ICI Technical Description
Version 1.1

Tim Long

Portions © 1992-1998 Canon Information Systems Research Australia
Portions © 1997-1999 University of Cambridge
Portions © 1992-1995 Tim Long

Permission granted to reproduce provided copyright notices are preserved.

The ICl interpreter'execution enginealls on theparserto read and compile a statement
from an input stream. The parser in turns calls ometkieal analyserto read tokens.

Upon return from the parser the execution engine executes the compiled statement. When
the statement has finished execution, the execution engine repeats the sequence.

The lexical analyser

The ICI lexical analyser breaks the input stream into tokens, optionally separated by
white-space (which includes comments as described below). The next token is always the

longest string of following characters which could possibly be a token. The following are
tokens:

* *= % %= A= + +=
++ - -= -- -> > >= >>
>>= < <= <=> << <<= = ==
! = I~ & && &= | I

= ; ? ;

The following are also tokens:

» The character '# followed by any sequence of characters except a newline, then anoth-
er '#'. This token is egular-expression

» The character ' (single quote) followed by a single character (other than a newline) or
a singlebackslash character sequen@escribed below), followed by another single

guote. Thistokeniseharacter-codeA single quote followed by other than the above
sequence will result in an error.

» The character " (double quote) followed by any sequence of characters (other than a

newline) andbackslash character sequencap to another double quote character.
This token is atring.

A backslash character sequenseany of the following:

\n newline (ASCII 0x0A)

\t tab (ASCII 0x09)

\v vertical tab (ASCII 0x0B)

\b back space (ASCII 0x08)

\r carriage return (ASCII 0x0D)

ICI Technical Description Pagel of 88 Last Updated: October 18, 1999

\f form feed (ASCII 0x0C)

\a audible bell (ASCII 0x07)

\e escape (ASCII 0x1B)

\\ backslash (ASCII 0x5C)

\' single quote (ASCII 0x27)

\" double quote (ASCII 0x22)

\? guestion mark (ASCII 0x3F)

\cx controlx

\xx.. the character with hex code.

\n the character with octal code (1, 2 or 3 octal digits)
Consecutive string-literals, seperated only by white-space, are concatenated to form a
single strings-literal.

* Any upper or lower case letter, any digit, or'_' (underscore) followed by any number
of the same (or other characters which may be involved in a floating point number
while that is a valid interpretation). A token of this form may be one of three things:

If it can be interpreted as an integer, it igraeger-number

Otherwise, if it can be interpreted as a floating point number, ifliseding-point-num-
ber.

Otherwise, it is aimdentifier.

Notice that keywords are not recognised directly by the lexical analyser. Instead, certain
identifiers are recognised as keywords by the parser as described below.

Comments (which are white-space) are started with the characters /* and continue until
the next */. Also, lines which start with a # character are ignored.

An introduction to variables, modules and scope

Variables are simple identifiers which have a value associated with them. They are in
themselves typeless, depending on the type of the value currently assigned to them.

The termmodulein ICI refers to a collection of functions, declarations and code which
share the same variables. Typically each source file is a module, but not necessarily.

In ICI, modules may be nested in a hierarchical fashion. Within a module, variables can
be declared as eithstaticor extern When a variable is declared as static it is visible to
code defined in the module of its definition, and to code defined in sub-modules of that
one. This is termed thexzopeof the variable.

When a variable is defined asternit is declaredtaticin the parent module. Thus the
parent module and all sub-modules of the parent module have that variable in their scope.
Variables of this type, whether originally declared extern or static, will be henceforward
referred to as static variables.

Static variables are persistent variables. That is they remain in existence even when exe-
cution completely leaves their scope, despite not being visible to any executing code.
They are visible again when code flow again enters their scope.

The scoping of static variables is strictly governed by the nesting of the modules, not by
the flow of execution. For example. Suppose two neighbouring modules (call them mod-

ICI Technical Description Page2 of 88 Last Updated: October 18, 1999

ule A and moduleB) each define a variable call¢ideVariable. When some code in mod-
ule A calls a function defined in moduBeand that function refers tbeVariable; it is
referring to the version dheVariable defined in moduld, not the one defined in mod-
uleA.

Variables in sub scopes hide variables of the same name defined in outer scopes.

The second type of variable in ICI is thatomatic or auto, variable. Automatic variables

are not persistent. They last only as long as a module is being parsed or a function is being
executed. For instance, each time a function is entered a copy is made of the auto variables
which were declared in the function. This group of variables generally only persists dur-
ing the execution of the function; once the function returns they are discarded.

The parser

The parser uses the lexical analyser to read a source input stream. The parser also has ref-
erence to the variable-scope within which this source is being parsed, so that it may define
variables.

The parser will define variables within the current scope, and, when code is parsed at the
outermost level, return it to the execution engine for execution.

For some constructs the parser will in turn call upon the execution engine to evaluate a
sub-construct within a statement.

The following sections will work through the syntax of ICI with explanations and exam-
ples. Occasionally constructs will be used ahead of their full explanation. Their intent
should be obvious.

The following notation is used in the syntax in these sections. Note that the syntax given
in the text is not always exact, but rather designed to aid comprehension. The exact syntax
is given in a later section.

bold Thebold text is literal ASCII text.

italic Theitalic text is a construct further described elsewhere.
[xxx] The xxx is optionally present.

XXX... The xxx may be present zero or more times.

As noted previously there are no reserved words recoginsed by the lexical anaylyser, but

certain identifiers will be recognised by the parser in certain syntactic positions (as seen
below). While these identifiers are not otherwise restricted, special action may need to be

taken if they are used as simple variable names. They probably should be avoided. The
complete list is:

NULL auto break case
continue default do else
extern for forall if

in onerror return static
switch try while

We now turn our attention to the syntax itself.

ICI Technical Description Page3 of 88 Last Updated: October 18, 1999

Firstly consider the basic statement which is the unit of operation of the parser. As stated
earlier the execution engine will call on the parser to parse one top-level statement at a
time. We split the syntax of a statement into two categories (purely for semantic clarity):

statement executable-statement
declaration

That is, a statement is either arecutable-statemeat adeclaration We will first con-
sider theexecutable-statement

These are statements that, at the top-level of parsing, can be translated into code which
can be returned to the execution engine. This is by far the largest category of statements:

executable-statement expressjon
compound-statement
if (expressior) statement
if (expressior) statemenelsestatement
while (.expressior) statement
do statementvhile (expression ;
for ([expression][expression][expression) statement
forall (expression [, expressionr] expressior) statement
switch (expressior) compound-statement
caseparser-evaluated-expression
default ;
break ;
continue ; _
return [expression |
try statemenbnerror statement

These are the basic executable statement types. Many of these exmiesios, so
before examining each statement in turn we will examinesttpgession We will do this

by starting with the most primitive elements of expressions and working back up to the
top level.

The lowest level building block of an expressions isféiogor.

factor integer-number

character-code

floating-point-number

strin _

regular-expression

identifier

NULL
expressior)
array expression-list]
setexpression-lis} _ _
struct [: expression] assignment-lisk
func function-bodyj

The constructsteger-numbercharacter-codefloating-point-numberstring, andregu-
lar-expressiorare primitive lexical elements (described above). Each is converted to its
internal form and is an object of §nt, int, float, string, orregexprespectively.

A factorwhich is andentifieris a variable reference. Butits exact meaning depends upon

its context within the whole expression. Variables in expressions can either be placed so
that their value is being looked up, such as in:

ICI Technical Description Page4 of 88 Last Updated: October 18, 1999

a+1l
Or they can be placed so that their value is being set, such as in:

a=1
Or they can be placed so that their value is being both looked up and set, as in:

a+=1
Only certain types of expression elements can have their value set. A variable is the sim-
plest example of these. Any expression element which can have its value setis termed an
lvaluebecause it can appear on the left hand side of an assignment (which is the simplest

expression construct which requires an Ivalue). Consider the following two expressions:

I* WRONG */
I* OK */

1=2
a=2
The firstis illegal because an integer is not an lvalue, the second is legal because a variable

reference is an lvalue. Certain expression elements, such as assignment, require an oper-
and to be an Ivalue. The parser checks this.

The next factor in the list aboveN8JLL . The keyword NULL stands for the value
NULL which is the general undefined value. It has its own type, NULL. Variables which
have no explicit initialisation have an initial value of NULL. Its other uses will become
obvious later in this document.

Next is the constructexpressior). The brackets serve merely to make the expression
within the bracket act as a simple factor and are used for grouping, as in ordinary mathe-
matics.

Finally we have the four constructs surrounded by square brackets. These are textual de-
scriptions of more complex data items; typically knowrligesals. For example the fac-
tor:

[array 5, 6, 7]

is an array of three items, that is, the integers 5, 6 and 7. Each of these square bracketed
constructs is a textual description of a data type named by the first identifier after the start-

ing square bracket. A full explanation of these first requires an explanation of the funda-

mental aggregate types.

An introduction to arrays, sets and structs

There are three fundamental aggregate types in ICI: arrays, sets, and structs. Certain prop-
erties are shared by all of these (and other types as will be seen later). The most basic
property is that they are each collections of other values. The next is that they may be
"indexed" to reference values within them. For example, consider the code fragment:

a =[array 5, 6, 7];
i =a[0];

ICI Technical Description Page5 of 88 Last Updated: October 18, 1999

The first line assigns the variable a an array of three elements. The second line assigns
the variable i the value currently stored at thist element of the array. The suffixing of

an expression element by an expression in square brackets is the operation of "indexing",
or referring to a sub-element of an aggregate, and will be explained in more detail below.

Notice that thdirst element of the array has indesra This is a fundamental property
of ICI arrays.

The next ICl aggregate we will examine is the set. Sets are unordered collections of val-
ues. Elements "in" the set are used as indexes when working with the set, and the values
looked up and assigned are interpreted as a booleans. Consider the following code frag-
ment:

s = [set 200, 300, "a string"];
if (s[200])
printf("200 is in the set\n");
if (s[400])
printf("400 is in the set\n");
if (s["a string"])
printf("\"a string\" is in the set\n");
s[200] = O;
if (s[200])
printf("200 is in the set\n");

When run, this will print:

200 is in the set
"a string" is in the set

Notice that there was no second printing of "200 is in the set" because it was removed
from the set on the third last line by assigning zero to it.

Now consider structs. Structs are unordered collections of values indexed by any values.
Other properties of structs will be discussed later. The typical indexes of structs are
strings. For this reason notational shortcuts exist for indexing structures by simple
strings. Also, because each element of a struct is actually an index and value pair, the
syntax of a struct literal is slightly different from the arrays and sets seen above. Consider
the following code fragment:

s = [struct a = 123, b = 456, xxx = "a string"];
printf("s[\"a\"] = %d\n", s["a"]),

printf("s.a = %d\n", s.a);

printf("s.xxx = \"%s\"\n", s.xxx);

Will print:
s['a"] =123
s.a=123

S.XXx = "a string"

Notice that on the second line the structure was indexed by the string "a", but that the as-

ICI Technical Description Page6 of 88 Last Updated: October 18, 1999

signment in the struct literal did not have quotes arounéthEhis is part of the notation-
al shortcut which will be discussed further, below. Also notice the usesoh place of
s["a"]. This is a similar shortcut, also discussed below.

Back to expression syntax

The aggregate literals, which in summary are:

array expression-list
setexpression-lis} _ _
struct [: expression] assignment-list
func function-bodyj

involve three further constructs, te&pression-listwhich is a comma separated list of ex-
pressions; thassignment-listwhich is a comma separated list of assignments; and the
function-bodywhich is the argument list and code body of a function. The syntax of the
first of these is:

expression-list empty
expression [] o
expression expression-list

Theexpression-lisis fairly simple. The construe@mptyis used to indicate that the whole

list may be absent. Notice the optional comma after the last expression. This is designed
to allow a more consistent formatting when the elements are line based, and simpler out-
put from programmatically produced code. For example:

[array
"This is the first element"”,
"This is the second element”,
"This is the third element”,

]

The assignment list has similar features:

assignment-list empty
assignment [] _
assignment assignment-list
assignment struct-key expression

struct-key identifier
(expressior)

Eachassignmenis either an assignment to a simple identifier or an assignment to a full
expression in brackets. The assignmentto an identifier is merely a notational abbreviation
for an assignment to a string. The following two struct literals are equivalent:

[struct abc = 4]
[struct ("abc") = 4]

The syntax of dunction-bodyis:

function-body (identifier-list) compound-statement

identifier-list empty

ICI Technical Description Page7 of 88 Last Updated: October 18, 1999

identifier[.,d] L
identifier, identifier-list

That s, andentifier-listis an optional comma separated listaéntifierswith an optional
trailing comma. Literal functions are rare in most programs; functions are normally
named and defined with a special declaration form which will be seen in more detail be-
low. The following two code fragments are equivalent; the first is the abbreviated nota-
tion:

static fred(a, b){return a + b;}
and:

static fred = [func (a, b){return a + b;}];

The meaning of functions will discussed in more detail below.

