consequence of=
above).  There are no further restrictions.  Thus:

a = "Hello";
a += " world.\n";

will result in the variablea referring to the string:

"Hello world.\n".

any1 <=> any2 Swap: Swaps the current values ofany1andany2. Both operands
must be lvalues. The result isany1after the swap and is an lvalue
as in other assignment operators.  Also like other assignmen
erators, associativity is right to left, thus:

a <=> b <=> c <=> d

rotates the values ofa, b andc towardsd and bringsd's original
value back toa.

any1 , any2 Sequential evaluation: Evaluatesany1, thenany2. The result is
any2and is an lvalue ifany2is. Note that in situations where com
ma has meaning at the top level of parsing an expression (suc
in function call arguments), expression parsing precedence st
at one level below the comma, and a comma will not be reco
nised as an operator.  Surround the expression with brackets
avoid this if necessary.

Standard functions

The following list summarises the standard functions.  Following this is a detailed d
40

ICI Technical Description Page40 of 88 Last Updated: October 18, 1999



scriptions of each of them.

float|int = abs(float|int)
float = acos(number)
mem = alloc(int[ , int] )
array = array(any...)
float = asin(number)
any = assign(struct, any, any)

float = atan(number)
float = atan2(number, number)
any = call(func, array)

float = ceil(number)
close(file)

any = copy(any)
float = cos(number)
file = currentfile()

del(struct, any)
int = eq(any, any)
int = eof(file)

eventloop()
exit([ int|string|NULL ] )

float = exp(number)
array = explode(string)

fail(string)
any = fetch(struct, any)

float = float(any)
float = floor(number)

int = flush(file)
float = fmod(number, number)
file = fopen(string[, string] )

flush([ file] )
string = getchar([ file] )
string = getfile([ file] )
string = getline([ file] )
string = getenv(string)
string = gettoken([ file|string[ ,string]] )
array = gettokens([ file|string[ ,string[ ,string]]] )
string = gsub(string, regexp, string)
string = implode(array)
struct = include(string[ , struct] )

int = int(any)
string|array = interval(string|array, int[ , int] )

int = isatom(any)
array = keys(struct)
float = log(number)
float = log10(number)
mem = mem(int, int[ ,int] )

file = mopen(string[, string] )
41

ICI Technical Description Page41 of 88 Last Updated: October 18, 1999



int, a
int = nels(any)
int|float = num(string|int|float)

struct = parse(file|string[ , struct] )
any = pop(array)
file = popen(string[, string] )

float = pow(number, number)
printf([ file,]  string[ , any...] )

any = push(array, any)
put(string)
putenv(string[ , string] )

int = rand([ int] )
reclaim()

regexp = regexp(string)
regexp = regexpi(string)

remove(string)
struct = scope([struct] )

int = seek(file, int, int)
set = set(any...)

float = sin(number)
int = sizeof(any)

array = smash(string, string)
file = sopen(string[ , string] )

sort(array, func)
string = sprintf(string[ , any...] )
float = sqrt(number)

string = string(any)
struct = struct(any, any...)
string = sub(string, regexp, string)
struct = super(struct[ , struct] )

int = system(string)
float = tan(number)

string = tochar(int)
int = toint(string)

any = top(array[, int] )
int = trace(string)

string = typeof(any)
array = vstack()

file|int|float = waitfor(file|int|float...)

The following is an alphabetic listing of each of the standard functions.

float|int = abs(float|int)

Returns the absolute value of its argument. The result is an int if the argument is an
float if it is a float.

angle = acos(x)

Returns the arc cosine ofx in the range 0 to pi.
42

ICI Technical Description Page42 of 88 Last Updated: October 18, 1999



o.

are
mem = alloc(nwords [, wordz])

Returns a newmem object referring tonwords (an int) of newly allocated and cleared
memory.  Each word is either 1, 2, or 4 bytes as specified bywordz (an int, default 1).
Indexing ofmem objects performs the obvious operations, and thus pointers work to

array = array(any...)

Returns an array formed from all the arguments. For example:

array()

will return a new empty array; and

array(1, 2, "a string")

will return a new array with three elements,1, 2, and"the string".

This is the run-time equivalent of the array literal. Thus the following two expressions
equivalent:

$array(1, 2, "a string")

[array 1, 2, "a string"]

float = asin(x)

Returns the arc sine ofx  in the range -pi/2 to pi/2.

value = assign(struct, key, value)

Sets the element ofstruct identified bykey to value, ignoring any super struct.  Returns
value.

angle = atan(x)

Returns the arc tangent ofx  in the range -pi/2 to pi/2.

angle = atan2(y, x)

Returns the angle from the origin to the rectangular coordinatesx, y(floats ) in the range
-pi to pi.

return = call(func, args)

Calls the functionfuncwith arguments taken from the arrayargs. Returns the return value
of the function.

This is often used to pass on an unknown argument list.  For example:

static
db()
{

auto vargs;
43

ICI Technical Description Page43 of 88 Last Updated: October 18, 1999



e

f it).

o

and
what

up to
com-
close
if (debug)
return call(printf, vargs);

}

new = copy(old)

Returns a copy ofold.  If old is an intrinsically atomic type such as an int or string, th
newwill be the same object as the old. But ifold is an array, set, or struct, a copy will be
returned. The copy will be a new non-atomic object (even ifold was atomic) which will
contain exactly the same objects asoldand will beequalto it (that is== ). If old is a struct
with a super struct,newwill have the same super (exactly the same super, not a copy o

x = cos(angle)

Returns the cosine ofangle (a float interpreted in radians).

file = currentfile()

Returns the file associated with the innermost parsing context, or NULL if there is n
module being parsed.

This function can be used to include data in a program source file which is out-of-b
with respect to the normal parse stream. But to do this it is necessary to know up to
character in the file in question the parser has consumed.

In general: after having parsed any simple statement the parser will have consumed
and including the terminating semicolon, and no more. Also, after having parsed a
pound statement the parser will have consumed up to and including the terminating
brace and no more.  For example:

static help = gettokens(currentfile(), "", "!")[0]

;This is the text of the help message.
It follows exactly after the ; because
that is exactly up to where the parser
will have consumed. We are using the
gettokens() function (as described below)
to read the text.
!

static otherVariable = "etc...";

This function can also be used to parse the rest of a module within an error catcher.
For example:

try
parse(currentfile(), scope())

onerror
printf("That didn't work, but never mind.\n");

static this = that;
etc();
44

ICI Technical Description Page44 of 88 Last Updated: October 18, 1999



rror).
dules

g or
. If a
r out-
laced
The functionsparse andscope are described below.

del(struct, key)

Deletes the element ofstruct identified bykey. Any super structs are ignored.  Returns
NULL.  For example:

static s = [struct a = 1, b = 2, c = 3];
static v, k;
forall (v, k in s)

printf("%s=%d\n", k, v);
del(s, "b");
printf("\n");
forall (v, k in s)

printf("%s=%d\n", k, v);

When run would produce (possibly in some other order):

a=1
c=3
b=2

a=1
c=3

int = eof([file])

Returns non-zero if end of file has been read onfile. If file is not given the current value
of stdin in the current scope is used.

eq(obj1, obj2)

Returns 1 (one) ifobj1 andobj2 are the same object, else 0 (zero).

evetloop()

Enters an internal event loop and never returns (but can be broken out of with an e
The exact nature of the event loop is system specific. Some dynamically loaded mo
require an event loop for their operation.

exit([string|int|NULL])

Causes the interpreter to finish execution and exit. If no parameter, the empty strin
NULL is passed the exit status is zero. If an integer is passed that is the exit status
non-empty string is passed then that string is printed to the interpreter’s standard erro
put and an exit status of one used. This is implementation dependent and may be rep
by a more general exception mechanism.  Avoid.

float = exp(x)

Returns the exponential function ofx.

array = explode(string)

Returns an array containing each of the integer character codes of the characters instring.
4

ICI Technical Description Page45 of 88 Last Updated: October 18, 1999



f

ly

f

on

d.

of the
e of
This

f end
fail(string)

Causes an error to be raised with the messagestringassociated with it. See the section o
error handling in thetry statement above.  For example:

if (qf > 255)
fail(sprintf("Q factor %d is too large", qf));

value = fetch(struct, key)

Returns thevalue from struct associated withkey, ignoring any super structs. Returns
NULL is key is not an element ofstruct.

value = float(x)

Returns a floating point interpretation ofx, or 0.0 if no reasonable interpretation exists.x
should be an int, a float, or a string, else 0.0 will be returned.

file = fopen(name[ , mode] )

Opens the named file for reading or writing according tomode and returns a file object
that may be used to perform I/O on the file.Modeis the same as in C and is passed direct
to the C libraryfopen function. If mode is not specified“r”  is assumed.

fprintf(file, fmt, args...)

Formats a string based onfmtandargsas persprintf(below) and outputs the result tofile.
Seesprintf. Changes to ICI’s printf have made fprintf redundant and it may be re-
moved in future versions of the interpreter. Avoid.

string = getchar([file])

Reads a single character fromfile and returns it as a string. Returns NULL upon end o
file. If file is not given the current value ofstdin in the current scope is used.

string = getfile([file])

Reads all remaining data fromfile and returns it as a string. Returns an empty string up
end of file. Iffile is not given the current value ofstdin in the current scope is used.

string = getline([file])

Reads a line of text fromfile and returns it as a string. Any end-of-line marker is remove
ReturnsNULL upon end of file. Iffile is not given the current value ofstdinin the current
scope is used.

string = gettoken([file [, seps]])

Read a token (that is, a string) fromfile.

Seps must be a string. It is interpreted as a set of characters which do not from part
token.  Any leading sequence of these characters is first skipped.  Then a sequenc
characters not in seps is gathered until end of file or a character from seps is found.
terminating character is not consumed.  The gathered string is returned, or NULL i
of file was encountered before any token was gathered.
46

ICI Technical Description Page46 of 88 Last Updated: October 18, 1999



by

l sep-
put

ences

ill ter-
con-

ter,
If file is not given the current value ofstdin in the current scope is used.

If seps is not given the string " \t\n" is assumed.

array = gettokens([file [, seps [, terms]]])

Read tokens (that is, strings) fromfile. The tokens are character sequences separated
seps and terminated byterms.  Returns an array of strings, NULL on end of file.

If seps is a string, it is interpreted as a set of characters, any sequence of which wil
arate one token from the next.  In this case leading and trailing separators in the in
stream are discarded.

If sepsis an integer it is interpreted as a character code. Tokens are taken to be sequ
of characters separated by exactly one of that character.

Terms must be a string.  It is interpreted as a set of characters, any one of which w
minate the gathering of tokens. The character which terminated the gathering will be
sumed.

If file is not given the current value ofstdin in the current scope will be used.

If seps is not given the string " \t" is assumed.

If terms is not given the string "\n" is assumed.