Aggregates in general, and literal aggregates in particular, are fully nestable:

[array
[structa=1, c = 2],
[set"a", 1.2, 3],
"a string”,

]

Note that aggregate literals are entirely evaluated by the parser. That is, each expression
Is evaluated and reduced to a particular value, these values are then used to build an object
of the required type. For example:

[struct a = sin(0.5), b = cos(0.5)]

Causes the functions sin and cos to be called during the parsing process and the result as-
signed to the keyaandbin the struct being constructed. It i§ possible to refer to variables
which may be in existence while such a literal is being parsed

This ends our consideration of the lowest level element of an expressitagttre

A simple factor may be adorned with a sequencprohary-operatiors to form aprima-
ry-expression That is:

primary-expression factor primary-operation...

primary-operation [expressior}
. identifier
. (expressior)
-> identifier
-> (expressior)
(expression-lis}

1.Literal aggregates are analagous to literal strings in K&R C. And likewise they have the property
that modifications to the literal are persistent. Returning to the original use of the literal after it has

been modified does not magically restore it to its original value.

ICI Technical Description Page8 of 88 Last Updated: October 18, 1999

The firstprimary-operation(above) we have already seen. It is the operation of "index-
ing" which can be applied to aggregate types. For exampbexig an array:

xxX[10]
refers to the element of xxx atindex 10. The parser does notimpose any type restrictions
(because typing is dynamic), although numerous type restrictions apply at execution time

(for instance, arrays may only be indexed by integers, and floating point numbers are not
able to be indexed at all).

The second form, identifier, is a notational abbreviation ¢f identifier'] , as seen pre-
viously. Similarly the third form is again just a notational variation. Thus the following
are all equivalent:

xxx["'aaa"]

XXX.aaa

xxX.("aaa")

And the following are also equivalent to each other:

XXX[1 + 2]
xXxX.(1 + 2)

Note that factors may be suffixed by any numbepomary-operatios. The only restric-
tion is that the types must be right during execution. Thus:

xxx[123].aaa[10]
is legal.
The two constructs

-> identifier
-> (‘expressior)

are again notational variations. In general, constructs of the form:

primary-expression> identifier
primary-expressior> (expressior)

are re-written as:

2* primary-expressiog .identifier
* primary-expression . (expression

The unary operator used here is the indirection operator, its meaning is discussed later.
The last of th@rimary-operatiors:

(expression-lisy

ICI Technical Description Paged of 88 Last Updated: October 18, 1999

Is the function call operation. Although, as usual, no type checking is performed by the
parser; at execution time the thing it is applied to must be a function. For example:

my_function(l, 2, "a string")
and

xxx.array_of_funcs[10]()
are both function calls. Function calls will be discussed in more detail below.
This concludes the examination op@mary-expression

Primary-expressions are combined with prefix and postfix unary operators to make terms:

term [prefix-operator...] primary-expression [postfix-operator...]
refix-operator Any of:
P P *&¥+!~++--@$
postfix-operator Any of:
++ -

That is, atermis aprimary-expressiosurrounded on both sides by any number of prefix
and postfix operators. Postfix operators bind more tightly than prefix operators. Both
types bind right-to-left when concatenated together. That is: -Ix is the same as -(Ix). As
in all expression compilation, no type checking is performed by the parser, because types
are an execution-time consideration.

Some of these operators touch on subjects not yet explained and so will be dealt with in
detalil in later sections. But in summary:

Prefix operators

* Indirection; applied to a pointer, gives target of the pointer.
& Address of; applied to any lvalue, gives a pointer to it.

- Negation; gives negative of any arithmetic value.

+ Positive; no real effect.

! Logical not; applied to O or NULL, gives 1, else gives 0.
~ Bit-wise complement.

++ Pre-increment; increments an lvalue and gives new value.

-- Pre-decrement; decrements an Ivalue and gives new value.

@ Atomic form of; gives the (unique) read-only version of any value.
$ Immediate evaluation; see below.

Postfix operators

++ Post-increment; increments an Ivalue and gives old value.
-- Post-increment; decrements an lvalue and gives old value.

One of these operators, $, is only a pseudo-operator. It actually has its effect entirely at
parse time. The $ operator causes its subject expression to be evaluated immediately by
the parser and the result of that evaluation substituted in its place. This is used to speed

ICI Technical Description PagelO of 88 Last Updated: October 18, 1999

later execution, to protect against later scope or variable changes, and to construct con-
stant values which are better made with running code than literal constants. For example,
an expression involving the square root of two could be written as:

X =y +1.414213562373095;
Or it could be written more clearly, and with less chance of error, as:
X =y + sqrt(2.0);

But this construct will call the square root function each time the expression is evaluated.
If the expression is written as:

X =y + $sqrt(2.0);

The square root function will be called just once, by the parser, and will be equivalent to
the first form.

When the parser evaluates the subjdet $ operator it recursively invokes the execution
engine to perform the evaluation. As a result there is no restriction on the activity which
can be performed by the subject expression. It may reference variables, call functions or
even read files. But it is important to remember that it is called at parse time. Any vari-
ables referenced will be immediately interrogated for their current value. Automatic vari-
ables of any expression which is contained in a function will not be available, because the
function itself has not yet been invoked; in fact it is clearly not yet even fully parsed.

The $ operator as used above increased speed and readability. Another common use is to
avoid later re-definitions of a variable. For instance:

($printf)("Hello world\n");

Will use theprintf function which was defined at the time the statement was parsed, even
if it is latter re-defined to be some other function. It is also slightly faster, but the differ-
ence is small when only a simple variable look-up is involved. Notice the bracketing
which has been used to bind thto the wordorintf. Function calls are primary opera-
tions so thes would have otherwise referred to the whole function call as it did in the first
example.

This concludes our examination ofexm(remember that the full meaning of other prefix
and postfix operators will be discussed in later sections). We will now turn to the top level
of expressions wheterms are combined with binary operators:

expression term _
expression infix-operator expression

infix-operator Any of:
@
*| %
+ -
>> <<
<><=>=

ICI Technical Description Pagell of 88 Last Updated: October 18, 1999

=R >
Ro

="

+= -= *= [= Op= >>= <<= &= "= |: —~———<=>

That is, arexpressiorcan be a simpleerm or twoexpressionseparated by anfix-op-

erator. The ambiguity amongst expressions built from several binary-operator separated
expressions is resolved by assigning each operajor a precedence and also applying rules
for order of binding amongst equal precedence levélife lines of binary operators in

the syntax rules above summarise their precedence. Operators on higher lines have higher
precedence than those on lower lines. Thus 1+2*3 is the same as 1+(2*3). Operators
which share a line have the same precedence. All operators except those on the second
last line group left-to-right. Those on the second last line (the assignment operators)
group right-to-left. Thus

a*bl/c
is the same as:

(a*b)/c
But:

a=b+=c
IS the same as:

a=(b+=c)

As with unary operators, the full meaning of each will be discussed in a later section. But
in summary:

Binary operators

@ Form pointer

* Multiplication, Set intersection

/ Division

% Modulus

+ Addition, Set union

- Subtraction, Set difference
>> Right shift (shift to lower significance)
<< Left shift (shift to higher significance)

< Logical test for less than, Proper subset

> Logical test for greater than, Proper superset
<= Logical test for less than or equal to, Subset
>= Logical test for greater than or equal to, Superset

2.The precedences and rules are identical to those of C.

ICI Technical Description Pagel? of 88 Last Updated: October 18, 1999

== Logical test for equality

I= Logical test for inequality

~ Logical test for regular expression match

I~ Logical test for regular expression non-match

~~ Regular expression sub-string extraction
~~~ Regular expression multiple sub-string extraction

& Bit-wise and
A Bit-wise exclusive or
| Bit-wise or
&& Logical and
| Logical or
: Choice separator (must be right hand subjeétajerator)
? Choice (right hand expression must usgerator)
= Assignment
+= Add to
-= Subtract from
*= Multiply by
/= Divide by
%= Modulus by

>>= Right shift by
<<= Left shift by
= And by
N= Exclusive or by
|= Or by
~~= Replace by regular expression extraction
<=> Swap values
, Multiple expression separator

This concludes our considerationeofpressions. We will now move on to each of the
executable statement types in turn.

Simple expression statements
The simple expression statement:

expression

Is simply an expression followed by a semicolon. The parser translates this expression to
its executable form. Upon execution the expression is evaluated and the result discarded.
Typically the expression will have some side-effect such as assignment, or make a func-
tion call which has a side-effect, but there is no explicit requirement that it do so. Typical
expression statements are:

printf("Hello world.\n");
X=Yy+2z

++i;
Note that an expression statement which could have no side-effects other than producing
an error may be completely discarded and have no code generated for it.

ICI Technical Description Pagel3 of 88 Last Updated: October 18, 1999



Compound statements

The compound statement has the form:

{ statement. }

Thatis, a compound statement s a series of any number of statements surrounded by curly
braces. Apart from causing all the sub-statements within the compound statement to be
treated as a syntactic unit, it has no effect. Thus:

printf("Line 1\n");

{
printf("Line 2\n");
printf("Line 3\n");

}
printf("Line 4\n");

When run, will produce:

Line 1
Line 2
Line 3
Line 4

Note that the parser will not return control to the execution engine until all of a top-level
compound statement has been parsed. This is true in general for all other statement types.
The if statement

Theif statement has two forms:

if ( expressior) statement
if ( expressior) statemenelsestatement

The parser converts both to an internal form. Upon executioexpeessioris evaluated.

If the expression evaluates to anything other than O (integer zero) or NULL, the following
statement is executed; otherwise it is not. In the first form this is all that happens, in the
second form, if the expression evaluated to 0 or NULL the statement followirejdbis
executed; otherwise it is not.

The interpretation of both 0 and NULL as false, and anything else as true, is common to
all logical operations in ICI. There is no special boolean type.

The ambiguity introduced by multiple if statements with an lesser number of else clauses
is resolved by binding else clauses with their closest possible if. Thus:

if (@) if (b) dox(); else doy();
If equivalent to:
if (a)
{
if (b)

ICI Technical Description Pagel4 of 88 Last Updated: October 18, 1999



dox();
else

doy();
}
The while statement

Thewhile statement has the form:

while (expressior) statement

The parser converts it to an internal form. Upon execution a loop is established. Within
the loop theexpressiorns evaluated, and if it is false (0O or NULL) the loop is terminated
and flow of control continues after threhile statement. But if thexpressiorevaluates to

true (not 0 and not NULL) thetatemenis executed and then flow of control moves back

to the start of the loop where the test is performed again (although other statements, as
seen below, can be used to modify this natural flow of control).

The do-while statement

Thedo-whilestatement has the following form:

do statementvhile ( expression ;

The parser converts it to an internal form. Upon execution a loop is established. Within
the loop thestatemenis executed. Then thexpressions evaluated and if it evaluates to
true, flow of control resumes at the start of the loop. Otherwise the loop is terminated and
flow of control resumes after tlum-whilestatement.

The for statement

Thefor statement has the form:

for ( [ expression ] [ expression ] [ expression ) statement

The parser converts it to an internal form. Upon execution thedkgtessions evaluat-
ed (if present). Then, a loop is established. Within the loop: If the segpneksions
present, it is evaluated and if it is false the loop is terminated. Nexgtdtementis exe-
cuted. Finally, the thir@xpressiorns evaluated (if present) and flow of control resumes
at the start of the loop. For example:

for (i=0;i<4; ++i)
printf("Line %d\n", i);

When run will produce:
Line O
Line 1
Line 2
Line 3

The forall statement

Theforall statement has the form:

ICI Technical Description Pagel5 of 88 Last Updated: October 18, 1999



forall ( expression [expression Jn expression statement

The parser converts it to an internal form. In doing so the first and sesqméssios are
required to be Ivalues (that is, capable of being assigned to). Upon execution the first ex-
pression is evaluated and that storage location is noted. If the segprassions present

the same is done for it. The thiekpressiotis then evaluated and the result noted; it must
evaluate to an array, a set, a struct, a string, or NULL; we will callttresaggregate If

this is NULL, theforall statement is finished and flow of control continues after the state-
ment; otherwise, a loop is established.

Within the loop, an element is selected from the noted aggregate. The value of that ele-
ment is assigned to the location given by the first expression. If the second expression
was present, it is assigned the key used to access that element. Then the statement is ex-
ecuted. Finally, flow of control resumes at the start of the loop.

Each arrival at the start of the loop will select a different element from the aggregate. If

no as yet unselected elements are left, the loop terminates. The order of selection is pre-
dictable for arrays and strings, namely first to last. But for structs and sets it is unpredict-
able. Also, while changing the values of the structure members is acceptable, adding or
deleting keys, or adding or deleting set elements during the loop will have an unpredict-
able effect on the progress of the loop.

As an example:

forall (colour in [array "red", "green", "blue"])
printf("%s\n", colour);

when run will produce:
red
green
blue

And:

forall (value, key in [structa=1,b=2,c=3])
printf("%s = %d\n", key, value);

when run will produce (possibly in some other order):

oo 0
I n
N = W

Note in particular the interpretation of the value and key for a set. For consistency with
the access method and the behavior of structs and arrays, the values are all 1 and the ele-
ments are regarded as the keys, thus:

forall (value, key in [set "a", "b", "c"])
printf("%s = %d\n", key, value);

ICI Technical Description Pagel6 of 88 Last Updated: October 18, 1999



when run will produce:

T o0
I
N

But as a special case, when the second expression is omitted, the first is set to each "key"
in turn, that is, the elements of the set. Thus:

forall (element in [set "a", "b", "c"])
printf("%s\n", element);

when run will produce:

Cc
a
b

When aforall loop is applied to a string (which is not a true aggregate), the "sub-elements"
will be successive one character sub-strings.

Note that although the sequence of choice of elements from a set or struct is at first exam-
ination unpredictable, it will be the same in a second forall loop applied without the struc-
ture or set being modified in the interim.

The switch, case and default statements

These statements have the forms:

switch ( expressior) compound-statement
caseexpression
default:

The parser converts the switch statement to an internal form. As it is parsing the com-
pound statement, it notes argseanddefaultstatements it finds at the top level of the
compound statement. Wherasestatement is parsed tegpressions evaluated imme-
diately by the parser. As noted previously for parser evaluated expressions, it may per-
form arbitrary actions, but it is important to be aware that it is resolved to a particular
value just once by the parser. As taseanddefaultstatements are seen their position
and the associated expressions are noted in a table.

Upon execution, thewitchstatement'sxpressions evaluated. This value is looked up
in the table created by the parser. If a matcheagestatement is found, flow of control
immediately moves to immediately after teasestatement. If there isdefaultstate-
ment, flow of control immediately moves to just after that. If there is no matchsey
and nodefaultstatement, flow of control continues just after the estvigchstatement.

For example:

switch ("a string")

{

case "another string™:
printf("Not this one.\n");

ICI Technical Description Pagel7 of 88 Last Updated: October 18, 1999



case 2:
printf("Not this one either.\n");
case "a string™:
printf("This one.\n");
default:
printf("And this one too.\n");
}

When run will produce:

This one.
And this one too.

Note that the case and default statements, apart from the part they play in the construction
of the look-up table, do not influence the executable code of the compound statement.
Notice that once flow of control had transferred to the third case statement above, it con-
tinued through the default statement as if it had not been present. This behavior can be
modified by thebreakstatement described below.

It should be noted that the "match" used to look-up the switch expression against the case
expressions is the same as that used for structure element look-up. That is, to match, the
switch expression must evaluate to the same object as the case expression. The meaning
of this will be made clear in a later section.

The breakand continue statements

Thebreakandcontinuestatements have the form:

break ;
continue ;

The parser converts these to an internal form. Upon execution of a break statement the
execution engine will cause the nearest enclosing loop (a while, do, for or forall) or switch
statement within the same scope to terminate. Flow of control will resume immediately
after the affected statement. Note thhteakstatement without a surrounding loop or
switchin the same function or module is illegal.

Upon execution of aontinuestatement the execution engine will cause the nearest en-
closing loop to move to the next iteration. Ranileanddoloops this means the test. For
for loops it means the step, then the test. féoall loops it means the next element of the
aggregate.

The return statement

Thereturn statement has the form:

return [ expression }

The parser converts this to an internal form. Upon execution, the execution engine eval-
uates theexpressionif it is present. If it is not, the value NULL is substituted. Then the
current function terminates with that value as its apparent value in any expression itis em-
bedded in. Itis an error for there to be no enclosing function.

ICI Technical Description Pagel8 of 88 Last Updated: October 18, 1999



The try statement

Thetry statement has the form:

try statemenonerror statement

The parser converts this to an internal form. Upon execution, thstéitstnents exe-
cuted. If this statement executes normally flow continues aftetrjhgtatement; the sec-
ondstatemenis ignored. Butif an error occurs during the execution of the §tatement
control is passed immediately to the secstadement

Note that "during the execution™ applies to any depth of function calls, even to other mod-
ules or the parsing of sub-modules. When an error occurs both the parser and execution
engine unwind as necessary until an error catcher (thatryssttement) is found.

Errors can occur almost anywhere and for a variety of reasons. They can be explicitly
generated with thé&ail function (described below), they can be generated as a side-effect

of execution (such as division by zero), and they can be generated by the parser due to
syntax or semantic errors in the parsed source. For whatever reason an error is generated,
a message (a string) is always associated with it.

When any otherwise uncaught error occurs during the execution of thetéitsmentwo
things are done:

» Firstly, the string associated with the failure is assigned to the vaeiable The as-
signment is made as if by a simple assignment statement within the scop&of the
statement.

» Secondly, flow of control is passed to the statement followingieeror keyword.

Once the seconstatemenfinishes execution, flow of control continues as if the whole
try statement had executed normally.

For example:
static
div(a, b)
{
try
returna/b;
onerror
return O;
}

printf("4 / 2 = %d\n", div(4, 2));
printf("4 / 0 = %d\n", div(4, 0));

When run will print:

4/2=2
4/0=0

The handling of errors which are not caught by ygtatement is implementation de-

ICI Technical Description Pagel9 of 88 Last Updated: October 18, 1999



pendent. A typical action is to prepend the file and line number on which the error oc-
curred to the error string, print this, and exit.

The null statement

The null statement has the form:

The parser may convert this to an internal form. Upon execution it will do nothing.

Declaration statements

There are two types of declaration statements:

declaration storage-class declaration-list
storage-class identifier function-body
storage-class extern
static
auto

The first is the general case while the second is an abbreviated form for function defini-
tions. Declaration statements are syntactically equal to any other statement, but their ef-
fect is made entirely at parse time. They act as null statements to the execution engine.
There are no restriction on where they may occur, but their effect is a by-product of their
parsing, not of any execution.

: : _ 3
Declaration statements must start with one ofdtwrage-claskeywords listed above
Considering the general case first, we next hadectaration-list

declaration-list identifier [= expression ] _
declaration-list, identifier [ = expression ]

That is, a comma separated list of identifiers, each with an optional initialisation, termi-
nated by a semicolon. For example:

statica, b =2, c =[array 1, 2, 3];
The storage class keyword establishes which scope the variables in the list are established
in, as discussed earlier. Note that declaring the same identifier at different scope levels is
permissible and that they are different variables.
A declaration with no initialisation first checks if the variable already exists at the given
scope. If it does, it is left unmodified. In particular, any value it currently has is undis-
turbed. If it does not exist it is established and is given the value NULL.

A declaration with an initialisation establishes the variable in the given scope and gives it
the given value even if it already exists and even if it has some other value.

Note that initial values are parser evaluated expressions. That is they are evaluated im-

3.Note that, unlike C, function definitions must be prefixed by a storage class. As executable code may
occur anywhere, this is required to distinguish them from a function call.

ICI Technical Description Page20 of 88 Last Updated: October 18, 1999



mediately by the parser, but may take arbitrary actions apart from that. For example:

static
fibonacci(n)

{
if (n<=1)
return 1,
return fibonacci(n - 1) + fibonacci(n - 2);

}

static fib10 = fibonacci(10);

The declaration diib10 calls a function. But that function has already been defined so
this will work.

Note that the scope of a static variable is (normally) the entire module it is parsed in. For
example:

static
func()

{
}

printf("%s\n", aStatic);

static aStatic = "The value of a static.";

when run will print:
The value of a static.

That is, despite being declared within a function, the declaratiaStatichas the same
effect as if it had been declared outside the function. Also notice that the function has not
been called. The act of parsing the function caused the declaration to take effect.

The behavior of extern variables has already been discussed, that is, they are declared as
static in the parent module. The behavior of auto variables, and in particular their initial-
isation, will be discussed in a later section.

Abbreviated function declarations

As seen above there are two forms of declaration. The second:

storage-class identifier function-body

is a shorthand for:

storage-class identifier [ func function-body] ;

and is the normal way to declare simple functions. Examples of this have been seen
above.

ICI Technical Description Page?1 of 88 Last Updated: October 18, 1999



Functions

As with most ICI constructs there are two parts to understanding functions; how they are
parsed and how they execute.