For example:

forall (token in gettokens(currentfile()))
printf("<%s>", token)

;   This    is my line    of data.
printf("\n");

when run will print:

<This><is><my><line><of><data.>

Whereas:

forall (token in gettokens(currentfile(), ':', "*"))
printf("<%s>", token)

;:abc::def:ghi:*
printf("\n");

when run will print:

<><abc><><def><ghi><>

string = gsub(string, string|regexp, string)

gsub performs text substitution using regular expressions. It takes the first parame
4

ICI Technical Description Page47 of 88 Last Updated: October 18, 1999



f the
reg-

nt mul-
y the
 con-
r ex-

ing \

con-

s not
de was
so

t el-
f the

s,

le
matches it against the second parameter and then replaces the matched portion o
string with the third parameter. If the second parameter is a string it is converted to a
ular expression as if the regexp function had been called. Gsub does the replaceme
tiple times to replace all occurrances of the pattern. It returns the new string formed b
replacement. If there is no match this is original string. The replacement string may
tain the special sequence “\&” which is replaced by the string that matched the regula
pression. Parenthesized portions of the regular expression may be matched by usn
wheren is a decimal digit.

string = implode(array)

Returns astring formed from the concatenation of elements ofarray.  Integers in thear-
ray will be interpreted as character codes; strings in the array will be included in the
catenation directly.  Other types are ignored.

struct = include(string [, scope])

Parses the code contained in the file named by the string into the scope. If scope i
passed the current scope is used. Include always returns the scope into which the co
parsed. The file is opened by calling the current definition of the ICI fopen() function
path searching can be implemented by overriding that function.

value = int(any)

Returns an integer interpretation ofx, or 0 if no reasonable interpretation exists.x should
be an int, a float, or a string, else 0 will be returned.

subpart = interval(str_or_array, start [, length])

Returns a sub-interval ofstr_or_array, which may be either a string or an array.

If start (an integer) is positive the sub-interval starts at that offset (offset 0 is the firs
ement). Ifstart is negative the sub-interval starts that many elements from the end o
string (offset -1 is the last element, -2 the second last etc).

If lengthis absent, all the elements from thestartare included in the interval. Otherwise
that many elements are included (or till the end, whichever is smaller).

For example, the last character in a string can be accessed with:

last = interval(str, -1);

And the first three elements of an array with:

first3 = interval(ary, 0, 3);

isatom(any)

Return 1 (one) ifany is an atomic (read-only) object, else 0 (zero).  Note that integer
floats and strings are always atomic.

array = keys(struct)

Returns an array of all the keys fromstruct. The order is not predictable, but is repeatab
48

ICI Technical Description Page48 of 88 Last Updated: October 18, 1999



der as

pret-
ations
ded

to the
ted
lse it

he
if no elements are added or deleted from the struct between calls and is the same or
taken by aforall loop.

float = log(x)

Returns the natural logarithm ofx (a float).

float = log10(x)

Returns the log base 10 ofx (a float).

mem = mem(start, nwords [, wordz])

Returns a memory object which refers to a particular area of memory in the ICI inter
er's address space. Note that this is a highly dangerous operation. Many implement
will not include this function or restrict its use. It is designed for diagnostics, embed
systems and controllers.  See thealloc function above.

file = mopen(mem [, mode])

Returns afile, which when read will fetch successive bytes from the givenmemory object.
The memory object must have an access size of one (seealloc andmemabove). The file
is read-only and themode, if passed, must be one of“r”  or “rb” .

int = nels(any)

Returns the number of elements inany. The exact meaning depends on the type ofany.
If any is an:

array the length of the array is returned; if it is a

struct the number of key/value pairs is returned; if it is a

set the number of elements is returned; if it is a

string the number of characters is returned; and if it is a

mem the number of words (either 1, 2 or 4 byte quantities) is returned;

and if it is anything else, one is returned.

number = num(x)

If x is an int or float, it is returned directly. Ifx is a string it will be converted to an int or
float depending on its appearance; applying octal and hex interpretations according
normal ICI source parsing conventions. (That is, if it starts with a 0x it will be interpre
as a hex number, else if it starts with a 0 it will be interpreted as an octal number, e
will be interpreted as a decimal number.)

If x can not be interpreted as a number the error%s is not a number is generated.

scope = parse(source [, scope])

Parsessource in a new variable scope, or, ifscope (a struct) is supplied, in that scope.
Source may either be a file or a string, and in either case it is the source of text for t
49

ICI Technical Description Page49 of 88 Last Updated: October 18, 1999



is re-

turn
ure's
odule

se

hen
ber
ion a
parse.  If the parse is successful, the variables scope structure of the sub-module 
turned.  If an explicit scope was supplied this will be that structure.

If scopeis not supplied a new struct is created for the auto variables. This structure in
is given a new structure as its super struct for the static variables. Finally, this struct
super is set to the current static variables. Thus the static variables of the current m
form the externs of the sub-module.

If scope is supplied it is used directly as the scope for the sub-module.  Thus the ba
structure will be the struct for autos, its super will be the struct for statics etc.

For example:

static x = 123;
parse("static x = 456;", scope());
printf("x = %d\n", x);

When run will print:

x = 456

Whereas:

static x = 123;
parse("static x = 456;");
printf("x = %d\n", x);

When run will print:

x = 123

Note that while the following will work:

parse(fopen("my-module.ici"));

It is preferable in a large program to use:

parse(file = fopen("my-module.ici"));
close(file);

In the first case the file will eventually be closed by garbage collection, but exactly w
this will happen is unpredictable. The underlying system may only allow a limited num
of simultaneous open files.  Thus if the program continues to open files in this fash
system limit may be reached before the unused files are garbage collected.

any = pop(array)

Returns the last element ofarray and reduces the length ofarray by one. If the array was
empty to start with, NULL is returned.
0

ICI Technical Description Page50 of 88 Last Updated: October 18, 1999



ss ac-
ut
s.

r

ictable

ple,

ted.

piled
’s reg-
 the
ded
file = popen(string, [ flags] )

Executes a new process, specified as a shell command line as for thesystemfunction, and
returns a file that either reads or writes to the standard input or output of the proce
cording tomode. If mode is“r” the reading from the file reads from the standard outp
of the process. If mode is“w” writing to the file writes to the standard input of the proces
If mode is not speicified it defaults to“r” .

float = pow(x, y)

Returnsx^y where bothx andy are floats.

printf( [ file,]  fmt, args...)

Formats a string based onfmtandargsas persprintf (below) and outputs the result to the
file or to the current value of thestdoutvariable in the current scope if the first paramete
is not a file.  The current stdout must be a file.  Seesprintf.

any = push(array, any)

Appendsany to array, increasing its length in the process.  Returnsany.

put(string [, file])

Outputs string tofile. If file is not passed the current value ofstdout in the current scope
is used.

int = rand([seed])

Returns an pseudo random integer in the range 0..0x7FFF. Ifseed(an int) is supplied the
random number generator is first seeded with that number.  The sequence is pred
based on a given seed.

reclaim()

Force a garbage collection to occur.

re = regexp(string [, int])

Returns a compiled regular expression derived fromstring  This is the method of gener-
ating regular expressions at run-time, as opposed to the direct lexical form. For exam
the following three expressions are similar:

str ~ #*\.c#
str ~ regexp("*\\.c");
str ~ $regexp("*\\.c");

except that the middle form computes the regular expression each time it is execu
Note that when a regular expression includes a # character theregexp function must be
used, as the direct lexical form has no method of escaping a #.

The optional second parameter is a bit-set that controls various aspects of the com
regular expression’s behaviour. This value is passed directly to the PCRE package
ular expression compilation function.  Presently no symbolic names are defined for
possible values and interested parties are directed to the PCRE documention inclu
1

ICI Technical Description Page51 of 88 Last Updated: October 18, 1999



rings

l reg-
e spe-

e auto
  Note
leting
urrent

ious
with
effect.

ror

d.

 are
with the ICI source code.

Note that regular expressions are intrinsically atomic.  Also note that  non-equal st
may sometimes compile to the same regular expression.

re = regexpi(string [, int])

Returns a compiled regular expression derived fromstring  that is case-insensitive. I.e.,
the regexp will match a string regardless of the case of alphabetic characters. Litera
ular expressions to perform case-insensitive matching may be constructed using th
cial PCRE notation for such purposes, see page 75.

remove(string)

Deletes the file whose name is given instring.

current = scope([replacement])

Returns the current scope structure.  This is a struct whose base element holds th
variables, the super of that hold the statics, the super of that holds the externs etc.
that this is a real reference to the current scope structure. Changing, adding and de
elements of these structures will affect the values and presence of variables in the c
scope.

If a replacementis given, that struct replaces the current scope structure, with the obv
implications. This should clearly be used with caution. Replacing the current scope
a structure which has no reference to the standard functions also has the obvious 

int = seek(file, int, int)

Set the input/output position for a file and returns the new I/O position or -1 if an er
ocurred. The arguments are the same as for the C library’sfseekfunction. If the file object
does not support setting the I/O position or the seek operation fails an error is raise

set = set(any...)

Returns a set formed from all the arguments. For example:

set()

will return a new empty set; and

set(1, 2, "a string")

will return a new set with three elements,1, 2, and"the string".

This is the run-time equivalent of the set literal. Thus the following two expressions
equivalent:

$set(1, 2, "a string")

[set 1, 2, "a string"]
2

ICI Technical Description Page52 of 88 Last Updated: October 18, 1999



pens a

ison
ters,

oint
o a

and
x = sin(angle)

Returns the sine ofangle (a float interpreted in radians).

int = sizeof(any)

Sizeof is the old name of thenels function (described above).

file = sopen(string[ , mode] )

Returns afile, which when read will fetch successive characters from the givenstring. The
file is read-only and themode, if passed, must be one of“r”  or “rb” .

Files are, in general, system dependent.  This is the only standard routine which o
file.  But on systems that support byte stream files, the functionfopen will be set to the
most appropriate method of opening a file for general use. The interpretation ofmode is
largely system dependent, but the strings"r" , "w", and"rw" should be used for read, write,
and read-write file access respectively.

sort(array, func)

Sort the content of the array using the heap sort algorithm with func as the compar
function. The comparison function is called with two elements of the array as parame
a andb. If a is equal tob the function should return zero. Ifa is less thanb, -1, and ifa is
greater thanb, 1.

For example,

static cmp(a, b)
{
    if (a == b)

return 0;
    if (a < b)

return -1;
    return 1;
}

static a = array(1, 3, 2);

sort(a, cmp);

string = sprintf(fmt, args...)

Return a formatted string based onfmt (a string) andargs.  Most of the usual % format
escapes of ANSI C printf are supported. In particular; the integer format lettersdiouxXc
are supported, but if a float is provided it will be converted to an int.  The floating p
format lettersfeEgG are supported, but if the argument is an int it will be converted t
float. The string format letter,s is supported and requires a string. Finally the% format
to get a single% works.

The flags, precision, and field width options are supported. The indirect field width
precision options with*  also work and the corresponding argument must be an int.
3

ICI Technical Description Page53 of 88 Last Updated: October 18, 1999



are
t be a
ialise

ve
y su-
For example:

sprintf("%08X <%4s> <%-4s>", 123, "ab", "cd")

will produce the string:

0000007B <  ab> <cd  >

and

sprintf("%0*X", 4, 123)

will produce the string:

007B

x = sqrt(float)

Returns the square root offloat.

string = string(any)

Returns a short textual representation ofany. If any is an int or float it is converted as if
by a%dor %g format. If it is a string it is returned directly. Any other type will returns
its type name surrounded by angle brackets, as in<struct>.

struct = struct([super,] key, value...)