When a function is parsed four things are noted:

» the names and positions of the formal parameters;

» the names and initialisation of auto variables;

* the static scope in which the function is declared,

» the code generated by the statements in the function.

The formal parameters (that is, the identifiers in the bracket enclosed list just before the
compound statement) are actually implicit auto variable declarations. Each of the identi-
fiers is declared as an auto variable without an initialisation, but in addition, its name and
position in the list is noted.

Upon execution (that is, upon a function call), the following takes place:

» The auto variables, as noted by the parser, along with any initialisations, are copied as
a group. This copy forms the auto variables of this invocation.

* Any actual parameters (that is, expressions provided by the caller) are matched posi-
tionally with the formal parameter names, and the value of those expressions are as-
signed to the auto variables of those names.

 Ifthere were more actual parameters than formal parameters, and there is an auto vari-
able calledrargs the remaining argument values are formed into an array which is as-
signed tovargs

» The variable scope is set such that the auto variables are the inner-most scope, the static
variables noted with the function are the next outer scope etc.

» The flow of control is diverted to the code generated by parsing the function.

A return statement executed within the function will cause the function to return to the
caller and act as though its value were the expression given in the return statement. If no
expression was given in the return statement, or if execution fell through the bottom of the
function, the apparent return value is NULL. In any event, upon return the scope is re-
stored to that of the caller. Allinternal references to the group of automatic variables are
lost (although as will be seen later explicit program references may cause them to remain
active).

Simple functions have been seen in earlier examples. We will now consider further is-
sues.

Itis very important to note that the parser generates a prototype set of auto variables which
are copied, along with their initial values, when the function is called. The value which
an auto variable is initialised with is a parser evaluated expression just like any other ini-
tialisation. Itis not evaluated on function entry. But on function entry the value the parser
determined is used to initialise the variable. For example:

static myVar = 100;

ICI Technical Description Page22 of 88 Last Updated: October 18, 1999



static
myFunc()

auto anAuto = myVar;

printf("%d\n", anAuto);
anAuto = 500;

}

myFunc();
myVar = 200;
myFunc();

When run will print:

100
100

Notice that the initial value ainAutowas computed just once, changmygVarbefore
the second call did not affect it. Also note that changngutoduring the function did
not affect its subsequent re-initialisation on the next invocation.

As stated above, formal parameters are actually uninitialised auto variables. Because of
the behavior of variable declarations it is possible to explicitly declare an auto variable as
well as include it in the formal parameter list. In addition, such an explicit declaration
may have an initialisation. In this case, the explicit initialisation will be effective when
there is no actual parameter to override it. For example:

static
print(msg, file)
{

auto file = stdout; /* Default value. */

fprintf(file, "%s\n", msg);
}

print("Hello world");
print("Hello world", stderr);

In the first call to the functiomprint there is no second actual parameter. In this case the
explicit initialisation of the auto variabl#e (which is the second formal parameter) will
have its effect unmolested. Butin the second catirint a second argument is given. In
this case this value will over-write the explicit initialisation given to the argument and
cause the output to go stderr.

As indicated above there is a mechanism to capture additional actual parameters which
were not mentioned in the formal parameter list. Consider the following example:

static
sum()

{

ICI Technical Description Page23 of 88 Last Updated: October 18, 1999



auto vargs;
auto total = 0;
auto arg;

forall (arg in vargs)
total += arg;
return total,

}

printf("1+2+3 = %d\n", sum(l, 2, 3));
printf("1+2+3+4 = %d\n", sum(1, 2, 3, 4));

Which when run will produce:

1+2+3=6
1+2+3+4 =10

In this example the unmatched actual parameters were formed into an array and assigned
to the auto variableargs a name which is recognised specially by the function call mech-
anism.

And also consider the following example where a default initialisatioratgsis made.

In the following example the functiasall is used to invoke a function with an array of
actual parameters, the functiarray is used to form an array at run-time, and addition is
used to concatenate arrays; all these features will be further explained in later sections:

static

debug(fmt)

{
auto fmt = "Reached here.\n";
auto vargs = [array];

call(fprintf, array(stderr, fmt) + vargs);

}

debug();
debug('Done that.\n");
debug("Result = %d, total = %d.\n", 123, 456);

When run will print:

Reached here.
Done that.
Result = 123, total = 456.

In the first call todebugno arguments are given and both explicit initialisations take ef-
fect. Inthe second call the first argument is given, but the initialisatimaajsstill takes

effect. But in the third call there are unmatched actual parameters, so these are formed
into an array and assignedvargs overriding its explicit initialisation.

ICI Technical Description Page24 of 88 Last Updated: October 18, 1999



Method Calls

In addition to the above ICI has a simple mechanism for caftieghods— functions con-

tained within an object (typically struc{ that accept that object as their first parameter.

The method call mechanism is enabled via a modification tcalie@perator, "()", to add
semantics for calling a pointer object and through the addition of a new operator, binary-
@, to form a pointer object from an object and a key. ICI pointers, described below, con-
sist of an object and a key. To indirect though the pointer the object is indexed by the key
and the resulting object used as the result. This is the same operation used in dynamic dis-
patch in languages such as Smalltalk and Objective-C.

The call operator now accepts a pointer as its first operand (we may think of the call op-
erator as a n-ary operator that takes a function or pointer object as its first operand the
function parameters as the remaining operands). When a pointer is "called" the key is used
to index the pointer’s container object and the result, which must be a function object, is
called. In addition the container object within the pointer is passed as an implicit first pa-
rameter to the function (thus passing the actual object used to invoke the method to the
method). Apart from the calling semantics the functions used to implemented methods are
in all respects normal ICI functions.

Struct objects are typically used as the "container" for objects used with methods. The su-
per mechanism provides the hierarichal search needed to allow class objects to be shared
by multiple instances and provide a natural means of encapsulating information.

A typical way of using methods is,

/*

* Define a "class" object representing our class and
* containing the class methods.

*

static MyClass = [struct

doubleX = [func (self)
{

1]

return self.x * 2;

static a;

a = struct(@MycClass);

a.x =21;

printf("%d\n", a@doubleX());

We first define a class by using a literal struct to contain our named methods. You could
also define class variables in this struct as it is shared by all instances of that class. In our
class we’ve got a We first define a class by using a literal struct to contain our named
methods. You could also define class variables in this struct as it is shared by all instances
of that class. In our class we've got a single method, doubleX, that doubles the value of

ICI Technical Description Page25 of 88 Last Updated: October 18, 1999



an instance variable called x.

Later in the program we create an instance of a MyClass object by making a new struct
object and setting its super struct to the class struct. The super is made atomic which en-
sures all instances share the same object and makes it read-only for them. Then we create
an "instance variable" within the object by assigning 21 to a.x and finally invoke the meth-
od. We do not pass any parameters to doubleX. The call through the pointer object formed
by the binary-@ operator passes "a" implicitly

Objects
Up till now few exact statements about the nature of values and data have been made. We
will now examine values in more detail. Consider the following code fragment:

static x;
static y;

x =[array 1, 2, 3, 4];
y =X

After execution of this code the variabdeefers to an array. The assignmenk tf y
causey to refer to the same array. Diagrammatically:

X >| 1 2 3 4

y

If the assignment:
y[1] = 200;

Is performed, the result is:

X >| 1 200 3 4

y P

We say thak andy refer to the same object. Now consider the following code fragment:

static x;
static y;

x =J[array 1, 2, 3, 4];
y =[array 1, 2, 3, 4];

Diagrammatically:

X - 1 2 3 4

y > 1 2 3 4

ICI Technical Description Page26 of 88 Last Updated: October 18, 1999



In this casex andy refer to different objects, despite that fact they are equal.
Now consider one of the unary operators which was only briefly mentioned in the sections

above. The@ operator returns a read-only version of the sub-expression it is applied to.
Consider the following statement:

y = @y;

After this has been executed the result could be represented diagrammatically as:

X - 1 2 3 4

1 2 3 4

Yy e
\ pad-nnly
1 2 3 4

The middle array now has no reference to it and the memory associated with it will be
collected by the interpreter's standard garbage collection mechanism. Now consider the
following statement:

X = @x;

This is similar to the previous statement, except that this imeeplaced by a read-only
version of its old value. But the result of this operation is:

X — 1 2 3 4
y e—
nnrl-nnly
1 2 3 4

Notice thatx now refers to the same read-only array $hedfers to. This is a fundamental
property of the@ operator. It returnghe uniqueread-only version of its argument value.

Such read-only objects are referred tasmmicobjects. The array whickused to refer

to was non-atomic, but the array it refers to now is an atomic array. Aggregate types such
as arrays, sets and structs are generally non-atomic, but atomic versions can be obtained
(as seen above). But most other types, such as integers floats, strings and functions are
intrinsically atomic. That is, no matter how a number, say 10, is generated, it will be the
same object as every other number 10 in the interpreter. For-instance, consider the fol-
lowing example:

x ="ab" + "cdefg";
y = "abcde" + "fg";

ICI Technical Description Page27 of 88 Last Updated: October 18, 1999



After this is executed the situation can be represented diagrammatically as:

>>“abcdefg"

Itis important to understand when objects are the same object, when they are different and
the effects this has.

X —_—

y JE—

Equality

We saw above how two apparently identical arrays were each distinct object. But these
two arrays werequalin the sense gf the equality testing operater. If two values are

the same object they are said todze, and there is a function of that name to test for this
condition. Two objects arequal(that is==) if:

» they are the same object; or
» they are both arithmetic (int and float) and have equivalent numeric values; or
» they are aggregates of the same type and all the sub-elements are the same objects.

This definition of equality is the basis for resolving the merging of aggregates into unique
read-only (atomic) versions. Two aggregates will resolve to the same atomic object if
they areequal That is, they must contain exactly the same objects as sub-elements, not
just equal objects. For example:

static x = [array 1, [array 2, 3], 4, 5];
static y = [array 1, [array 2, 3], 4, 5];

Could be represented diagrammatically as:

X L 1

Now, if the following statements were executed:

X = @X;
y = @y;
4.As in LISP.

ICI Technical Description Page28 of 88 Last Updated: October 18, 1999



The result could be represented diagrammatically as:

::nrl-nnly

X 1

That is, bothx andy refer to new read-only objects, but they refer to different read-only
objects because they have an element which is not the same object. The simple integers
are the same objects because integers are intrinsically atomic objects. But the two sub-
arrays are distinct objects. Being equal was not sufficient. The top-level arrays needed
to have exactly the same objects as contents to makely end up referring to the same
read-only array. In contrast to this consider the following similar situation:

static z = [array 2, 3];
static x = [array 1, z, 4, 5];
static y = [array 1, z, 4, 5];

This could be represented diagrammatically as:

X L 1

Now, if the following statements were executed:

X = @x;
y = @y,

The result could be represented diagrammatically as:

X —_—

pad-nnly
y

In this case botlk andy refer to the same read-only array because the original arrays
where equal, that is, all their elements were the same objects. Notice that one of the ele-

ICI Technical Description Page?9 of 88 Last Updated: October 18, 1999



ments is still avriteablearray. The read-only property is only referring to the top level
array. The sub-array can be changed, but the reference to it from the top level array can
not. Thus:

x[1][0] = 200;

will result in:

X ead-only
y

200 3

whereas the statement:
X[1] = 200;
will just result in an error.

Structure and set keys

Any object, not just a string, can be used as a key in a structure. For instance:

static x = [struct];
static z = [array 10, 11];

X["abc"] = 1;
X[56] = 2;
X[z] = 3;

Could be represented diagrammatically as:

/y 10 11

X — ™ “abc” 56

And the assignment:
X[z] = 300;

would replace th8& in the above diagram witB00. But the assignment:
X[[array 10, 11]] = 300;

would result in a new element being added to the structure because the array given in the
above statement is a different object from the one whieffers to.

Similarly, elements of sets may be any objects.

ICI Technical Description Page30 of 88 Last Updated: October 18, 1999



Indexing structures by complex aggregates is as efficient as indexing by intrinsically
atomic types such as strings and integers.

Structure super types

Up till now structures have been described as simple lookup tables which map a key, or
index, to a value. But a structure may have associated wilugiex structure

The functionsupercan be used to discover the current super of a struct and to set a new
super. With just one argument it returns the current super of that struct, with a second
argument it also replaces the super by that value.

When a key is being looked-up in a structure for reading, and it is not found and there is
asuper structthe key is further looked for in the super struct, if it is found there its value
from that struct is returned. Ifitis not found it will be looked for in the next super struct
etc. If no structures in theuper chaircontain the key, the special value NULL is re-
turned.

When a key is being looked up in a structure for writing, it will similarly be searched for

in the super chain. Ifitis found in a writeable structure the value in the structure in which

it was found will be set to the new value. If it was never found, it will be added along with
the given value to the very first struct, that is, the structure at the base, or root, of the super
chain.

Consider the following example:

static theSuper = [structa=1,b =2, c = 3];
static theStruct = [struct x = 100, y = 200];

super(theStruct, theSuper);

After this statement the situation could be represented diagrammatically as:

“a” “b” “C”
1 2 3
A
theStruct —t— X Yy
100 200

then if the following statements were executed:
theStruct.a = 123;

theStruct.x = 456;
theStruct.z = 789;

ICI Technical Description Page31 of 88 Last Updated: October 18, 1999



the situation could be diagrammatically represented as:

“a” “b” “c”
123 2 3
A
thestruct “X” “y” HZ”
456 200 789

If a super struct is not writeable (that is, it is atomic) values will not be written in it and
will lodge in the base structure instead. Thus consider what happens if we replace the su-
per structure in the previous example by its read-only version:

super(theStruct, @theSuper);

The situation could now be represented diagrammatically as:

Read-only
“a” ubn “C,,
123 > 3
A
theStI’UCt —TP “X" “y” uzn
456 200 789

If the assignment statement:

theStruct.a += 10;

were executed, the value of the elemantill first be readfrom the super structure, this