Returns a new structure. This is the run-time equivalent of the struct literal. If there
an odd number of arguments the first is used as the super of the new struct; it mus
struct.  The remaining pairs of arguments are treated as key and value pairs to init
the structure with; they may be of any type.  For example:

struct()

returns a new empty struct;

struct(anotherStruct)

returns a new empty struct which hasanotherStruct as its super;

struct("a", 1, "b", 2)

returns a new struct which has two entriesa andb with the values1 and2; and

struct(anotherStruct, "a", 1, "b", 2)

returns a new struct which has two entriesa andb with the values1 and2 and a super of
anotherStruct.

Note that the super of the new struct is setafter the assignments of the new elements ha
been made. Thus the initial elements given as arguments will not affect values in an
per struct.
4

ICI Technical Description Page54 of 88 Last Updated: October 18, 1999



er,
f the

reg-
t once
tch
”
 por-

ter

st Jan

ed as
 ex-
g ad-
The following two expressions are equivalent:

$struct(anotherStruct, "a", 1, "b", 2)

[struct:anotherStruct, a = 1, b = 2]

string = sub(string, string|regexp, string)

Sub performs text substitution using regular expressions. It takes the first paramet
matches it against the second parameter and then replaces the matched portion o
string with the third parameter. If the second parameter is a string it is converted to a
ular expression as if the regexp function had been called. Sub does the replacemen
(unlike gsub). It returns the new string formed by the replacement. If there is no ma
this is original string. The replacement string may contain the special sequence “\&
which is replaced by the string that matched the regular expression. Parenthesized
tions of the regular expression may be matched by using \n wheren is a decimal digit.

current = super(struct [, replacement])

Returns the current super struct ofstruct, and, ifreplacementis supplied, sets it to a new
value. Ifreplacementis NULL any current super struct reference is cleared (that is, af
thisstruct will have no super).

x = tan(angle)

Returns the tangent ofangle (a float interpreted in radians).

foat = now()

Returns the current time expressed as a signed float time in seconds since 0:00, 1
2000 UTC.

float|struct = calendar(struct|float)

Converts between calendar time and airthmetic time. An arithmetic time is express
a signed float time in seconds since 0:00, 1st Jan 2000 UTC. The calendar time is
pressed as a structure with fields revealing the local (including current daylight savin
justment) calendar date and time. Fields in the calendar structure are:

second The float number of seconds after the minute.

minute The int number of minutes after the hour.

hour The int number of hours since midnight.

day The day of the month (1..31).

month The int month number, Jan is 0.

year The int year.

wday The day since Sunday (0..6)

yday Days since 1st Jan.
ICI Technical Description Page55 of 88 Last Updated: October 18, 1999



le

all. It
sult is

at
A file
hat
e ar-
l

put,

e pro-

on.
los-

ame
gram.
When converting from a local calendar time to an arithmetic time, the fieldssec, min,
hour, mday, mon, year are used. They need not be restricted to their nomal ranges.

string = tochar(int)

Returns a one character string made from the character code specified byint.

int = toint(string)

Returns the character code of the first character ofstring.

string = typeof(any)

Returns the type name (a string) ofany.  See the section on types above for the possib
type names.

array = vstack()

Returns a representation of the call stack of the current program at the time of the c
can be used to perform stack tracebacks and related debugging operations. The re
an array of structures, each of which is a variable scope (seescope) structure of succesive-
ly deeper nestings of the current function nesting.

event = waitfor(event...)

Blocks (waits) until anevent indicated by any of its arguments occurs, then returns th
argument. The interpretation of an event depends on the nature of each argument.
argument is triggered when input is available on the file. A float argument waits for t
many seconds to expire, an int for that many millisecond (they then return 0, not th
gument given). Other interpretations are implementation dependent. Where severa
events occur simultaneously, the first as listed in the arguments will be returned.

Note that in some implementations some file types may always appear ready for in
despite the fact that they are not.

Command Line Arguments

Versions of ICI on systems that support passing parameters from the command lin
vide two predefined variables, argv and argc, for accessing these arguments.

On Win32 platforms ICI performs wildcard expansion in the traditional MS-DOS fashi
Arguments containing wildcard meta-characters, ‘?’ and ‘*’, may be protected by enc
ing them in single or double quotes.

argv

An array of strings containing the command line arguments. The first element is the n
of the ICI program and subsequent elements are the arguments passed to that pro

argc

The count of the number of elements in argv. Initially equal to nels(argv).
6

ICI Technical Description Page56 of 88 Last Updated: October 18, 1999



nd
that

-
stem
the
r(3)

and
e mac-
efine

of
ws

 See
Unix System Calls

Most Unix implementation of ICI provide access to many of the Unix system calls a
other useful C library functions. Note that not all system calls are supported and those
are may be incompletely supported (e.g.,signal). Most system call functions return inte
gers, zero if the call succeeded. Errors are reported using ICI’s error handling and “sy
calls” will never return the -1 error return value. If an error is raised by a system call
value of “error” in the error handler will be the error message (as printed by the perro
function or returned by the ANSI C strerror() function).

To assist in the use of system calls ICI pre-defines variables to hold the various flags
other values used when calling the system calls. These variables are equivalent to th
ros used in C. Not all systems support all these variables. If the C header files do not d
a value then ICI will not pre-define the variable.

Win32 Support

The version of ICI for Microsoft’s 32-bit Windows platforms (Win32) supports many
these functions. Functions supported on Win32 platforms (Windows 95 and Windo
NT) are marked withWIN32. In addition some functions are only available on Win32
platforms and are marked as so.

The following list summarises the Unix system call interface pre-defined variables.
the documentation for the C macros for information as to their use.

Values for open’sflags parameter,

O_RDONLY
O_WRONLY
O_RDWR
O_APPEND
O_CREAT
O_TRUNC
O_EXCL
O_SYNC
O_NDELAY
O_NONBLOCK
O_BINARY (WIN32 only)

Values for spawn’smode parameter,

_P_WAIT (WIN32 only)
_P_NOWAIT (WIN32 only)

Values for access’smode parameter,

R_OK
W_OK
X_OK
F_OK
ICI Technical Description Page57 of 88 Last Updated: October 18, 1999



iled
Values for lseek’swhence parameter,

SEEK_SET
SEEK_CUR
SEEK_END

The following list summarises the system interface functions. Following this is a deta
descriptions of each of them.

int = access(string[ , int] )
int= creat(string, int)

array= dir([string,] [string,] [regexp])
int = dup(int[ , int] )

exec(string, array)
exec(string, string...)

int = lseek(int, int[ , int] )
int= open(string, int[ , int] )

array= pipe()
struct = stat(string|int|file)

int = wait()
string = ctime(int)

int = time()
file= fdopen(int)

string = getcwd()
alarm(int)
acct(string)
chdir(string)
chmod(string, int)
chown(string, int, int)
chroot(string)
_close(int)
_exit(int)

int = fork()
int = getpid()
int= getpgrp()
int= getppid()
int= getuid()
int= geteuid()
int= getgid()
int= getegid()

kill(int, int)
link(string, string)
mkdir(string, int)
mknod(string, int, int)
nice(int)
pause()
rmdir(string)
8

ICI Technical Description Page58 of 88 Last Updated: October 18, 1999



setpgrp()
setuid(int)
setgid(int)
signal(int, int)
sync()
ulimit(int, int)
umask(int)
unlink(string)
clock()
system(string)
lockf(int, int, int)
sleep(int)

int = spawn([int, ] string, string...)
int = spawn([int, ] string, array)

rename(string, string)
struct = passwd(int|string)
array = passwd()
9

ICI Technical Description Page59 of 88 Last Updated: October 18, 1999



ter is
is the

K).
s ac-

nd re-
s.

ings
y to
ols
—
irec-
s that

chies
hese

. If
 sup-

name
 of
r of
imilar
hing
of the
lable

sso-

may
ot

 pa-
int = access(string[ , int] )

Call the access(2) function to determine the accessibility of a file. The first parame
the pathname of the file system object to be tested. The second, optional, parameter
mode (a bitwise combination of R_OK, W_OK and X_OK or the special value, F_O
If mode is not passed F_OK is assumed. Access returns 0 if the file system object i
cessible. Also supported on WIN32 platforms.

int = creat(string, int)

Create a new ordinary file with the given pathname and mode (permissions etc...) a
turn the file descriptor, open for writing, for the file. Also supported on WIN32 platform

array = dir([string,] [string,] [regexp])

The dir() function is used to read the contents of directories. It returns an array of str
being the names found in the directory. The first string parameter names a director
read and defaults to “.” — the current directory. The second string parameter contr
which names are returned. It may be one of “f” — return only the names of files, “d”
return the names of sub-directories, or “a” — return the names of all objects in the d
tory. The regexp parameter, if passed, is used to filter the returned names. Only name
match the regexp are returned. Note that when using dir() to traverse directory hierar
that the “.” and “..” names are returned when listing the names of sub-directories, t
will need to be avoided when traversing.

int = dup(int [ , int] )

Duplicate a file descriptor by calling dup(2) or dup2(2) and return a new descriptor
only a single parameter is passed dup(2) is called otherwise dup2(2) is called. Also
ported on WIN32 platforms.

exec(string, array)

exec(string, string...)

Execute a new program in the current process. The first parameter to exec is the path
of an executable file (the program). The remaining parameters are either; an array
strings defining the parameters to be passed to the program, or, a variable numbe
strings that are passed, in order, to the program as its parameters. The first form is s
to C’s execv function and the second form to C’s execl functions. Note that no searc
of the user’s path is performed and the environment passed to the program is that 
current process (i.e., both are implemented by calls to execv(2)). This function is avai
on Win32 platforms

int = lseek(int, int [ , int] )

Set the read/write position for an open file. The first parameter is the file descriptor a
ciated with the file system object, the second parameter the offset. The third is thewhence
value which determines how the new file position is calculated. The whence value 
be one of SEEK_SET, SEEK_CUR or SEEK_END and defaults to SEEK_SET if n
specified. Also supported on WIN32 platforms.

int = open(string, int [ , int] )

Open the named file for reading or writing depending upon the value of the second
60

ICI Technical Description Page60 of 88 Last Updated: October 18, 1999



tion
hird

fer to

 an
ob-

 Unix

and

2
ues

pport-

The
rameter,flags, and return a file descriptor. The second parameter is a bitwise combina
of the various O_ values (see above) and if this set includes the O_CREAT flag a t
parameter,mode, must also be supplied. Also supported on WIN32 platforms.

array = pipe()

Create a pipe and return an array containing two, integer, file descriptors used to re
the input and output endpoints of the pipe.

struct = stat(string|int|file)

Obtain information on the named file system object, file descriptor or file underlying
ICI file object and return a struct containing that information. If the parameter is a file
ject that file object must refer to a file opened with ICI’sfopen function. The returned
struct contains the following keys (which have the same names as the fields of the
statbuf structure with the leading “st_” prefix removed),

dev
ino
mode
nlink
uid
gid
rdev
size
atime
mtime
ctime
blksize
blocks

All values are integers. Also supported on WIN32 platforms.

int = wait()

Wait until a signal is received or a child process terminates or stops due to tracing 
return the status returned by system call.

string = ctime(int)

Convert a time value (see time, below) to a string of the form “Sun Sep 16 01:03:5
1973\n” and return that string. This is primarily of use when converting the time val
returned by stat. Also supported on WIN32 platforms.

int = time()

Return the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. Also su
ed on WIN32 platforms.

file = fdopen(int [ , mode] )

Returns a file object that can be used to perform I/O on the specified file descriptor.
file is opened for reading or writing according tomode (seefopen). If mode is specified
61

ICI Technical Description Page61 of 88 Last Updated: October 18, 1999



rms.

mber

d on

ed on

eated
“r”  (reading) is assumed.

string = getcwd()

Returns the name of the current working directory. Also supported on WIN32 platfo

alarm(int)

Schedule a SIGALRM signal to be posted to the current process in the specified nu
of seconds. If the parameter is zero any alarm is cancelled.

acct(string)

Enable accounting on the specified file.

chdir(string)

Change the process’s current working directory to the specified path. Also supporte
WIN32 platforms.

chmod(string, int)

Change the mode of a file system object.

chown(string, int, int)

Change the owner and group identifiers for a file system object.

chroot(string)

Change root directory for process.

_close(int)

Close a file descriptor. Also supported on WIN32 platforms.

_exit(int)

Exit the current process returning an integer exit status to the parent. Also support
WIN32 platforms.

int = fork()

Create a new process. In the parent this returns the process identifier for the newly cr
process. In the newly created process it returns zero.

int = getpid()

Get the process identifier for the current process.

int = getpgrp()

Get the current process group identifier.

int = getppid()

Get the parent process identifier.
62

ICI Technical Description Page62 of 88 Last Updated: October 18, 1999



so sig-
int = getuid()

Get the real user identifier of the owner of the current process.

int = geteuid()

Get the effective user identifier for the owner of the current process.

int = getgid()

Get the real group identifier for the current process.

int = getegid()

Get the effective group identifier for the current process.

kill(int, int)

Post a signal to a process.

link(string, string)

Create a link to an existing file.

mkdir(string, int)

Create a directory with the specified mode. Also supported on WIN32 platforms.

mknod(string, int, int)

Create a special file.

nice(int)

Change thenice value of a process.

pause()

Wait until a signal is delivered to the process.

rmdir(string)

Remove a directory. Also supported on WIN32 platforms.

setpgrp()

Set the process group.

setuid(int)

Set the real and effective user identifier for the current process.

setgid(int)

Set the real and effective group identifier for the current process.

signal(int, int)

Control signal handling in the process. Note at present handlers cannot be installed
63

ICI Technical Description Page63 of 88 Last Updated: October 18, 1999



orms

is the
ments

d pro-
ermi-

ult is

le

sec-
nals are of limited use in ICI programs.

sync()

Schedule in-memory file data to be written to disk.

ulimit(int, int)

Get and set user limits.

umask(int)

Set file creation mask.

unlink(string)

Remove a file. Also supported on WIN32 platforms.

system(string)

Execute a system command and return its exit status. Also supported on WIN32 platf
however using the system’s command interpreter.

sleep(int)

Suspend the process for the specified number of seconds.

int = spawn([mode,] string, string...)

int = spawn([mode, ] string, array)

int = spawnp([mode,] string, string...)

int = spawnp([mode, ] string, array)

Spawn a sub-process. The parameters, other than mode, are as for exec - the string
name of the executable and the remaining parameters form the command line argu
passed to the executable.

The mode parameter controls whether or not the parent process waits for the spawne
cess to termiante. If mode is _P_WAIT the call to spawn returns when the process t
nates and the result of spawn is the process exit status. If mode is not passed or is
_P_NOWAIT the call to spawn returns prior to the process terminating and the res
the Win32 process handle for the new process.

Thespawnp variant will search the directories listed in the PATH environment variab
for the executable program. In all other respects it is indentical to spawn.

This function is only available on Win32 platforms.

rename(string, string)

Change the name of a file. The first parameter is the name of an existing file and the
ond is the new name that it is to be given.
64

ICI Technical Description Page64 of 88 Last Updated: October 18, 1999



an ac-
 re-
swd()
ter. A

calls
ons.
types

-

esses
as
t is a

ecimal
st
e

iled
struct = passwd(int | string)

array = passwd()

The passwd() function accesses the Unix password file (which may or may not be 
tual file according to the local system configuration). With no parameters passwd()
turns an array of all password file entries, each entry is a struct. With a parameter pas
returns the entry for the specific user id., int parameter, or user name, string parame
password file entry is a struct with the following keys and values,

name The user’s login name, a string.
passwd The user’s encrypted password, a string.

Note that some systems protect this (shadow
password files) and this field may not be an
actual encrypted password.

uid The user id., an int.
gid The user’s default group, an int.
gecos The so-called gecos field, a string.
dir The user’s home directory, a string.
shell The user’s shell (initial program), a

string.

Sockets Interface

Thesocketsextension is available on systems that provide BSD-compatible sockets
and for Win32 platforms. The extension allows ICI programs to access network functi
The sockets extension is generally compatible with the C sockets functions but uses
and calling semantics more akin to the ICI environment.

The sockets extension introduces a new type,socket, to hold socket objects. The new in
trinsic function,socket, returns a socket object.

Network Addresses

The sockets interfaces specifies IP network addresses using strings. Network addr
are of the formport@hostwhere the @host part is optional. The port may be specified
an integer number or a string which is looked up in the services database. If the por
service name it may be in the formname/protocol with protocol being eithertcp or udp.
The host portion of the address may be a domain name, an IP address in dotted d
notation or one of the special addresses local (“.” - dot), any (“?”) or all (“*”). If the ho
portion is omitted the default host depends on the context. See the descriptions of thcon-
nect andbind functions below.

The following list summarises the sockets interface functions. Following this is a deta
descriptions of each of them.

skt= socket(string)
skt= listen(skt)
skt= accept(skt)
skt= connect(skt, string)
skt= bind(skt, string)

struct= select([int,] set [, set [, set]])
int= getsockopt(skt, string)
6

ICI Technical Description Page65 of 88 Last Updated: October 18, 1999



ocol,

 as the
t speci-

d the
e ad-
cifies
eter.

 three
ckets

ird set
meter
teger
ero
e call
setsockopt(skt, string, int)
string= domainname()
string= hostname()
string= username([int])
string= getpeername(skt)
string= getsockname(skt)

sendto(skt, string, string)
struct= recvfrom(skt, int)

send(skt, string)
string= recv(skt, int)

int= getportno(skt)
string= gethostbyname(string)

int= sktno(skt)
file= sktopen(skt [, mode])

array = socketpair()

skt = socket(string)

Create and return a new socket object of the specified protocol. The string, the prot
may be one oftcp or udp. For example,

skt = socket(“tcp”);

skt = accept(skt)

Accept a connection to a TCP socket and return a new socket for that connection.

skt = listen(skt)

Allow connections to a TCP socket. Returns the socket passed.

skt = connect(skt, address)

Establish a TCP connection to the specified address or associate the address with
destination for messages on a UDP socket. If the host portion of the address is no
fied “.” (dot) is used to connect to the local host. The original socket is returned.

skt = bind(skt [, address|int])

Associate a local address for the socket (TCP or UDP). If the address is not specifie
system selects an unused local port number for the socket. If the host portion of th
dress is not specified “?” (any) is used. If the address is passed as an integer it spe
the port number to be bound, the host portion is “?”. Bind returns the socket param

struct = select([int,] set|NULL [, set|NULL [, set|NULL]])

Check sockets for I/O readiness with optional timeout. Select may be passed up to
sets of sockets that are checked for readiness to perform I/O. The first set holds the so
to test for input pending, the second set the sockets to test for output able and the th
the sockets to test for exceptional states. NULL may be passed in place of a set para
to avoid passing empty sets. An integer may also appear in the parameter list. This in
specifies the number of milliseconds to wait for the sockets to become ready. If a z
timeout is passed the sockets are polled to test their state. If no timeout is passed th
blocks until at least one of the sockets is ready for I/O.
66

ICI Technical Description Page66 of 88 Last Updated: October 18, 1999



read,

tes are

 is
The result of select is a struct containing three sets, of sockets, identified by the keys
write and except.

int = getsockopt(skt, string, int)

Retrieve the value of a socketoption. A socket may have various attributes associated
with it. These are accessed via the getsockopt and setsockopt functions. The attribu
identified using string keys from the following list,

debug
reuseaddr
keepalive
dontroute
useloopback
linger
broadcast
oobinline
sndbuf
rcvbuf
type
error

setsockopt(skt, string, int)

Set a socket option (see getsockopt for option names) to the integer value.

string = domainname()

Return the domain name of the current host.

string = hostname()

Return the name of the current host.

string = username([int])

Return the name of the owner of the current process or if an integer, user number,
passed, of that user.

string = getpeername(skt)

Return the address of thepeer of a TCP socket.

string = getsockname(skt)

Return the local address of a socket.

sendto(skt, string, string)

Send the data in the second parameter to the specified address.

array = socketpair()

Returns an array containing a pair of connected sockets.
6

ICI Technical Description Page67 of 88 Last Updated: October 18, 1999



sage, in
mber
s the

mum
struct = recvfrom(skt, int)

Receive a message on a socket and return a struct containing the data of the mes
string, and the source address of the data. The int parameter gives the maximum nu
of bytes to receive. The result is a struct with the keys msg and addr used to acces
returned information.

send(skt, string)

Send the content of the string on a socket.

string = recv(skt, int)

Receive data from a socket and return it as a string. The int parameter fives the maxi
size of message that will be received.

int = getportno(skt)

Return the local port number assigned to a TCP or UDP socket.

string = gethostbyname(string)

Match a network address against the hosts database and return a hostname.

int = sktno(skt)

Return the file descriptor associated with a socket.

file = sktopen(skt [, mode])

Open a socket as a file, for input or output according tomode (seefopen). This function
is not available on WIN32 platforms.
68

ICI Technical Description Page68 of 88 Last Updated: October 18, 1999



 fol-

ce to
 such
e

be-
of
r

t.
ters

s-
re
but

the
ts.
Regular Expression Syntax

ICI uses Philip Hazel’s PCRE (Perl-compatible regular expressions) package.  The
lowing is extracted from the filepcre.3.txt  included with the PCRE distribution.
This document is intended to be used with the PCRE C functions and makes referen
a number of constants that may be used as option specifiers to the C functions (all
constants are prefixed with the string “PCRE_”). These constants are not available in th
ICI interface at time of writing although theregexp()  function does allow a numeric
option specific to be passed.