value will then have ten added to it, and the result wills&ten back into the base struc-
ture; because the super structure is read-only and cannot be modified. The finally situa-

tion can be represented diagrammatically as:

Read-only
uau “b" “C”
123 2 3
A
thestrUCt e e “a” “X” “y” HZH
133 456 200 789

Note that many structs may share the same super struct. Thus a single read-only super
struct can be used hold initial values; saving explicit initialisations and storage space.

The functionassignmay be used to set a value in a struct explicitly, without reference to

ICI Technical Description Page32 of 88 Last Updated: October 18, 1999



any super structs; and the functitaichmay be used to read a value from a struct explic-
itly, without reference to any super structs.

Within astruct-literala colon prefixed expression after thieuctidentifier is used as the
super struct. For example, the declarations used in the previous example could be written
as:

static theSuper = [structa=1,b =2, c = 3];
static theStruct = [struct:theSuper, x = 100, y = 200];

An aside on variables and scope

Now that structs and their super have been described a more precise statement about vari-
ables and scope can be made.

ICI variables are entries in ordinary structs. At all times, the current scope is identified
by a structure. The auto variables are the entries in this base structure. Its super is the
struct containing the static variables. The next super struct contains the externs, and suc-
cessive super structs are successive outer scopes.

Auto, static and extern declarations make explicit assignments to the appropriate struc-
ture.

In these terms it can be said that an un-adorned identifier in an expression is an implicit
reference to an element of the current scope structure. The inheritance and name hiding
of the variable scope mechanism is a product of the super chain. But there is a difference
in the handling of undefined entries. Whereas normal lookup of undefined entries in a
structure produces a default value of NULL or implicit creation, the implicit lookup of un-
defined variables triggers an attempt to dynamically load a library to define the variable
(seeUndefined variables and dynamic loadibglow), and failing that, produce an error
(“%s undefined”).

The functionscopecan be used to obtain the current scope structure; and to set it (use with
care).

Note that when there is an atomic structure in the scope chain the mechanism described
at the end of the previous section does not operate correctly. Writing to a variable in the
atomic struct will give a spurious undefined error rather than lodging it in the base struc-
ture. This is a deficiency which will be corrected in a later release.

Pointers

Pointers are references to storage locations. Storage locations are the elements of any-
thing which can be indexed. Thatis, array elements, set elements, struct elements and oth-
ers (which we will see below) can be pointed to. Variables (which are just struct
elements) can be pointed to. In more general terms, any Ivalue can be pointed to.

The& operator is used to obtain a pointer to a location. Thus if the following were exe-
cuted:

static X;
staticy = [array 1, 2, 3];

ICI Technical Description Page33 of 88 Last Updated: October 18, 1999



static pl = &x;
static p2 = &y[1];

The variablgplwould be a pointer ta and the variablep2 would be a pointer to the sec-
ond element of. Reference to the object a pointer points to can be obtained with the
operator. Thus if the following were executed:

*pl = 123;
*p2 = 456;
printf("x = %d, y[1] = %d\n", X, y[1]);

the output would be:
X =123, y[1] = 456

Pointers are really a bundle of two objects, one is the object pointed into, the other is the
key used to access the location in question. For instance, in the examplep@verem-

bers the array, and the number 1; that is, the aggregate and the index. The generation of
a pointer does not affect the location being pointed to. In fact the location may not even
exist yet. When a pointer is referenced the same operation takes place as if the location
was referenced explicitly. Thus a search down the super chain of a struct may occur, or
an array may be extended to include the index being written to, etc.

In addition to simple indirection (that is theoperator), pointers may be indexed. But the
index values must be an integer, and the key stored as part of the pointer must also be an
integer. When a pointer is indexed, the index is added to the key which is stored as part
of the pointer, the sum forms the actual index to use to when referencing the aggregate
recorded by the pointer. For instance, continuing the example above:

p2[1] = 789;

would set the last element of the array to 789, because the pointer currently references el-
ement 1, and the givenindexis 1, and 1 + 1 is 2 which is the last element. The index arith-
metic provided by pointers will work with any types, as long as the indexes are integers,
thus:

static s = [struct (20) = 1, (30) = 2, (40) = 3];
static p = &s[30];

p[-10] = -1;
p[0] = -2;
p[10] = -3;

Would replace each of the elements in the s8bgttheir negative value.

This concludes the general discussion of ICI as a whole. We will now examine the exact
nature of each of the data types, then each of the expression operators, and finally each of
the standard functions.

Data types

ICI supports a base set of standard data types. Each is identified by a simple name. In

ICI Technical Description Page34 of 88 Last Updated: October 18, 1999



summary these are:

array An ordered sequence of other objects.
file An open file reference.

float A double precision floating point number.
func A function.

int A signed 32 bit integer.

mem References to raw machine memory.

ptr A reference to a storage location.

regexp A compiled regular expression.

set An unordered collection of other objects.
string An ordered sequence of 8 bit characters.
struct An unordered set of pairs of objects.

A full explanation of the semantics of each type (including the semantics of indexing an
object of that type) will be included in a future version of this document.

Operators

The following table details each of the unary and binary operators with all of the types
they may be applied to. Within the first column the standard type names are used to stand
for operands of that type, along wahyto mean any type anmiimto mean aint or a

float. In general, where aint and afloat are combined in an arithmetic operation, the

is first converted to #oat and then the operation is performed.

The following table is in precedence order.

*ptr Indirection: The result references the thing the pointer points to.
The result is an Ivalue.

&any Address of: The result is a pointeraoy. If anyis an Ivalue the
pointer references that storage locatiorarfis not an Ivalue but
is atermother than a bracketed naerm, as described in the syn-
tax above, a one element array contairamy will be fabricated
and a pointer to that storage location returned. For example:

p=&1;

sets p to be a pointer to the first element of an un-named array,
which currently contains the number 1.

-num Negation: Returns the negationrafm The result is the same
type as the argument. The result is not an lvalue.

+any Has no effect except the result is not an Ivalue.

lany Logical negation: Ianyis O (integer) or NULL, 1 is returned, else
0 is returned.

~int Bit-wise complement: The bit-wise complementmfis returned.

ICI Technical Description Page35 of 88 Last Updated: October 18, 1999



++any

--any

@any

$any

any++

any--

anyl@ any2

numl1* num?2

setl* set2

numl1/ num2

intl % int2

numl+ num?2

ICI Technical Description

Pre-increment: Equivalent fany+= 1). anymust be an Ilvalue
and obey the restrictions of the binarpperator. See below.

Pre-decrement: Equivalent any-= 1). any must be an Ivalue
and obey the restrictions of the binargperator. Seebelow.

Atomic form of: Returns the unique, read-only formaaf. If
anyis already atomic, it is returned immediately. Otherwise an
atomic form ofanyis found or generated and returned; this is of
execution time order equal to the number of elemenésiypn See
the section on objects above for more explanation.

Immediate evaluation: Recognised by the parser. The sub-ex-
pressioranyis immediately evaluated by invocation of the exe-
cution engine. The result of the evaluation is substituted directly
for this expression term by the parser.

Post-increment: Notes the value of any, then performs the equiv-
alent of(any+= 1), except any is only evaluated once, and finally
returns the original noted value. any must be an Ivalue and obey
the restrictions of the binaryoperator. See below.

Post-increment: Notes the value of any, then performs the equiv-
alent of(any-= 1), except any is only evaluated once, and finally
returns the original noted value. any must be an lvalue and obey
the restrictions of the binaryoperator. Seebelow.

Form pointer: Returns a pointer object formed from its operands
with the pointer’s aggregate being set framyland the pointer’s
key fromany2

Multiplication: Returns the product of the two numbers, if both
nums are ints, the result is int, else the result is float.

Set intersection: Returns a set that contains all elements that ap-
pear in bottsetlandset2

Division: Returns the result of dividingumlby num2 If both

numbers are ints the result is int, else the result is floatni2
is zero the errodivision by Os generated, ativision by 0.0f the
result would have been a float.

Modulus: Returns the remainder of dividimgl by int2. If int2
is zero the erromodulus by Os generated.

Addition: Returns the sum efumlandnum?2 If both numbers
areints the result isnt, else the result #oat.

Page36 of 88 Last Updated: October 18, 1999



ptr +int

stringl + string2

arrayl + array?2

structl+ struct?

setl+ set?

numl- num2

setl- set2

ptrl - ptr2

intl >>int2

intl << int2

ICI Technical Description

Pointer additionptr must point to an element of an indexable ob-
ject whose index is aimt. Returns a new pointer which points to

an element of the same aggregate which has the index which is the
sum ofptr's index andnt. The arguments may be in any order.

String concatenation: Returns the string which is the concatena-
tion of the characters @ftringlthenstring2 The execution time
order is proportional to the total length of the result.

Array concatenation: Returns a new array which is the concatena-
tion of the elements frorarraylthenarray2. The executiontime
order is proportional to the total length of the result. Note the dif-
ference between the following:

a += [array 1];
push(a, 1);

In the first case a is replaced by a newly formed array which is the
original array with one element added. Butin the second case the
pushfunction (see below) appends an element to the arafers

to, without making a new array. The second case is much faster,
but modifies an existing array.

Structure concatenation: Returns a new struct which is a copy of
structl, with all the elements atruct2assigned into it. Obeys

the semantics of copying and assignment discussed in other sec-
tions with regard to super structs.. The execution time order is
proportional to the sum of the lengths of the two arguments.

Set union: Returns a new set which contains all the elements from
both sets. The execution time order is proportional to the sum of
the lengths of the two arguments.

Subtraction: Returns the result of subtractmgn2from num1 If
both numbers are ints the resuling else the result #oat.

Set subtraction: Returns a new set which contains all the elements
of set] less the elements s&t2 The execution time order is pro-
portional to the sum of the lengths of the two arguments.

Pointer subtractiorptrl andptr2 must point to elements of in-
dexable objects whose indexs arts. Returns amt which is the
the index ofptrl less the index gbtr2.

Right shift: Returns the result of right shiftimgt1 by int2. Equiv-
alent to division by 2*int2. intl is interpreted as a signed quan-
tity.

Left shift: Returns the result of left shiftingtl by int2. Equiva-
lent to multiplication by 2*int2.

Page37 of 88 Last Updated: October 18, 1999



array <<int

numil< num?2

setl< set?

stringl < string2

ptrl < ptr2

Left shift array: Returns a new array which contains the elements
of array from indexint onwards. Equivalent to the function call
interval(array, int)(which is considered preferable, this operator
may disappear in future releases).

Numeric test for less than: Returns hufm1lis less thamum?2
else 0.

Test for subset: Returns 1sétlcontains only elements that are
in set? else O.

Lexical test for less than: Returns Kifinglis lexically less than
string2, else 0.

Pointer test for less tharptrl andptr2 must point to elements of
indexable objects whose indexes mnts. Returns 1 ijptrl points
to an element with a lesser index timr®, else 0.

The>, <= and>= operators work in the same fashiongsbove. For sets > tests for one

set being a superset of the other. €reand>= operators test for proper sub- or super-

sets. That is one set can contain only those elements contained in the other set but cannot
be equal to the other set.

anyl==any2

anyl!= any?2

string ~regexp

string I~ regexp

string ~~regexp

ICI Technical Description

Equality test: Returns 1 dinylis equal toany?2 else 0. Two ob-
jects are equal when: they are the same object; or they are both
arithmetic (nt andfloat) and have equivalent numeric values; or
they are aggregates of the same type and all the sub-elements are
the same objects.

Inequality test: Returns 1 &nylis not equal tany2 else 0. See
above.

Logical test for regular expression match: Returnsstrihg can
be matched byegexp else 0. The arguments may be in any or-
der.

Logical test for regular expression non-match: Returnssfrimg
can not be matched bggexp else 0. The arguments may be in
any order.

Regular expression sub-string extraction: Returns the sub-string
of stringwhich is matched by the first bracket enclosed portion of
regexp or NULL if there is no match oregexpdoes not contain

a (...) portion. The arguments may be in any order. For example,
a "basename" operation can be performed with:

argv[0] ~~= #(["/]")$#,

Page38 of 88 Last Updated: October 18, 1999



string ~~~regexp Regular expression multiple sub-string extraction: Returns an ar-
ray of the the sub-strings string which are matched by the (...)
enclosed portions aegexp or NULL if there is no match. The
arguments may be in any order.

intl & int2 Bit-wise and: Returns the bit-wise andifl andint2.

intl ~ int2 Bit-exclusive or: Returns the bit-wise exclusive oimti and
int2.

intl | int2 Bit-wise or: Returns the bit-wise or witl andint2.

anyl&& any2 Logical and: Evaluates the expression which determamgd, if
this evaluates to O or NULL (i.¢alse), 0 is returned, elsany2is
evaluated and returned\ote that ifanyldoes not evaluate to a
true value, the expression which determiaeg2is never evalu-
ated.

anyl||any2 Logical or: Evaluates the expression which determamgd, if
this evaluates to other than O or NULL (ieee), 1 is returned,
elseany?2is evaluated and returned. Note thatrif/1does not
evaluate to &alsevalue, the expression which determiresy2is
never evaluated.

anyl? any2: any3 Choice: Ifanylis neither O or NULL (i.etrue), the expression
which determinesanyZ2is evaluated and returned, else the expres-
sion which determineany3is evaluated and returned. Only one
of any2andany3are evaluated. The result may be an Ivalue if the
returned expression is. Thus:

flag ? a: b = value

is a legal expression and will assigalueto eithera or b depend-
ing on the state dfag.

anyl=any?2 Assignment: Assignany2to anyl anylmust be an Ivalue. The
behavior of assignment is a consequence of aggregate access as
discussed in earlier sections. In short, an Ivalue (in thisaag®
can always be resolved into an aggregate and an index into the ag-
gregate. Assignment sets the element of the aggregate identified
by the index tany2 The returned result of the whole assignment
is anyl, after the assignment has been performed.

The result is an Ivalue, thus:
++(a=b)

will assignb to a and then incrememtby 1.

5.Note that this is different from C where the result is always completely resolved to a 0 or 1. Use !! to force
a 0/1 value from a generic true/false.

ICI Technical Description Page39 of 88 Last Updated: October 18, 1999



Note that assignment operators (this and following ones) associ-
ate right to left, unlike all other binary operators, thus:

a=b+=c-=d

Will subtractd from c, then add the result to, then assign the fi-
nal value tca.

+= -= *= [= Op= >>= <<= &= "= |: —~—

Compound assignments: All these operators are defined by the re-
writing rule:

anyl op= any2
is equivalent to:
anyl=anyl op any2

except thatinylis not evaluated twice. Type restrictions and the
behavior orop will follow the rules given with that binary opera-