The syntax and semantics of the regular expressions supported by PCRE are described
low. Regular expressions are also described in the Perl documentation and in a number
other books, some of which have copious examples. Jeffrey Friedl’s “Mastering Regula
Expressions”, published by O’Reilly (ISBN 1-56592-257-3), covers them in great detail.
The description here is intended as reference documentation.

A regular expression is a pattern that is matched against a subject string from left to righ
Most characters stand for themselves in a pattern, and match the corresponding charac
in the subject. As a trivial example, the pattern

  The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expre
sions comes from the ability to include alternatives and repetitions in the pattern. These a
encoded in the pattern by the use of meta-characters, which do not stand for themselves
instead are interpreted in some special way.

There are two different sets of meta-characters: those that are recognized anywhere in
pattern except within square brackets, and those that are recognized in square  bracke
Outside square brackets, the meta-characters are as follows:

  \      general escape character with several uses

  ^      assert start of  subject  (or  line,  in  multiline mode)

  $      assert end of subject (or line, in multiline mode)

  .      match any character except newline (by default)

  [      start character class definition

  |      start of alternative branch

  (      start subpattern

  )      end subpattern

  ?      extends the meaning of (

          also 0 or 1 quantifier

          also quantifier minimizer

  *      0 or more quantifier
69

ICI Technical Description Page69 of 88 Last Updated: October 18, 1999



ss

ic
ck-

ar-
r

-
the

ns
s,
by
ry
  +      1 or more quantifier

  {      start min/max quantifier

Part of a pattern that is in square brackets is called a “character class”. In a character cla
the only meta-characters are:

  \      general escape character

  ^      negate the class, but only if the first character

  -      indicates character range

  ]      terminates the character class

The following sections describe  the  use  of  each  of  the meta-characters.

BACKSLASH

The backslash character has several uses. Firstly, if it  is followed  by  a  non-alphamer
character, it takes away any special meaning that character may have. This use of ba
slash  as  an  escape  character applies both inside and outside character classes.

For example, if you want to match a “*” character, you write “\*” in the pattern. This ap-
plies whether or not the following character would otherwise be interpreted as a meta-ch
acter, so it is always safe to precede a non-alphameric with “\” to specify that it stands fo
itself.  In particular, if you want to match a backslash, you write “\\”.

If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (oth
er than in a character class) and characters between a “#” outside a character class and
next newline character are ignored. An escaping backslash can be used to include a
whitespace or “#” character as part of the pattern.

A second use of backslash provides a way of encoding non-printing characters in patter
in a visible manner. There is no restriction on the appearance of non-printing character
apart from the binary zero that terminates a pattern, but when a pattern is being prepared
text editing, it is usually easier to use one of the following escape sequences than the bina
character it represents:

  \a     alarm, that is, the BEL character (hex 07)

  \cx    “control-x”, where x is any character

  \e     escape (hex 1B)

  \f     formfeed (hex 0C)

  \n     newline (hex 0A)

  \r     carriage return (hex 0D)

  \t     tab (hex 09)

  \xhh   character with hex code hh
0

ICI Technical Description Page70 of 88 Last Updated: October 18, 1999



,

).

ry

a
er
es

ow

en
k-
se-

ns

ck

”

se

ar-
he
be-
  \ddd   character with octal code ddd, or backreference

The precise effect of “\cx” is as follows: if “x” is a lower case  letter,  it  is converted to
upper case. Then bit 6 of the character (hex 40) is inverted. Thus “\cz” becomes hex 1A
but “\c{“ becomes hex 3B, while “\c;” becomes hex 7B.

After “\x”, up to two hexadecimal digits are  read  (letters can be in upper or lower case

After “\0” up to two further octal digits are read. In both cases, if there are fewer than two
digits, just those that are present are used. Thus the sequence “\0\x\07” specifies two bina
zeros followed by a BEL character. Make sure you supply two digits after the initial zero
if  the  character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is  complicated.   Outside  
character class, PCRE reads it and any following digits as a decimal number. If the numb
is less than 10, or if there have been at least that many previous capturing left parenthes
in the expression, the entire sequence is taken as a back reference. A description of h
this works is given later, following  the  discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not be
that many capturing subpatterns, PCRE re-reads up to three octal digits following the bac
slash, and generates a single byte from the least significant 8 bits of the value. Any sub
quent digits stand for themselves.  For example:

  \040   is another way of writing a space

\40 is the same, provided there are fewer than 40 previous capturing subpatter

  \7     is always a back reference

  \11    might be a back reference, or another way of             writing a tab

  \011   is always a tab

  \0113  is a tab followed by the character “3”

\113 is the character with octal code 113 (since there can be no more than 99 ba
references)

  \377   is a byte consisting entirely of 1 bits

\81 is either a back reference, or a binary zero followed by the two characters “8” and “1

Note that octal values of 100 or greater must not be introduced by a leading zero, becau
no more than three octal digits are ever read.

All the sequences that define a single byte value can be used both inside and outside ch
acter classes. In addition, inside a character class, the sequence “\b” is interpreted as t
backspace character (hex 08). Outside a character class it has a different meaning (see
low).

The third use of backslash is for specifying generic character types:

  \d     any decimal digit
1

ICI Technical Description Page71 of 88 Last Updated: October 18, 1999



int

er

o-
ter

es.
at

di-
rs
ed

nt

e
es
y.

-
r
.
e
ng

 as-
  \D     any character that is not a decimal digit any whitespace character

  \S     any character that is not a whitespace character

  \w     any “word” character

  \W     any “non-word” character

Each pair of escape sequences partitions the complete set of characters into two disjo
sets.  Any  given character matches one, and only one, of each pair.

A “word” character is any letter or digit or the underscore character, that is, any charact
which can be part of a Perl “word”. The definition of letters and digits is controlled by
PCRE’s character tables, and may vary if locale-specific matching is taking place (see “L
cale support” above). For example, in the “fr” (French) locale, some character codes grea
than 128 are used for accented letters, and these are matched by \w.

These character type sequences can appear  both  inside  and outside  character class
They each match one character of the appropriate type. If the current matching point is
the end of the subject string, all of them fail, since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a con
tion that has to be met at a particular point in a match, without consuming any characte
from the subject string. The use of subpatterns for more complicated assertions is describ
below.  The backslashed assertions are

  \b     word boundary

  \B     not a word boundary

  \A     start of subject (independent of multiline mode)

  \Z     end of subject or newline at  end  (independent  of multiline mode)

  \z     end of subject (independent of multiline mode)

These assertions may not appear in  character  classes  (but note that “\b” has a differe
meaning, namely the backspace character, inside a character class).

A word boundary is a position in the  subject  string  where the current character and th
previous character do not both match \w or \W (i.e. one matches \w and the other match
\W),  or the start or end of the string if the first or last character matches \w, respectivel

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described be
low) in that they only ever match at the very start and end of the subject string, whateve
options are set. They are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options
If the startoffset argument of pcre_exec() is non-zero, \A can never match. The differenc
between \Z and \z is that \Z matches before a newline that is the last character of the stri
as well as at the end of the string, whereas \z matches only at the end.

CIRCUMFLEX AND DOLLAR

Outside a character class, in the default matching mode, the circumflex character is an
2

ICI Technical Description Page72 of 88 Last Updated: October 18, 1999



e

in-

d”

c-
r
.

e
ct
n-
e
()

ject
r

t, in-

f

e
 is
an

set
, in
sertion which is true only if the current matching point is at the start of the subject string.
If the startoffset argument of pcre_exec() is non-zero, circumflex can never match. Insid
a character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are 
volved, but it should be the first thing in each alternative in which it appears if the pattern
is ever to match that branch. If all possible alternatives start with a circumflex, that is, if the
pattern is constrained to match only at the start of the subject, it is said to be an “anchore
pattern. (There are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current matching point is at the
end of the subject string, or immediately before a newline character that is the last chara
ter in the string (by default). Dollar need not be the last character of the pattern if a numbe
of alternatives are involved, but it should be the last item in any branch in which it appears
Dollar has no  special  meaning  in  a character class.

The meaning of dollar can be changed so that it matches only at the very end of the
string, by setting the PCRE_DOLLAR_ENDONLY option at compile or matching time.
This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the
PCRE_MULTILINE option is set. When this is the case, they match immediately after and
immediately before an internal “\n” character, respectively, in addition to matching at th
start and end of the subject string.  For example, the pattern /^abc$/ matches the subje
string “def\nabc” in multiline mode, but not otherwise. Consequently, patterns that are a
chored in single line mode because all branches start with “^” are not anchored in multilin
mode, and a match for circumflex is possible when the startoffset argument of pcre_exec
is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE
is set.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the sub
in both modes, and if all branches of a pattern start with \A is it always anchored, whethe
PCRE_MULTILINE is set or not.

FULL STOP (PERIOD, DOT)

Outside a character class, a dot in the pattern matches any one character in the subjec
cluding a non-printing character, but not (by default) newline. If the PCRE_DOTALL op-
tion is set, then dots match newlines as well. The handling of dot is entirely independent o
the handling of circumflex and dollar, the only relationship being that they both involve
newline characters.  Dot has no special meaning in a character class.

SQUARE BRACKETS

An opening square bracket introduces a character class, terminated by a closing squar
bracket.  A closing square bracket on its own is not special.  If a closing square bracket
required as a member of the class, it should be the first data character in the class (after
initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject; the character must be in the
of characters defined by the class, unless the first character in the class is a circumflex
3

ICI Technical Description Page73 of 88 Last Updated: October 18, 1999



ex
e it

n-
se
d

low-
se-

ver

ter
r-

ere
e

n

ss
en-

eci-
n
iv-

dd
xa-
s
m-

re

tern

-

which case the subject character must not be in the set defined by the class. If a circumfl
is actually required as a member of the class, ensure it is not the first character, or escap
with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou]
matches any character that is not a lower case vowel. Note that a circumflex is just a co
venient notation for specifying the characters which are in the class by enumerating tho
that are not. It is not an assertion: it still consumes a character from the subject string, an
fails if the current pointer is at the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and
er case versions, so for example, a caseless [aeiou] matches “A” as well as “a”, and a ca
less [^aeiou] does not match “A”, whereas a caseful version would.

The newline character is never treated in any special way in character  classes,  whate
the setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A  class  such  as
[^a]  will always match a newline.

The minus (hyphen) character can be used to specify a range of characters in a charac
class. For example, [d-m] matches any letter between d and m, inclusive. If a minus cha
acter is required in a class, it must be escaped with a backslash or appear in a position wh
it cannot be interpreted as indicating a range, typically as the first or last character in th
class.

It is not possible to have the literal character “]” as the end character of a range. A patter
such as [W-]46] is interpreted as a class of two characters (“W” and “-”) followed by a lit-
eral string “46]”, so it would match “W46]” or “-46]”. However, if the “]” is escaped with
a backslash it is interpreted as the end of range, so [W-\]46] is interpreted as a single cla
containing a range followed by two separate characters. The octal or hexadecimal repres
tation of “]” can also be used to end a range.

Ranges operate in ASCII collating sequence. They can also be used for characters sp
fied  numerically,  for  example [\000-\037]. If a range that includes letters is  used  whe
caseless matching is set, it matches the letters in either case. For example, [W-c] is equ
alent to [][\^_`wxyzabc], matched caselessly, and if character tables for the “fr” locale
are in use, [\xc8-\xcb] matches accented E characters in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and a
the characters that they match to the class. For example, [\dABCDEF] matches any he
decimal digit. A circumflex can conveniently be used with the upper case character type
to specify a more restricted set of characters than the matching lower case type. For exa
ple, the class [^\W_] matches any letter or digit, but not underscore.

All non-alphameric characters other than \,  -,  ^  (at  the start)  and  the  terminating ] a
non-special in character classes, but it does no harm if they are escaped.

VERTICAL BAR

Vertical bar characters are used to separate alternative patterns. For example, the pat

  gilbert|sullivan

matches either “gilbert” or “sullivan”. Any number of alternatives may appear, and an emp
4

ICI Technical Description Page74 of 88 Last Updated: October 18, 1999



al-
s
in

n

 op-
as

-

urs.
he
x-

er
es

of
e

d).
at-
in

  at
ty alternative is permitted (matching the empty string). The matching process tries each
ternative in turn, from left to right, and the first one that succeeds is used. If the alternative
are within a subpattern (defined below), “succeeds” means matching the rest of the ma
pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

The settings of PCRE_CASELESS, PCRE_MULTILINE,  PCRE_DOTALL, and
PCRE_EXTENDED can be changed from within the pattern by a sequence of Perl optio
letters enclosed between “(?”  and “)”. The option letters are

  i  for PCRE_CASELESS

  m  for PCRE_MULTILINE

  s  for PCRE_DOTALL

  x  for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It  is also possible to unset these
tions by preceding the letter with a hyphen, and a combined setting and unsetting such
(?im-sx),  which sets PCRE_CASELESS and PCRE_MULTILINE while unsetting
PCRE_DOTALL and PCRE_EXTENDED, is also permitted. If a letter appears both be
fore and after the hyphen, the option is unset.

The scope of these option changes depends on  where  in  the pattern  the  setting  occ
For settings that are outside any subpattern (defined below), the effect is the same as if t
options were set or unset at the start of matching. The following patterns all behave in e
actly the same way:

  (?i)abc   a(?i)bc   ab(?i)c   abc(?i)

which in turn is the same as compiling the pattern abc with PCRE_CASELESS set. In oth
words, such “top level” settings apply to the whole pattern (unless there are other chang
inside subpatterns). If there is more than one setting of the same option at top level, the
rightmost setting is used.

If an option change occurs inside a subpattern, the effect is different. This is a change
behaviour in Perl 5.005. An option change inside a subpattern affects only that part of th
subpattern that follows it, so

  (a(?i)b)c

matches abc and aBc and no other strings (assuming PCRE_CASELESS is not use
By this means, options can be made to have different settings in different parts of the p
tern. Any changes made in one alternative do carry on into subsequent branches with
the  same  subpattern.  For example,

  (a(?i)b|c)

matches “ab”, “aB”, “c”, and “C”, even though when matching “C” the first branch is aban-
doned before the option setting. This is because the effects of  option  settings  happen
compile  time. There would be some very weird behaviour otherwise.
ICI Technical Description Page75 of 88 Last Updated: October 18, 1999



n
ly.
y
rt.

ing

ole
ack
d

.

n
n-
t
am-

e
-

n-
he

to
g
Y”
The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed i
the same way as the Perl-compatible options by using the characters U and X respective
The (?X) flag setting is special in that it must always occur earlier in the pattern than an
of the additional features it turns on, even when it is at top level. It is best put at the sta

SUBPATTERNS

Subpatterns are delimited by parentheses (round brackets), which can be nested. Mark
part of a pattern as a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

  cat(aract|erpillar|)

matches one of the words “cat”, “cataract”, or “caterpillar”.  Without the parentheses, it
would match “cataract”, “erpillar” or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above).  When the wh
pattern matches, that portion of the subject string that matched the subpattern is passed b
to the caller via the ovector argument of pcre_exec(). Opening parentheses are counte
from left to right (starting from 1) to obtain the numbers of the capturing subpatterns.

For example, if the string “the red king” is matched against the pattern

  the ((red|white) (king|queen))

the captured substrings are “red king”, “red”,  and  “king”, and are numbered 1, 2, and 3

The fact that plain parentheses fulfil two functions is not always helpful.  There are ofte
times when a grouping subpattern is required without a capturing requirement. If an ope
ing parenthesis is followed by “?:”, the subpattern does not do any capturing, and is no
counted when computing the number of any subsequent capturing subpatterns. For ex
ple, if the string “the white queen” is matched against the pattern

  the ((?:red|white) (king|queen))

the captured substrings are “white queen” and “queen”, and are numbered 1 and 2. Th
maximum number of captured substrings is 99, and the maximum number of all subpat
terns, both capturing and non-capturing, is 200.

As a  convenient  shorthand,  if  any  option  settings  are required  at  the  start  of a no
capturing subpattern, the option letters may appear between the “?” and the “:”.  Thus t
two patterns

  (?i:saturday|sunday)

  (?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left
right, and options are not reset until the end of the subpattern is reached, an option settin
in one branch does affect subsequent branches, so the above patterns match “SUNDA
as well as “Saturday”.
6

ICI Technical Description Page76 of 88 Last Updated: October 18, 1999



t-
m-
 the

d
-

n-
al

e

REPETITION

Repetition is specified by quantifiers, which can follow any of the following items:

  a single character, possibly escaped

  the . metacharacter

  a character class

  a back reference (see next section)

  a parenthesized subpattern (unless it is  an  assertion - see below)

The general repetition quantifier specifies a minimum and maximum number of permi
ted matches, by giving the two numbers in curly brackets (braces), separated by a co
ma. The  numbers  must be less than 65536, and the first must be less than or equal to
second. For example:

  z{2,4}

matches “zz”, “zzz”, or “zzzz”. A closing brace on its own is not a special character. If the
second number is omitted, but the comma is present, there is no upper limit; if the secon
number and the comma are both omitted, the quantifier specifies an exact number of re
quired matches. Thus

  [aeiou]{3,}

matches at least 3 successive vowels,  but  may  match  many more, while

  \d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a qua
tifier is not allowed, or one that does not match the syntax of a quantifier, is taken as a liter
character. For example, {,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item
and the quantifier were not present.

For convenience (and historical compatibility) the three most common quantifiers hav
single-character abbreviations:

  *    is equivalent to {0,}

  +    is equivalent to {1,}

  ?    is equivalent to {0,1}

It is possible to construct infinite loops  by  following  a subpattern  that  can  match no
characters with a quantifier that has no upper limit, for example:

  (a?)*
ICI Technical Description Page77 of 88 Last Updated: October 18, 1999



s.
 ac-

is

e
e
s.
d /

d

h-
ion
s

st

-

ter
o-

se
e
a
g

ed
Earlier versions of Perl and PCRE used to give an error at compile time for such pattern
However, because there are cases where this  can  be  useful,  such  patterns  are  now
cepted, but if any repetition of the subpattern does in fact match no characters, the loop
forcibly broken.

By default, the quantifiers are “greedy”, that is, they match as much as possible (up to th
maximum number of permitted times), without causing the rest of the pattern to fail. Th
classic example of where this gives problems is in trying to match comments in C program
These appear between the sequences /* and */ and within the sequence, individual * an
characters may appear. An attempt to match C comments by applying the pattern

  /\*.*\*/

to the string

  /* first command */  not comment  /* second comment */

fails, because it matches  the  entire  string  due  to  the greediness of the .*  item.

However, if a quantifier is followed by a question mark, then it ceases to be greedy, an
instead matches the minimum number of times possible, so the pattern

  /\*.*?\*/

does the right thing with the C comments. The meaning of the various quantifiers is not ot
erwise changed, just the preferred number of matches. Do not confuse this use of quest
mark with its use as a quantifier in its own right. Because it has two uses, it can sometime
appear doubled, as in

  \d??\d

which matches one digit by preference, but can match two  if that is the only way the re
of the pattern matches.

If the PCRE_UNGREEDY option is set (an option which  is  not available  in  Perl)  then
the quantifiers are not greedy by default, but individual ones can be made greedy by follow
ing them  with  a  question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is grea
than 1 or with a limited maximum, more store is required for the compiled pattern, in pr
portion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl’s /s)
is set, thus allowing the . to match newlines, then the pattern is implicitly anchored, becau
whatever follows will be tried against every character position in the subject string, so ther
is no point in retrying the overall match at any position after the first. PCRE treats such
pattern as though it were preceded by \A. In cases where it is known that the subject strin
contains no newlines, it is worth setting PCRE_DOTALL when the pattern begins with .*
in order to obtain this optimization, or alternatively using ^ to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value captured is the substring that match
the  final iteration. For example, after

  (tweedle[dume]{3}\s*)+
8

ICI Technical Description Page78 of 88 Last Updated: October 18, 1999



”.
ay

ly

n
en-
t be

h”

ent

e-
e

not
x-

k
st
n

ub-
can

t-
has matched “tweedledum tweedledee” the value of the captured substring is “tweedledee
However, if there are nested capturing subpatterns, the corresponding captured values m
have been set in previous iterations. For example, after

  /(a|(b))+/

matches “aba” the value of the second captured substring  is “b”.

BACK REFERENCES

Outside a character class, a backslash followed by a digit greater than 0 (and possib
further digits) is a back reference to a capturing subpattern earlier (i.e. to its left) in the
pattern,  provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always take
as a back reference, and causes an error only if there are not that many capturing left par
theses in the entire pattern. In other words, the parentheses that are referenced need no
to the left of the reference for numbers less than 10. See the section entitled “Backslas
above for further details of the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the curr
subject string, rather than anything matching the subpattern itself. So the pattern

  (sens|respons)e and \1ibility

matches “sense and sensibility” and “response and responsibility”, but not “sense and r
sponsibility”. If caseful matching is in force at the time of the back reference, then the cas
of letters is relevant. For example,

  ((?i)rah)\s+\1

matches “rah rah” and “RAH RAH”, but not “RAH rah”, even though the original cap-
turing subpattern is matched caselessly.

There may be more than one back reference to the same subpattern. If a subpattern has
actually been used in a particular match, then any back references to it always fail. For e
ample, the pattern

  (a|(bc))\2

always fails if it starts to match  “a”  rather  than  “bc”. Because  there  may  be up to 99
back references, all digits following the backslash are taken as  part  of  a  potential bac
reference number. If the pattern continues with a digit character, then some delimiter mu
be used to terminate the back reference. If the PCRE_EXTENDED option is set, this ca
be whitespace.  Otherwise an empty comment can be used.

A back reference that occurs inside the parentheses to which it  refers  fails when the s
pattern is first used, so, for example, (a\1) never matches.  However, such references  
be useful inside repeated subpatterns. For example, the pattern

  (a|b\1)+

matches any number of “a”s and also “aba”, “ababaa” etc. At each iteration of the subpa
9

ICI Technical Description Page79 of 88 Last Updated: October 18, 1999



on.
o
, or

nt
\A,
ns.
d

he
e

h,

it
e
ve

er-

-
h.
th.

ed

as
tern, the back reference matches the character string corresponding to the previous iterati
In order for this to work, the pattern must be such that the first iteration does not need t
match the back reference. This can be done using alternation, as in the example above
by a quantifier with a minimum of zero.