tor above. The result will be an Ivalue (as a consequence of
above). There are no further restrictions. Thus:

a = "Hello";
a +="world.\n";

will result in the variable referring to the string:
"Hello world.\n".

anyl<=>any2 Swap: Swaps the current valuesamlylandany2 Both operands
must be Ivalues. The resultasylafter the swap and is an Ivalue,
as in other assignment operators. Also like other assignment op-
erators, associativity is right to left, thus:

a<=>b<=>c<=>d

rotates the values af b andc towardsd and bringsd's original
value back ta.

anyl, any2 Sequential evaluation: Evaluatasyl, thenany2 The result is
any2and is an Ivalue iny2is. Note that in situations where com-
ma has meaning at the top level of parsing an expression (such as
in function call arguments), expression parsing precedence starts
at one level below the comma, and a comma will not be recog-
nised as an operator. Surround the expression with brackets to
avoid this if necessary.

Standard functions

The following list summarises the standard functions. Following this is a detailed de-

ICI Technical Description Page40 of 88 Last Updated: October 18, 1999



scriptions of each of them.

float|int = abs(float|int)
float = acos(number)
mem = alloc(inf, int])
array = array(any...)
float = asin(number)
any = assign(struct, any, any)
float = atan(number)
float = atan2(number, number)
any = call(func, array)
float = ceil(number)
close(file)
any = copy(any)
float = cos(number)
file = currentfile()
del(struct, any)
int = eg(any, any)
int = eof(file)
eventloop()
exit([int|stringNULL ])
float = exp(number)
array = explode(string)
fail(string)
any = fetch(struct, any)
float = float(any)
float = floor(number)
int = flush(file)
float = fmod(number, number)
file = fopen(string, string)
flush(file])
string = getchaifile])
string = getfile[file])
string = getlingffile])
string = getenv(string)
string = gettokerjfile|string[,strind] )
array = gettokengfile|string[,string[,strind]] )
string = gsub(string, regexp, string)
string = implode(array)
struct = include(string, struct)
int = int(any)
stringarray = interval(strinarray, int[, int])
int = isatom(any)
array = keys(struct)
float = log(number)
float = log10(number)
mem = mem(int, inf,int])
file = mopen(strind, string)

ICI Technical Description Page4l of 88 Last Updated: October 18, 1999



int = nels(any)
int|/float = num(stringjint|float)
struct = parse(filstring[, struct)
any = pop(array)
file = popen(strind, string)
float = pow(number, number)
printf([file,] string[, any..])
any = push(array, any)
put(string)
putenv(stringd, string)
int = rand(int])
reclaim()
regexp = regexp(string)
regexp = regexpi(string)
remove(string)
struct = scopégétruci)
int = seek(file, int, int)
set = set(any...)
float = sin(humber)
int = sizeof(any)
array = smash(string, string)
file = sopen(string, strind)
sort(array, func)
string = sprintf(strind, any..])
float = sqrt(number)
string = string(any)
struct = struct(any, any...)
string = sub(string, regexp, string)
struct = super(strugt struct)
int = system(string)
float = tan(number)
string = tochar(int)
int = toint(string)
any = top(array, int])
int = trace(string)
string = typeof(any)
array = vstack()
file|int|/float = waitfor(file|int|float...)

The following is an alphabetic listing of each of the standard functions.

float|int = abs(float|int)

Returns the absolute value of its argument. The result is an int if the argument is an int, a
float if it is a float.

angle = acos(x)

Returns the arc cosine »in the range 0 to pi.

ICI Technical Description Page42 of 88 Last Updated: October 18, 1999



mem = alloc(nwords [, wordz])
Returns a newnemobject referring taiwords(an int) of newly allocated and cleared
memory. Each word is either 1, 2, or 4 bytes as specifi®ebbyz (an int, default 1).
Indexing ofmemobjects performs the obvious operations, and thus pointers work too.
array = array(any...)
Returns an array formed from all the arguments. For example:

array()
will return a new empty array; and

array(1, 2, "a string")

will return a new array with three elemerits2, and"the string".

This is the run-time equivalent of the array literal. Thus the following two expressions are
equivalent:

$array(1, 2, "a string")
[array 1, 2, "a string"]

float = asin(x)

Returns the arc sine &fin the range -pi/2 to pi/2.

value = assign(struct, key, value)

Sets the element sfructidentified bykeyto valug ignoring any super struct. Returns
value

angle = atan(x)

Returns the arc tangentxfin the range -pi/2 to pi/2.

angle = atan2(y, x)

Returns the angle from the origin to the rectangular coordinatgfloats ) in the range
-pi to pi.

return = call(func, args)

Calls the functiorfuncwith arguments taken from the arraggs Returns the return value
of the function.

This is often used to pass on an unknown argument list. For example:

static
db()

{

auto vargs;

ICI Technical Description Page43 of 88 Last Updated: October 18, 1999



if (debug)
return call(printf, vargs);

}

new = copy/(old)

Returns a copy ajld. If old is an intrinsically atomic type such as an int or string, the
newwill be the same object as the old. Bubiflis an array, set, or struct, a copy will be
returned. The copy will be a new non-atomic object (eveaidiwas atomic) which will
contain exactly the same objectsddand will beequalto it (that is==). If oldis a struct

with a super struchewwill have the same super (exactly the same super, not a copy of it).

X = cos(angle)

Returns the cosine ahgle(a float interpreted in radians).

file = currentfile()

Returns the file associated with the innermost parsing context, or NULL if there is no
module being parsed.

This function can be used to include data in a program source file which is out-of-band
with respect to the normal parse stream. But to do this it is necessary to know up to what
character in the file in question the parser has consumed.

In general: after having parsed any simple statement the parser will have consumed up to
and including the terminating semicolon, and no more. Also, after having parsed a com-
pound statement the parser will have consumed up to and including the terminating close
brace and no more. For example:

static help = gettokens(currentfile(), ™, "!")[0]

;This is the text of the help message.

It follows exactly after the ; because

that is exactly up to where the parser

will have consumed. We are using the
gettokens() function (as described below)

to read the text.
I

static otherVariable = "etc...";

This function can also be used to parse the rest of a module within an error catcher.
For example:
try
parse(currentfile(), scope())
onerror
printf("That didn't work, but never mind.\n");

static this = that;
etc();

ICI Technical Description Page44 of 88 Last Updated: October 18, 1999



The functionsparseandscopeare described below.

del(struct, key)

Deletes the element efructidentified bykey Any super structs are ignored. Returns
NULL. For example:

statics =[structa=1,b=2,¢c=3];
static v, k;
forall (v, kin s)
printf("%s=%d\n", k, v);
del(s, "b");
printf("\n");
forall (v, kin s)
printf("%s=%d\n", Kk, v);

When run would produce (possibly in some other order):

T
N W

a
c

1
3
int = eof([file])

Returns non-zero if end of file has been readitm If file is not given the current value
of stdinin the current scope is used.

eq(obj1, obj2)

Returns 1 (one) ibbj1 andobj2 are the same object, else 0 (zero).

evetloop()

Enters an internal event loop and never returns (but can be broken out of with an error).
The exact nature of the event loop is system specific. Some dynamically loaded modules
require an event loop for their operation.

exit([string|int|NULL])

Causes the interpreter to finish execution and exit. If no parameter, the empty string or
NULL is passed the exit status is zero. If an integer is passed that is the exit status. If a
non-empty string is passed then that string is printed to the interpreter’s standard error out-
put and an exit status of one used. This is implementation dependent and may be replaced
by a more general exception mechanism. Avoid.

float = exp(x)

Returns the exponential function>of

array = explode(string)
Returns an array containing each of the integer character codes of the charastténg.in

ICI Technical Description Page45 of 88 Last Updated: October 18, 1999



fail(string)
Causes an error to be raised with the messagey associated with it. See the section of
error handling in théry statement above. For example:

if (gf > 255)
fail(sprintf("Q factor %d is too large", gf));

value = fetch(struct, key)
Returns thevaluefrom structassociated witkey, ignoring any super structs. Returns
NULL is keyis not an element aftruct
value = float(x)
Returns a floating point interpretationxfor 0.0 if no reasonable interpretation exists.
should be an int, a float, or a string, else 0.0 will be returned.
file = fopen(name[, moddg)

Opens the named file for reading or writing accordingntaleand returns a file object
that may be used to perform I/O on the fildodeis the same as in C and is passed directly
to the C libraryfopen function. If mode is not specifiéd’ is assumed.

fprintf(file, fmt, args...)

Formats a string based émtandargsas peisprintf(below) and outputs the resultfite.
Seesprintf. Changes to ICI’s printf have made fprintf redundant and it may be re-
moved in future versions of the interpreter. Avoid.

string = getchar([file])

Reads a single character frdile and returns it as a string. Returns NULL upon end of
file. If file is not given the current value stidinin the current scope is used.

string = getfile([file])

Reads all remaining data frofie and returns it as a string. Returns an empty string upon
end of file. Iffile is not given the current value sidinin the current scope is used.

string = getline([file])

Reads a line of text frorfile and returns it as a string. Any end-of-line marker is removed.
ReturndNULL upon end of file. Iffile is not given the current value efdinin the current
scope is used.

string = gettoken([file [, seps]])
Read a token (that is, a string) frdihe.

Seps must be a string. Itis interpreted as a set of characters which do not from part of the
token. Any leading sequence of these characters is first skipped. Then a sequence of

characters not in seps is gathered until end of file or a character from seps is found. This
terminating character is not consumed. The gathered string is returned, or NULL if end
of file was encountered before any token was gathered.

ICI Technical Description Page46 of 88 Last Updated: October 18, 1999



If file is not given the current value stdinin the current scope is used.
If sepsis not given the string " \t\n" is assumed.

array = gettokens([file [, seps [, terms]]])

Read tokens (that is, strings) frdite. The tokens are character sequences separated by
sepsand terminated bierms Returns an array of strings, NULL on end of file.

If sepsis a string, it is interpreted as a set of characters, any sequence of which will sep-
arate one token from the next. In this case leading and trailing separators in the input
stream are discarded.

If sepgs aninteger itis interpreted as a character code. Tokens are taken to be sequences
of characters separated by exactly one of that character.

Terms must be a string. It is interpreted as a set of characters, any one of which will ter-
minate the gathering of tokens. The character which terminated the gathering will be con-
sumed.
If file is not given the current value stidinin the current scope will be used.
If sepsis not given the string " \t" is assumed.
If termsis not given the string "\n" is assumed.
For example:
forall (token in gettokens(currentfile()))
printf("<%s>", token)
; This ismyline of data.
printf("\n");
when run will print:
<This><is><my><line><of><data.>
Whereas:
forall (token in gettokens(currentfile(), "', "*"))
printf("<%s>", token)
;:abc::def:.ghi:*
printf("\n");
when run will print:

<><abc><><def><ghi><>

string = gsub(string, string|regexp, string)

gsub performs text substitution using regular expressions. It takes the first parameter,

ICI Technical Description Page47 of 88 Last Updated: October 18, 1999



matches it against the second parameter and then replaces the matched portion of the
string with the third parameter. If the second parameter is a string it is converted to a reg-
ular expression as if the regexp function had been called. Gsub does the replacement mul-
tiple times to replace all occurrances of the pattern. It returns the new string formed by the
replacement. If there is no match this is original string. The replacement string may con-
tain the special sequence “\&” which is replaced by the string that matched the regular ex-
pression. Parenthesized portions of the regular expression may be matched by using \
wheren is a decimal digit.

string = implode(array)

Returns astring formed from the concatenation of elementaméy. Integers in thar-

ray will be interpreted as character codes; strings in the array will be included in the con-
catenation directly. Other types are ignored.

struct = include(string [, scope])

Parses the code contained in the file named by the string into the scope. If scope is not
passed the current scope is used. Include always returns the scope into which the code was
parsed. The file is opened by calling the current definition of the ICI fopen() function so
path searching can be implemented by overriding that function.

value = int(any)

Returns an integer interpretationxgfor O if no reasonable interpretation existshould
be an int, a float, or a string, else 0 will be returned.

subpart = interval(str_or_array, start [, length])

Returns a sub-interval str_or_array, which may be either a string or an array.

If start (an integer) is positive the sub-interval starts at that offset (offset O is the first el-
ement). Ifstartis negative the sub-interval starts that many elements from the end of the
string (offset -1 is the last element, -2 the second last etc).

If lengthis absent, all the elements from thi@artare included in the interval. Otherwise
that many elements are included (or till the end, whichever is smaller).

For example, the last character in a string can be accessed with:
last = interval(str, -1);

And the first three elements of an array with:
first3 = interval(ary, 0, 3);

iIsatom(any)

Return 1 (one) iinyis an atomic (read-only) object, else O (zero). Note that integers,
floats and strings are always atomic.

array = keys(struct)

Returns an array of all the keys frastruct The order is not predictable, but is repeatable

ICI Technical Description Page48 of 88 Last Updated: October 18, 1999



if no elements are added or deleted from the struct between calls and is the same order as
taken by dorall loop.
float = log(x)

Returns the natural logarithm »{a float).

float = 1og10(x)
Returns the log base 10>ofa float).

mem = mem(start, nwords [, wordz])

Returns a memory object which refers to a particular area of memory in the ICl interpret-
er's address space. Note that this is a highly dangerous operation. Many implementations
will not include this function or restrict its use. It is designed for diagnostics, embedded
systems and controllers. See #tlec function above.

file = mopen(mem [, mode])

Returns dile, which when read will fetch successive bytes from the gimemory object
The memory object must have an access size of onaa(keEemndmemabove). The file
is read-only and thmode if passed, must be one‘of or*“rb” .

int = nels(any)

Returns the number of elementsany. The exact meaning depends on the typarof
If anyis an:

array the length of the array is returned; if it is a

struct the number of key/value pairs is returned; if it is a

set the number of elements is returned; if it is a

string the number of characters is returned; and if it is a

mem the number of words (either 1, 2 or 4 byte quantities) is returned,;
and if it is anything else, one is returned.

number = num(x)

If xis anint or float, it is returned directly. Kis a string it will be converted to an int or

float depending on its appearance; applying octal and hex interpretations according to the
normal ICI source parsing conventions. (Thatis, if it starts with a Ox it will be interpreted
as a hex number, else if it starts with a 0 it will be interpreted as an octal number, else it
will be interpreted as a decimal number.)

If x can not be interpreted as a number the éf®is not a numbds generated.

scope = parse(source [, scope])

Parsesourcein a new variable scope, ors€ope(a struct) is supplied, in that scope.
Sourcemay either be a file or a string, and in either case it is the source of text for the

ICI Technical Description Page49 of 88 Last Updated: October 18, 1999



parse. If the parse is successful, the variables scope structure of the sub-module is re-
turned. If an explicit scope was supplied this will be that structure.