ASSERTIONS

An assertion is a test on the characters following or preceding the current matching poi
that does not actually consume any characters. The simple assertions coded as \b, \B, 
\Z, \z, ^ and $ are described above. More complicated assertions are coded as subpatter
There are two kinds: those that look ahead of the current position in the subject string, an
those that look behind it.

An assertion subpattern is matched in the normal way, except that  it  does not cause t
current matching position to be changed. Lookahead assertions start with (?= for positiv
assertions and (?! for negative assertions. For example,

  \w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the matc
and

  foo(?!bar)

matches any occurrence of “foo” that is not followed by “bar”. Note that the apparently
similar pattern

  (?!foo)bar

does not find an occurrence of “bar”  that  is  preceded  by something other than “foo”; 
finds any occurrence of “bar” whatsoever, because the assertion  (?!foo)  is  always  tru
when  the  next  three  characters  are  “bar”. A lookbehind assertion is needed to achie
this effect.

Look-behind assertions start with (?<= for positive assertions and (?<! for negative ass
tions. For example,

  (?<!foo)bar

does find an occurrence of “bar” that is not preceded by “foo”. The contents of a lookbe
hind assertion are restricted such that all the strings it matches must have a fixed lengt
However, if there are several alternatives, they do not all have to have the same fixed leng
Thus

  (?<=bullock|donkey)

is permitted, but

  (?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitt
only at the top level of a lookbehind assertion. This is an extension compared with Perl
5.005, which requires all branches to match the same length of string. An assertion such
80

ICI Technical Description Page80 of 88 Last Updated: October 18, 1999



it

e
t
c-

er-
k
ree
s,
t

st
ters

ed

rs

e it
cap-
g

s-
  (?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but
is acceptable if rewritten to use two top-level branches:

  (?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily mov
the current position back by the fixed width and then try to match. If there are insufficien
characters before the current position, the match is deemed to fail. Lookbehinds in conjun
tion with once-only subpatterns can be particularly useful for matching at the ends of
strings; an example is given at the end of the section on once-only subpatterns.

Several assertions (of any sort) may  occur  in  succession. For example,

  (?<=\d{3})(?<!999)foo

matches “foo” preceded by three digits that are  not  “999”. Notice  that each of the ass
tions is applied independently at the same point in the subject string. First there is a chec
that  the  previous  three characters are all digits, then there is a check that the same th
characters are not “999”. This pattern does not match “foo” preceded by six character
the first of which are digits and the last three of  which  are  not  “999”.  For  example,  i
doesn’t match “123abcfoo”. A pattern to do that is

  (?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the fir
three are digits, and then the second assertion checks that the preceding three charac
are not “999”.

Assertions can be nested in any combination. For example,

  (?<=(?<!foo)bar)baz

matches an occurrence of “baz” that  is  preceded  by  “bar” which in turn is not preced
by “foo”, while

  (?<=\d{3}(?!999)...)foo

is another pattern which matches “foo” preceded by three digits and any three characte
that are not “999”.

Assertion subpatterns are not capturing subpatterns, and may not be repeated, becaus
makes no sense to assert the same thing several times. If any kind of assertion contains
turing subpatterns within it, these are counted for the purposes of numbering the capturin
subpatterns in the whole pattern. However, substring capturing is carried out only for po
itive assertions, because it does not make sense  for negative assertions.

Assertions count towards the maximum  of  200  parenthesized subpatterns.

ONCE-ONLY SUBPATTERNS

With both maximizing and minimizing repetition, failure of what follows normally causes
81

ICI Technical Description Page81 of 88 Last Updated: October 18, 1999



est
of
n

r-
er

d,
g

ers
b-

 ex-
o,
o
.

e

fy

m

e
,

.
ils,
e

the repeated item to be re-evaluated to see if a different number of repeats allows the r
of the pattern to match. Sometimes it is useful to prevent this, either to change the nature
the match, or to cause it fail earlier than it otherwise might, when the author of the patter
knows there is no point in carrying on.

Consider, for example, the pattern \d+foo  when  applied  to the subject line

  123456bar

After matching all 6 digits and then failing to match “foo”, the normal action of the matcher
is to try again with only 5 digits matching the \d+ item, and then with 4, and so on, before
ultimately failing. Once-only subpatterns provide the means for specifying that once a po
tion of the pattern  has matched,  it  is  not to be re-evaluated in this way, so the match
would give up immediately on failing to match “foo” the first time. The notation is an-
other kind of special parenthesis, starting with (?> as in this example:

  (?>\d+)bar

This kind of parenthesis “locks up” the part of the pattern it contains once it has matche
and a failure further into the pattern is prevented from backtracking into it.  Backtrackin
past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of charact
that an identical standalone pattern would match, if anchored at the current point in the su
ject string.

Once-only subpatterns are not capturing subpatterns.  Simple cases such as the above
ample can be thought of as a maximizing repeat that must swallow everything it can.  S
while both \d+ and \d+? are prepared to adjust the number of digits they match in order t
make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits

This construction can of course contain arbitrarily complicated subpatterns, and it can b
nested.

Once-only subpatterns can be used in conjunction with look-behind assertions to speci
efficient matching at the end of the subject string. Consider a simple pattern such as

  abcd$

when applied to a long string which does not match it. Because matching proceeds fro
left to right, PCRE will look for each “a” in the subject and then  see  if  what  follows
matches the rest of the pattern. If the pattern is specified as

  ^.*abcd$

then the initial .* matches the entire string at first, but when this fails, it backtracks to match
all but the last character, then all but the last two characters, and so on.  Once again th
search for “a” covers the entire string, from right to left, so we are no better off. However
if the pattern is written as

  ^(?>.*)(?<=abcd)

then there can be no backtracking for the .*  item;  it  can match  only  the  entire  string
The subsequent lookbehind assertion does a single test on the last four characters. If it fa
the match fails immediately. For long strings, this approach makes a significant differenc
82

ICI Technical Description Page82 of 88 Last Updated: October 18, 1999



se
er a
b-

is
rs.

ce
e-

it

ets
are
of
n-
sis
g.
sed

ive
on-

on-
r
h-
o

 pa-
ent
to the processing time.

CONDITIONAL SUBPATTERNS

It is possible to cause the matching process to obey a subpattern conditionally or to choo
between two alternative subpatterns, depending on the result of an assertion, or wheth
previous capturing subpattern matched or not. The two possible forms of conditional su
pattern are

  (?(condition)yes-pattern)

  (?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present)
used. If there are more than two alternatives in the subpattern, a compile-time error occu

There are two kinds of condition. If the text between the parentheses consists of a sequen
of digits, then the condition is satisfied if the capturing subpattern of that number has pr
viously matched. Consider the following pattern, which contains non-significant white
space to make it more readable (assume the PCRE_EXTENDED option) and to divide 
into three parts for ease of discussion:

  ( \( )?    [^()]+    (?(1) \) )

The first part matches an optional opening parenthesis, and if that character is present, s
it as the first captured substring. The second part matches one or more characters that
not parentheses. The third part is a conditional subpattern that tests whether the first set
parentheses matched or not. If they did, that is, if subject started with an opening pare
thesis, the condition is true, and so the yes-pattern is executed and a closing parenthe
is required. Otherwise, since no-pattern is not present, the subpattern matches nothin
In  other words, this pattern matches a sequence of non-parentheses,  optionally  enclo
in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a posit
or negative lookahead or lookbehind assertion. Consider this pattern, again containing n
significant white space, and with the two alternatives on the second line:

  (?(?=[^a-z]*[a-z])

  \d{2}[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )

The condition is a positive lookahead assertion that matches an optional sequence of n
letters followed by a letter. In other words, it tests for the presence of at least one lette
in the subject. If a letter is found, the subject is matched against the first alternative; ot
erwise  it  is matched  against the second. This pattern matches strings in one of the tw
forms dd-aaa-dd or dd-dd-dd,  where  aaa  are letters and dd are digits.

COMMENTS

The sequence (?# marks the start of a comment which continues up to the next closing
renthesis. Nested parentheses are not permitted. The characters that make up a comm
83

ICI Technical Description Page83 of 88 Last Updated: October 18, 1999



ss

nt
ral,
fi-
-

-
r,
-
he

e

st

k-

 to

he
es
 of
y

e,
play no part in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character cla
introduces a comment that continues up to the next newline character in the pattern.

PERFORMANCE

Certain items that may appear in patterns are more efficient than others. It is more efficie
to use a character class like [aeiou] than a set of alternatives such as (a|e|i|o|u). In gene
the  simplest  construction  that provides the required behaviour is usually the  most  ef
cient.  Jeffrey Friedl’s  book contains a lot of discussion about optimizing regular expres
sions for efficient performance.

When a pattern begins with .* and the PCRE_DOTALL option  is set,  the  pattern  is im
plicitly anchored by PCRE, since it can match only at the start of a subject string. Howeve
if PCRE_DOTALL  is not set, PCRE cannot make this optimization, because the . meta
character does not then match  a  newline, and if the subject string contains newlines, t
pattern may match from the character immediately following one of them instead of from
the very start. For example, the pattern

  (.*) second

matches the subject “first\nand second” (where \n stands for a newline character) with th
first captured substring being “and”. In order to do this, PCRE  has  to  retry  the  match
starting after every newline in the subject.

If you are using such a pattern with subject strings that do not contain newlines, the be
performance is obtained by setting PCRE_DOTALL, or starting the  pattern  with  ^.*  to
indicate  explicit anchoring. That saves PCRE from having to scan along the subject loo
ing for a newline to restart at.

Beware of patterns that contain nested  indefinite  repeats. These  can  take a long time
run when applied to a string that does not match. Consider the pattern fragment

  (a+)*

This can match “aaaa” in 33 different ways, and this number increases very rapidly as t
string gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cas
other than 0, the + repeats can match different numbers of times.) When the remainder
the pattern is such that the entire match is going to fail, PCRE has in principle to try ever
possible variation, and this can take an extremely long time.

An optimization catches some of the more simple  cases  such as

  (a+)*b

where a literal character follows. Before embarking on the standard matching procedur
PCRE checks that there is a “b” later in the subject string, and if there is not,  it  fails the
match immediately. However, when there is no following literal this optimization cannot
be used. You  can  see  the difference by comparing the behaviour of

  (a+)*\d
84

ICI Technical Description Page84 of 88 Last Updated: October 18, 1999



ent
brary
ule,

on
 is es-

tern
up is
ope
is
tern

aded

c-
with the pattern above. The former gives  a  failure  almost instantly  when  applied  to a
whole line of “a” characters, whereas the latter takes an appreciable  time  with  strings
longer than about 20 characters.

AUTHOR

Philip Hazel <ph10@cam.ac.uk>
University Computing Service,
New Museums Site,
Cambridge CB2 3QG, England.
Phone: +44 1223 334714
Last updated: 29 July 1999
Copyright (c) 1997-1999 University of Cambridge.

Undefined variables and dynamic loading

During execution, should the ICI execution engine fail to find a variable within the curr
scope, it will attempt to load a library based on the name of that variable. Such a li
may be a host specific dynamically loaded native machine code library, an ICI mod
or both.

In attempting to load an ICI module, a file name of the form:

ici var .ici

is considered, wherevar is the as yet undefined variable name. This file is searched for
the current host specific search path. If found, a new extern, static and auto scope
tablished and the new extern scope struct is assigned tovar in the outermost writable
scope available. That outermost writable scope also forms the super of the new ex
scope. The module is then parsed with the given scope, after which the variable look
repeated. In normal practice this will mean that the loaded module has an outer sc
holding all the normal ICI primitives and a new empty extern scope. The intent of th
mechanism is that the loaded module should define all its published functions in its ex
scope. References by an invoking program to functions and other objects of the lo
module would always be made explicitly through thevar which references the module.
For example, a program might contain the fragment:

query = cgi.decode_query();
cgi.start_page(“Query results”);

where “cgi” is undefined, but the fileicicgi.ici exists on the search path and includes fun
tion definitions such as:

extern
decode_query()
{

...
}

extern
start_page(title)
{

...
}

8

ICI Technical Description Page85 of 88 Last Updated: October 18, 1999



-

y, a

arch
cal
ry
o
struc-
d

ich
LL
e as-

the
pro-
pical-

n
ld
Upon first encountering the variablecgi in the code fragment the moduleicicgi.ici will be
parsed and its extern scope assigned to the new variablecgi in the outermost scope of the
program (that is, the most global scope). The lookup of the variablecgi is then repeated,
this time finding the structure which contains the functiondecode_query. The second, and
all subsequent, use of the variablecgi will be satisfied immediately from the already load
ed module.

In attempting to load a host specific dynamically loaded native machine code librar
file name of the form:

ici var . ext

is considered, wherevar is the as yet undefined variable name andext is the normal host
extension for such libraries. This file is searched for on the current host specific se
path. If found the file is loaded into the ICI interpreter’s address space using the lo
host’s dynamic library loading mechanism. An initialisation function in the loaded libra
may return an ICI object (see below). Should an object be returned, it is assigned tvar
in the outermost writable scope available. Further, should the returned variable be a
ture, additional loading of an ICI module of the same name is allowed (as describe
above) and the returned struct forms the structure for externs in that load.

The basics of writing dynamic loading native machine code modules

This description is bare-bones and assumes a knowledge of ICI’s internals.

The loaded library must contain a function of the following name and declaration:

object_t *
ici_ var _library_init()
{

...
}

wherevar is the as yet undefined variable name. This is the initialisation function wh
is called when the library is loaded. This function should return an ICI object, or NU
on error, in which case the ICI error variable must be set. The returned object will b
signed tovar as described above.

Modules of the dynamically loaded library which include ICI header files must have
directory holding the ICI header files on their include search path and have two pre
cessor definitions established before any of the ICI headers are included (they are ty
ly defined in the makefile or project settings). These are:

CONFIG_FILE Which must be defined to be the name of the ICI configuratio
file which is specific to this installation. The defined value shou
include double quotes around the name. For example:

“conf-w32.h”

is the file used by Windows, and this would be defined on the
command line or in the project settings with:
86

ICI Technical Description Page86 of 88 Last Updated: October 18, 1999



the
e-
d

a
ort
/DCONFIG_FILE=\”conf-w32.h\”

 ICI_DLL Which must simply be defined. This causes certain changes in
nature of data declarations in the ICI header files which are r
quired on some systems (such as Windows) to allow importe
data references.

The following sample module,mbox.c, illistrates a typical form for a simple dynamically
loaded ICI module.

#include <windows.h>
#include "func.h"
#include "struct.h"

/*
 * mbox_msg => mbox.msg(string) from ICI
 *
 * Pops up a modal message box with the given string in it and waits for the
 * use to hit OK. Returns NULL.
 */
int
mbox_msg()
{
    char    *msg;

    if (typecheck("s", &msg))
return 1;

    MessageBox(NULL, msg, (LPCTSTR)"ICI", MB_OK | MB_SETFOREGROUND);
    return null_ret();
}

/*
 * Object stubs for our intrinsic functions.
 */
cfunc_tmbox_cfuncs[] =
{
    {CF_OBJ,"msg",mbox_msg},
    {CF_OBJ}
};

/*
 * ici_mbox_library_init
 *
 * Initialisation routine called on load of this module into the ICI
 * interpreters address space. Creates and returns a struct which will
 * be assigned to "mbox". This struct contains references to our
 * intrinsic functions.
 */
object_t *
ici_mbox_library_init()
{
    struct_t*s;

    if ((s = new_struct()) == NULL)
return NULL;

    if (ici_assign_cfuncs(s, mbox_cfuncs))
return NULL;

    return objof(s);
}

The following simple Makefile illustrates forms suitable for compiling this module into
DLL under Windows. Note in particular the defines in the CFLAGS and the use of /exp
in the link line to make the functionici_mbox_library_init externally visible.

CFLAGS= -I.. /DCONFIG_FILE=\"conf-w32.h\" /DICI_DLL
8

ICI Technical Description Page87 of 88 Last Updated: October 18, 1999



link
OBJS = mbox.obj
LIBS = ../ici.lib user32.lib

icimbox.dll: $(OBJS)
link /dll /out:$@ $(OBJS) /export:ici_mbox_library_init $(LIBS)

Note that there is no direct supprt for the /export option in the MS Developer Studio
settings panel, but it can be entered directly in theProject Options text box.

The following Makefile achieves an equivalent result under Solaris:

CC = gcc -pipe -g
CFLAGS= -fpic -I.. -DCONFIG_FILE='"conf-sun.h"' -DICI_DLL

OBJS = mbox.o

icimbox.so : $(OBJS)
ld -o $@ -dc -dp $(OBJS)
88

ICI Technical Description Page88 of 88 Last Updated: October 18, 1999


	ICI Technical Description
	Version 1.1
	Tim Long
	Portions © 1992-1998 Canon Information Systems Research Australia
	Portions © 1997-1999 University of Cambridge
	Portions © 1992-1995 Tim Long
	Permission granted to reproduce provided copyright notices are preserved.
	The lexical analyser
	An introduction to variables, modules and scope
	The parser
	An introduction to arrays, sets and structs
	Back to expression syntax
	Prefix operators
	Postfix operators
	Binary operators
	Simple expression statements
	Compound statements
	The if statement
	The while statement
	The do-while statement
	The for statement
	The forall statement
	The switch, case, and default statements
	The break and continue statements
	The return statement
	The try statement
	The null statement
	Declaration statements
	Abbreviated function declarations
	Functions
	Method Calls
	Objects
	Equality
	Structure and set keys
	Structure super types
	An aside on variables and scope
	Pointers
	Data types
	Operators
	Standard functions
	float|int = abs(float|int)
	angle = acos(x)
	float = asin(x)
	value = assign(struct, key, value)
	angle = atan(x)
	angle = atan2(y, x)
	return = call(func, args)
	new = copy(old)
	x = cos(angle)
	file = currentfile()
	del(struct, key)
	int = eof([file])
	eq(obj1, obj2)
	evetloop()
	exit([string|int|NULL])
	float = exp(x)
	array = explode(string)
	fail(string)
	value = fetch(struct, key)
	value = float(x)
	file = fopen(name [, mode])
	fprintf(file, fmt, args...)
	string = getchar([file])
	string = getfile([file])
	string = getline([file])
	string = gettoken([file [, seps]])
	array = gettokens([file [, seps [, terms]]])
	string = gsub(string, string|regexp, string)
	struct = include(string [, scope])
	value = int(any)
	subpart = interval(str_or_array, start [, length])
	isatom(any)
	array = keys(struct)
	float = log(x)
	float = log10(x)
	mem = mem(start, nwords [, wordz])
	file = mopen(mem [, mode])
	int = nels(any)
	number = num(x)
	scope = parse(source [, scope])
	any = pop(array)
	file = popen(string, [flags])
	printf([file,] fmt, args...)
	any = push(array, any)
	put(string [, file])
	int = rand([seed])
	reclaim()
	re = regexp(string [, int])
	re = regexpi(string [, int])
	remove(string)
	current = scope([replacement])
	int = seek(file, int, int)
	set = set(any...)
	x = sin(angle)
	int = sizeof(any)
	sort(array, func)
	x = sqrt(float)
	string = string(any)
	struct = struct([super,] key, value...)
	string = sub(string, string|regexp, string)
	current = super(struct [, replacement])
	x = tan(angle)
	foat = now()
	float|struct = calendar(struct|float)
	string = tochar(int)
	int = toint(string)
	string = typeof(any)
	array = vstack()
	event = waitfor(event...)
	Command Line Arguments
	argv
	argc
	Unix System Calls
	Win32 Support
	int = access(string [, int])
	int = creat(string, int)
	int = dup(int [, int])
	exec(string, array)
	exec(string, string...)
	int = lseek(int, int [, int])
	int = open(string, int [, int])
	array = pipe()
	struct = stat(string|int|file)
	int = wait()
	string = ctime(int)
	int = time()
	file = fdopen(int [, mode])
	string = getcwd()
	alarm(int)
	acct(string)
	chdir(string)
	chmod(string, int)
	chown(string, int, int)
	chroot(string)
	_close(int)
	_exit(int)
	int = fork()
	int = getpid()
	int = getpgrp()
	int = getppid()
	int = getuid()
	int = geteuid()
	int = getgid()
	int = getegid()
	kill(int, int)
	link(string, string)
	mkdir(string, int)
	mknod(string, int, int)
	nice(int)
	pause()
	rmdir(string)
	setpgrp()
	setuid(int)
	setgid(int)
	signal(int, int)
	sync()
	ulimit(int, int)
	umask(int)
	unlink(string)
	system(string)
	sleep(int)
	int = spawn([mode,] string, string...)
	int = spawn([mode, ] string, array)
	int = spawnp([mode,] string, string...)
	int = spawnp([mode, ] string, array)
	rename(string, string)
	struct = passwd(int | string)
	array = passwd()
	Sockets Interface
	Network Addresses
	skt = socket(string)
	skt = accept(skt)
	skt = listen(skt)
	skt = connect(skt, address)
	skt = bind(skt [, address|int])
	struct = select([int,] set|NULL [, set|NULL [, set|NULL]])
	int = getsockopt(skt, string, int)
	setsockopt(skt, string, int)
	string = domainname()
	string = hostname()
	string = username([int])
	string = getpeername(skt)
	string = getsockname(skt)
	sendto(skt, string, string)
	array = socketpair()
	struct = recvfrom(skt, int)
	send(skt, string)
	string = recv(skt, int)
	int = getportno(skt)
	string = gethostbyname(string)
	int = sktno(skt)
	file = sktopen(skt [, mode])
	Regular Expression Syntax
	Undefined variables and dynamic loading
	The basics of writing dynamic loading native machine code modules