If scopds not supplied a new struct is created for the auto variables. This structure in turn
IS given a new structure as its super struct for the static variables. Finally, this structure's
super is set to the current static variables. Thus the static variables of the current module
form the externs of the sub-module.

If scopeis supplied it is used directly as the scope for the sub-module. Thus the base
structure will be the struct for autos, its super will be the struct for statics etc.

For example:
static x = 123;
parse("static x = 456;", scope());
printf("x = %d\n", x);
When run will print:
X = 456
Whereas:
static x = 123;
parse("static x = 456;");
printf("x = %d\n", x);
When run will print:
X =123
Note that while the following will work:
parse(fopen("my-module.ici));

It is preferable in a large program to use:

parse(file = fopen("my-module.ici"));
close(file);

In the first case the file will eventually be closed by garbage collection, but exactly when
this will happenis unpredictable. The underlying system may only allow a limited number
of simultaneous open files. Thus if the program continues to open files in this fashion a
system limit may be reached before the unused files are garbage collected.

any = pop(array)

Returns the last element afray and reduces the length afray by one. If the array was
empty to start with, NULL is returned.

ICI Technical Description Page50 of 88 Last Updated: October 18, 1999



file = popen(string,[flags])

Executes a new process, specified as a shell command line as $ysteafunction, and
returns a file that either reads or writes to the standard input or output of the process ac-
cording tomode If mode is“r” the reading from the file reads from the standard output

of the process. If mode fsv” writing to the file writes to the standard input of the process.

If mode is not speicified it defaults td' .

float = pow(x, y)
Returnsx*ywhere bottx andy are floats.

printf( [file,] fmt, args...)

Formats a string based émtandargsas persprintf (below) and outputs the result to the
file or to the current value of thr@doutvariable in the current scope if the first parameter
is not a file. The current stdout must be a file. §eentf.

any = push(array, any)

Appendsanyto array, increasing its length in the process. Retams

put(string [, file])

Outputs string tdile. If file is not passed the current valuestifoutin the current scope
Is used.

int = rand([seed])

Returns an pseudo random integer in the range 0..0x7FReet{an int) is supplied the
random number generator is first seeded with that number. The sequence is predictable
based on a given seed.

reclaim()

Force a garbage collection to occur.

re = regexp(string [, int])

Returns a compiled regular expression derived stimg This is the method of gener-
ating regular expressions at run-time, as opposed to the direct lexical form. For example,
the following three expressions are similar:

str ~ #*\.c#
str ~ regexp("*\\.c");
str ~ $regexp("*\.c");

except that the middle form computes the regular expression each time it is executed.
Note that when a regular expression includes a # characteggrefunction must be
used, as the direct lexical form has no method of escaping a #.

The optional second parameter is a bit-set that controls various aspects of the compiled
regular expression’s behaviour. This value is passed directly to the PCRE package’s reg-
ular expression compilation function. Presently no symbolic names are defined for the
possible values and interested parties are directed to the PCRE documention included

ICI Technical Description Page51 of 88 Last Updated: October 18, 1999



with the ICI source code.

Note that regular expressions are intrinsically atomic. Also note that non-equal strings
may sometimes compile to the same regular expression.

re = regexpi(string [, int])

Returns a compiled regular expression derived fsting that is case-insensitive. l.e.,

the regexp will match a string regardless of the case of alphabetic characters. Literal reg-
ular expressions to perform case-insensitive matching may be constructed using the spe-
cial PCRE notation for such purposes, see page 75.

remove(string)

Deletes the file whose name is giversinng.

current = scope([replacement])

Returns the current scope structure. This is a struct whose base element holds the auto
variables, the super of that hold the statics, the super of that holds the externs etc. Note
that this is a real reference to the current scope structure. Changing, adding and deleting
elements of these structures will affect the values and presence of variables in the current
scope.

If a replacemenis given, that struct replaces the current scope structure, with the obvious
implications. This should clearly be used with caution. Replacing the current scope with
a structure which has no reference to the standard functions also has the obvious effect.

int = seek(file, int, int)

Set the input/output position for a file and returns the new I/O position or -1 if an error
ocurred. The arguments are the same as for the C librisgekfunction. If the file object
does not support setting the I/O position or the seek operation fails an error is raised.

set = set(any...)
Returns a set formed from all the arguments. For example:

set()
will return a new empty set; and
set(1, 2, "a string")
will return a new set with three elemerits?, and"the string".

This is the run-time equivalent of the set literal. Thus the following two expressions are
equivalent:

$set(1, 2, "a string")

[set 1, 2, "a string"]

ICI Technical Description Page52 of 88 Last Updated: October 18, 1999



X = sin(angle)

Returns the sine @ngle(a float interpreted in radians).

int = sizeof(any)

Sizeof is the old name of timelsfunction (described above).
file = sopen(string[, modd)

Returns dile, which when read will fetch successive characters from the gitrerg. The
file is read-only and theode if passed, must be one‘of or“rb” .

Files are, in general, system dependent. This is the only standard routine which opens a
file. But on systems that support byte stream files, the funfdmemwill be set to the

most appropriate method of opening a file for general use. The interpretatneit

largely system dependent, but the strifis"w", and"rw" should be used for read, write,

and read-write file access respectively.

sort(array, func)

Sort the content of the array using the heap sort algorithm with func as the comparison
function. The comparison function is called with two elements of the array as parameters,
aandb. If ais equal tdb the function should return zero.dfis less tharb, -1, and ifais
greater that, 1.

For example,

static cmp(a, b)
{
if (a==Db)
return O;
if (a<b)
return -1;
return 1;

}
static a = array(1, 3, 2);

sort(a, cmp);

string = sprintf(fmt, args...)

Return a formatted string basedfart (a string) andrgs Most of the usual % format
escapes of ANSI C printf are supported. In particular; the integer format leitarsXc

are supported, but if a float is provided it will be converted to an int. The floating point
format letterdeEgGare supported, but if the argument is an int it will be converted to a
float. The string format lettesis supported and requires a string. Finally %aéormat

to get a singléo works.

The flags, precision, and field width options are supported. The indirect field width and
precision options withi also work and the corresponding argument must be an int.

ICI Technical Description Page53 of 88 Last Updated: October 18, 1999



For example:
sprintf("%08X <%4s> <%-4s>", 123, "ab", "cd")
will produce the string:
0000007B < ab><cd >
and
sprintf("%0*X", 4, 123)
will produce the string:
007B

x = sqgrt(float)
Returns the square root fbdat.

string = string(any)

Returns a short textual representatioamy. If anyis an int or float it is converted as if
by a%d or %gformat. Ifitis a string itis returned directly. Any other type will returns
its type name surrounded by angle brackets, gsthuct>.

struct = struct([super,] key, value...)

Returns a new structure. This is the run-time equivalent of the struct literal. If there are
an odd number of arguments the first is used as the super of the new struct; it must be a
struct. The remaining pairs of arguments are treated as key and value pairs to initialise
the structure with; they may be of any type. For example:

struct()
returns a new empty struct;

struct(anotherStruct)
returns a new empty struct which leastherStrucas its super;

struct("a", 1, "b", 2)
returns a new struct which has two entaesdb with the valued and2; and

struct(anotherStruct, "a", 1, "b", 2)

returns a new struct which has two entreegndb with the valuesl and2 and a super of
anotherStruct

Note that the super of the new struct isakérthe assignments of the new elements have
been made. Thus the initial elements given as arguments will not affect values in any su-
per struct.

ICI Technical Description Page54 of 88 Last Updated: October 18, 1999



The following two expressions are equivalent:
$struct(anotherStruct, "a", 1, "b", 2)
[struct:anotherStruct, a = 1, b = 2]

string = sub(string, string|regexp, string)

Sub performs text substitution using regular expressions. It takes the first parameter,
matches it against the second parameter and then replaces the matched portion of the
string with the third parameter. If the second parameter is a string it is converted to a reg-
ular expression as if the regexp function had been called. Sub does the replacement once
(unlike gsub). It returns the new string formed by the replacement. If there is no match
this is original string. The replacement string may contain the special sequence “\&”
which is replaced by the string that matched the regular expression. Parenthesized por-
tions of the regular expression may be matched by usiwéren is a decimal digit.

current = super(struct [, replacement])

Returns the current super structsbfuct and, ifreplacemenis supplied, sets it to a new
value. Ifreplacemenis NULL any current super struct reference is cleared (that is, after
this structwill have no super).

X = tan(angle)

Returns the tangent ahgle(a float interpreted in radians).

foat = now()

Returns the current time expressed as a signed float time in seconds since 0:00, 1st Jan
2000 UTC.

float|struct = calendar(struct|float)

Converts between calendar time and airthmetic time. An arithmetic time is expressed as
a signed float time in seconds since 0:00, 1st Jan 2000 UTC. The calendar time is ex-
pressed as a structure with fields revealing the local (including current daylight saving ad-
justment) calendar date and time. Fields in the calendar structure are:

second The float number of seconds after the minute.

minute The int number of minutes after the hour.

hour  The int number of hours since midnight.

day The day of the month (1..31).

month The int month number, Jan is O.

year  The int year.

wday The day since Sunday (0..6)

yday Days since 1st Jan.

ICI Technical Description Page55 of 88 Last Updated: October 18, 1999



When converting from a local calendar time to an arithmetic time, the etdsin,
hour, mday mon yearare used. They need not be restricted to their nomal ranges.

string = tochar(int)

Returns a one character string made from the character code specified by

int = toint(string)

Returns the character code of the first charactstriofg.

string = typeof(any)

Returns the type name (a stringlaofy. See the section on types above for the possible
type names.

array = vstack()

Returns a representation of the call stack of the current program at the time of the call. It
can be used to perform stack tracebacks and related debugging operations. The result is
an array of structures, each of which is a variable scopes(sg® structure of succesive-

ly deeper nestings of the current function nesting.

event = waitfor(event...)

Blocks (waits) until areventindicated by any of its arguments occurs, then returns that
argument. The interpretation of an event depends on the nature of each argument. A file
argument is triggered when input is available on the file. A float argument waits for that
many seconds to expire, an int for that many millisecond (they then return 0, not the ar-
gument given). Other interpretations are implementation dependent. Where several
events occur simultaneously, the first as listed in the arguments will be returned.

Note that in some implementations some file types may always appear ready for input,
despite the fact that they are not.

Command Line Arguments
Versions of ICI on systems that support passing parameters from the command line pro-

vide two predefined variables, argv and argc, for accessing these arguments.

On Win32 platforms ICI performs wildcard expansion in the traditional MS-DOS fashion.
Arguments containing wildcard meta-characters, ‘?” and **', may be protected by enclos-
ing them in single or double quotes.

argv

An array of strings containing the command line arguments. The first element is the name
of the ICI program and subsequent elements are the arguments passed to that program.

argc
The count of the number of elements in argv. Initially equal to nels(argv).

ICI Technical Description Page56 of 88 Last Updated: October 18, 1999



Unix System Calls

Most Unix implementation of ICI provide access to many of the Unix system calls and
other useful C library functions. Note that not all system calls are supported and those that
are may be incompletely supported (esggnal). Most system call functions return inte-
gers, zero if the call succeeded. Errors are reported using ICI’s error handling and “system
calls” will never return the -1 error return value. If an error is raised by a system call the
value of “error” in the error handler will be the error message (as printed by the perror(3)
function or returned by the ANSI C strerror() function).

To assist in the use of system calls ICI pre-defines variables to hold the various flags and
other values used when calling the system calls. These variables are equivalent to the mac-
ros used in C. Not all systems support all these variables. If the C header files do not define
a value then ICI will not pre-define the variable.

Win32 Support

The version of ICI for Microsoft’s 32-bit Windows platforms (Win32) supports many of
these functions. Functions supported on Win32 platforms (Windows 95 and Windows
NT) are marked witiWIN32. In addition some functions are only available on Win32
platforms and are marked as so.

The following list summarises the Unix system call interface pre-defined variables. See
the documentation for the C macros for information as to their use.

Values for open’$lags parameter,

O_RDONLY
O_WRONLY

O_RDWR

O_APPEND

O_CREAT

O_TRUNC

O_EXCL

O_SYNC

O_NDELAY

O_NONBLOCK

O_BINARY (WIN32 only)

Values for spawn’snodeparameter,
_P_WAIT (WIN32 only)
_P_NOWAIT (WIN32 only)
Values for accessimodeparameter,
R_OK

W_OK

X_OK

F OK

ICI Technical Description Page57 of 88 Last Updated: October 18, 1999



Values for Iseek’svhenceparameter,

SEEK_SET
SEEK_CUR
SEEK_END

The following list summarises the system interface functions. Following this is a detailed
descriptions of each of them.

int = access(strinf, int])
int=creat(string, int)
array=dir([string,] [string,] [regexp])
int = dup(int[, int])
exec(string, array)
exec(string, string...)
int = Iseek(int, ing, int])
int= open(string, inf, int])
array= pipe()
struct = stat(string|int|file)

int = wait()
string = ctime(int)
int = time()

file= fdopen(int)

string = getcwd()
alarm(int)
acct(string)
chdir(string)
chmod(string, int)
chown(string, int, int)
chroot(string)

_close(int)
_exit(int)
int = fork()
int = getpid()

int= getpgrp()
int=getppid()

int= getuid()
int= geteuid()
int= getgid()
int= getegid()
kill(int, int)

link(string, string)
mkdir(string, int)
mknod(string, int, int)
nice(int)

pause()

rmdir(string)

ICI Technical Description Page58 of 88 Last Updated: October 18, 1999



int =
int =

setpgrp()

setuid(int)

setgid(int)

signal(int, int)

sync()

ulimit(int, int)

umask(int)

unlink(string)

clock()

system(string)

lockf(int, int, int)
sleep(int)

spawn([int, ] string, string...)
spawn([int, ] string, array)
rename(string, string)

struct = passwd(int|string)
array = passwd()

ICI Technical Description

Page59 of 88

Last Updated: October 18, 1999



int = access(string, int])

Call the access(2) function to determine the accessibility of a file. The first parameter is
the pathname of the file system object to be tested. The second, optional, parameter is the
mode(a bitwise combination of R_OK, W_OK and X_OK or the special value, F_OK).

If modeis not passed F_OK is assumed. Access returns O if the file system object is ac-
cessible. Also supported on WIN32 platforms.

int = creat(string, int)

Create a new ordinary file with the given pathname and mode (permissions etc...) and re-
turn the file descriptor, open for writing, for the file. Also supported on WIN32 platforms.

array = dir([string,] [string,] [regexp])

The dir() function is used to read the contents of directories. It returns an array of strings
being the names found in the directory. The first string parameter names a directory to
read and defaults to “.” — the current directory. The second string parameter controls
which names are returned. It may be one of “f” — return only the names of files, “d” —
return the names of sub-directories, or “a” — return the names of all objects in the direc-
tory. The regexp parameter, if passed, is used to filter the returned names. Only names that
match the regexp are returned. Note that when using dir() to traverse directory hierarchies
that the “.” and “..” names are returned when listing the names of sub-directories, these
will need to be avoided when traversing.

int = dup(int [, int])

Duplicate a file descriptor by calling dup(2) or dup2(2) and return a new descriptor. If
only a single parameter is passed dup(2) is called otherwise dup2(2) is called. Also sup-
ported on WIN32 platforms.

exec(string, array)
exec(string, string...)

Execute a new program in the current process. The first parameter to exec is the pathname
of an executable file (the program). The remaining parameters are either; an array of
strings defining the parameters to be passed to the program, or, a variable number of
strings that are passed, in order, to the program as its parameters. The first form is similar
to C’'s execv function and the second form to C’s execl functions. Note that no searching
of the user’s path is performed and the environment passed to the program is that of the
current process (i.e., both are implemented by calls to execv(2)). This function is available
on Win32 platforms

int = Iseek(int, int [, int])

Set the read/write position for an open file. The first parameter is the file descriptor asso-
ciated with the file system object, the second parameter the offset. The thircdubénee

value which determines how the new file position is calculated. The whence value may
be one of SEEK_SET, SEEK _CUR or SEEK_END and defaults to SEEK_SET if not
specified. Also supported on WIN32 platforms.

int = open(string, int [, int])

Open the named file for reading or writing depending upon the value of the second pa-

ICI Technical Description Page60 of 88 Last Updated: October 18, 1999



rameterflags and return a file descriptor. The second parameter is a bitwise combination
of the various O_ values (see above) and if this set includes the O_CREAT flag a third
parametermode must also be supplied. Also supported on WIN32 platforms.

array = pipe()

Create a pipe and return an array containing two, integer, file descriptors used to refer to
the input and output endpoints of the pipe.

struct = stat(string|int|file)

Obtain information on the named file system object, file descriptor or file underlying an
ICl file object and return a struct containing that information. If the parameter is a file ob-
ject that file object must refer to a file opened with I@den function. The returned

struct contains the following keys (which have the same names as the fields of the Unix
statbuf structure with the leading “st_" prefix removed),

dev
ino
mode
nlink
uid

gid
rdev
size
atime
mtime
ctime
blksize
blocks

All values are integers. Also supported on WIN32 platforms.

int = wait()

Wait until a signal is received or a child process terminates or stops due to tracing and
return the status returned by system call.

string = ctime(int)

Convert a time value (see time, below) to a string of the form “Sun Sep 16 01:03:52
1973\n” and return that string. This is primarily of use when converting the time values
returned by stat. Also supported on WIN32 platforms.

int = time()

Return the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. Also support-
ed on WIN32 platforms.

file = fdopen(int [, modd)

Returns a file object that can be used to perform 1/O on the specified file descriptor. The
file is opened for reading or writing accordingntode(seefopen). If mode is specified

ICI Technical Description Page61 of 88 Last Updated: October 18, 1999



“r’ (reading) is assumed.

string = getcwd()
Returns the name of the current working directory. Also supported on WIN32 platforms.

alarm(int)

Schedule a SIGALRM signal to be posted to the current process in the specified number
of seconds. If the parameter is zero any alarm is cancelled.

acct(string)

Enable accounting on the specified file.

chdir(string)

Change the process’s current working directory to the specified path. Also supported on
WIN32 platforms.

chmod(string, int)

Change the mode of a file system object.

chown(string, int, int)

Change the owner and group identifiers for a file system object.

chroot(string)
Change root directory for process.

_close(int)

Close a file descriptor. Also supported on WIN32 platforms.

_exit(int)

Exit the current process returning an integer exit status to the parent. Also supported on
WIN32 platforms.

int = fork()

Create a new process. In the parent this returns the process identifier for the newly created
process. In the newly created process it returns zero.

int = getpid()

Get the process identifier for the current process.

int = getpgrp()
Get the current process group identifier.

int = getppid()
Get the parent process identifier.

ICI Technical Description Page62 of 88 Last Updated: October 18, 1999



int = getuid()

Get the real user identifier of the owner of the current process.

int = geteuid()
Get the effective user identifier for the owner of the current process.

int = getgid()

Get the real group identifier for the current process.

int = getegid()

Get the effective group identifier for the current process.

kill(int, int)
Post a signal to a process.

link(string, string)

Create a link to an existing file.

mkdir(string, int)
Create a directory with the specified mode. Also supported on WIN32 platforms.

mknod(string, int, int)
Create a special file.

nice(int)

Change thaicevalue of a process.

pause()

Wait until a signal is delivered to the process.

rmdir(string)

Remove a directory. Also supported on WIN32 platforms.

setpgrp()
Set the process group.

setuid(int)
Set the real and effective user identifier for the current process.

setgid(int)

Set the real and effective group identifier for the current process.

signal(int, int)

Control signal handling in the process. Note at present handlers cannot be installed so sig-

ICI Technical Description Page63 of 88 Last Updated: October 18, 1999



nals are of limited use in ICI programs.

sync()
Schedule in-memory file data to be written to disk.

ulimit(int, int)

Get and set user limits.

umask(int)

Set file creation mask.

unlink(string)

Remove a file. Also supported on WIN32 platforms.

system(string)

Execute a system command and return its exit status. Also supported on WIN32 platforms
however using the system’s command interpreter.

sleep(int)

Suspend the process for the specified number of seconds.

int = spawn([mode,] string, string...)
int = spawn([mode, ] string, array)
int = spawnp([mode,] string, string...)
int = spawnp([mode, ] string, array)

Spawn a sub-process. The parameters, other than mode, are as for exec - the string is the
name of the executable and the remaining parameters form the command line arguments
passed to the executable.

The mode parameter controls whether or not the parent process waits for the spawned pro-
cess to termiante. If mode is _P_WAIT the call to spawn returns when the process termi-
nates and the result of spawn is the process exit status. If mode is not passed or is
_P_NOWAIT the call to spawn returns prior to the process terminating and the result is
the Win32 process handle for the new process.

Thespawnpvariant will search the directories listed in the PATH environment variable
for the executable program. In all other respects it is indentical to spawn.

This function is only available on Win32 platforms.

rename(string, string)

Change the name of a file. The first parameter is the name of an existing file and the sec-
ond is the new name that it is to be given.

ICI Technical Description Page64 of 88 Last Updated: October 18, 1999



struct = passwd(int | string)
array = passwd()

The passwd() function accesses the Unix password file (which may or may not be an ac-
tual file according to the local system configuration). With no parameters passwd() re-
turns an array of all password file entries, each entry is a struct. With a parameter passwd()
returns the entry for the specific user id., int parameter, or user name, string parameter. A
password file entry is a struct with the following keys and values,

name The user’s login name, a string.

passwd The user’s encrypted password, a string.
Note that some systems protect this (shadow
password files) and this field may not be an
actual encrypted password.

uid The user id., an int.

gid The user’s default group, an int.

gecos The so-called gecos field, a string.

dir The user’s home directory, a string.

shell The user’s shell (initial program), a
string.

Sockets Interface

Thesocketextension is available on systems that provide BSD-compatible sockets calls
and for Win32 platforms. The extension allows ICI programs to access network functions.
The sockets extension is generally compatible with the C sockets functions but uses types
and calling semantics more akin to the ICI environment.

The sockets extension introduces a new tgpeket to hold socket objects. The new in-
trinsic function,socket returns a socket object.

Network Addresses

The sockets interfaces specifies IP network addresses using strings. Network addresses
are of the fornport@hostwhere the @host part is optional. The port may be specified as

an integer number or a string which is looked up in the services database. If the portis a
service name it may be in the fomaméprotocolwith protocol being eithetcp or udp.

The host portion of the address may be a domain name, an IP address in dotted decimal
notation or one of the special addresses local (“.” - dot), any (“?") or all (**”). If the host
portion is omitted the default host depends on the context. See the descriptionsaithe
nectandbind functions below.

The following list summarises the sockets interface functions. Following this is a detailed
descriptions of each of them.

skt= socket(string)
skt="listen(skt)
skt=accept(skt)
skt=connect(skt, string)
skt="bind(skt, string)

struct= select([int,] set [, set [, set]])
int= getsockopt(skt, string)

ICI Technical Description Page65 of 88 Last Updated: October 18, 1999



setsockopt(skt, string, int)
string= domainname()
string=hostname()
string=username([int])
string= getpeername(skt)
string=getsockname(skt)
sendto(skt, string, string)
struct= recvfrom(skt, int)
send(skt, string)
string= recv(skt, int)
int= getportno(skt)
string= gethostbyname(string)
int=sktno(skt)
file= sktopen(skt [, mode])
array = socketpair()

skt = socket(string)

Create and return a new socket object of the specified protocol. The string, the protocol,
may be one afcp or udp. For example,

skt = socket(“tcp”);

skt = accept(skt)
Accept a connection to a TCP socket and return a new socket for that connection.

skt = listen(skt)
Allow connections to a TCP socket. Returns the socket passed.

skt = connect(skt, address)

Establish a TCP connection to the specified address or associate the address with as the
destination for messages on a UDP socket. If the host portion of the address is not speci-
fied “.” (dot) is used to connect to the local host. The original socket is returned.

skt = bind(skt [, address|int])

Associate a local address for the socket (TCP or UDP). If the address is not specified the
system selects an unused local port number for the socket. If the host portion of the ad-
dress is not specified “?” (any) is used. If the address is passed as an integer it specifies
the port number to be bound, the host portion is “?”. Bind returns the socket parameter.

struct = select([int,] set|NULL [, set|NULL [, set|NULL]])

Check sockets for I/0O readiness with optional timeout. Select may be passed up to three
sets of sockets that are checked for readiness to perform 1/0O. The first set holds the sockets
to test for input pending, the second set the sockets to test for output able and the third set
the sockets to test for exceptional states. NULL may be passed in place of a set parameter
to avoid passing empty sets. An integer may also appear in the parameter list. This integer
specifies the number of milliseconds to wait for the sockets to become ready. If a zero
timeout is passed the sockets are polled to test their state. If no timeout is passed the call
blocks until at least one of the sockets is ready for 1/O.

ICI Technical Description Page66 of 88 Last Updated: October 18, 1999



The result of select is a struct containing three sets, of sockets, identified by the keys read,
write and except.
int = getsockopt(skt, string, int)

Retrieve the value of a soclattion A socket may have various attributes associated
with it. These are accessed via the getsockopt and setsockopt functions. The attributes are
identified using string keys from the following list,

debug
reuseaddr
keepalive
dontroute
useloopback
linger
broadcast
oobinline
sndbuf
rcvbuf

type
error

setsockopt(skt, string, int)
Set a socket option (see getsockopt for option names) to the integer value.

string = domainname()

Return the domain name of the current host.

string = hostname()
Return the name of the current host.

string = username([int])

Return the name of the owner of the current process or if an integer, user number, is
passed, of that user.

string = getpeername(skt)
Return the address of tpeerof a TCP socket.

string = getsockname(skt)

Return the local address of a socket.

sendto(skt, string, string)

Send the data in the second parameter to the specified address.

array = socketpair()

Returns an array containing a pair of connected sockets.

ICI Technical Description Page67 of 88 Last Updated: October 18, 1999



struct = recvfrom(skt, int)

Receive a message on a socket and return a struct containing the data of the message, in
string, and the source address of the data. The int parameter gives the maximum number
of bytes to receive. The result is a struct with the keys msg and addr used to access the
returned information.

send(skt, string)

Send the content of the string on a socket.

string = recv(skt, int)

Receive data from a socket and return it as a string. The int parameter fives the maximum
size of message that will be received.

int = getportno(skt)

Return the local port number assigned to a TCP or UDP socket.

string = gethostbyname(string)

Match a network address against the hosts database and return a hostname.

int = sktno(skt)

Return the file descriptor associated with a socket.

file = sktopen(skt [, mode])

Open a socket as a file, for input or output accordingdade(seefoper). This function
is not available on WIN32 platforms.

ICI Technical Description Page68 of 88 Last Updated: October 18, 1999



Regular Expression Syntax

ICI uses Philip Hazel's PCRE (Perl-compatible regular expressions) package. The fol-
lowing is extracted from the filpcre.3.txt included with the PCRE distribution.

This document is intended to be used with the PCRE C functions and makes reference to
a number of constants that may be used as option specifiers to the C functions (all such
constants are prefixed with the stringCRE ). These constants are not available in the

ICI interface at time of writing although thegexp()  function does allow a numeric
option specific to be passed.

The syntax and semantics of the regular expressions supported by PCRE are described be-
low. Regular expressions are also described in the Perl documentation and in a number of
other books, some of which have copious examples. Jeffrey Friedl's “Mastering Regular
Expressions”, published by O'Reilly (ISBN 1-56592-257-3), covers them in great detail.
The description here is intended as reference documentation.
A regular expression is a pattern that is matched against a subject string from left to right.
Most characters stand for themselves in a pattern, and match the corresponding characters
in the subject. As a trivial example, the pattern

The quick brown fox
matches a portion of a subject string that is identical to itself. The power of regular expres-
sions comes from the ability to include alternatives and repetitions in the pattern. These are
encoded in the pattern by the use of meta-characters, which do not stand for themselves but
instead are interpreted in some special way.
There are two different sets of meta-characters: those that are recognized anywhere in the
pattern except within square brackets, and those that are recognized in square brackets.
Outside square brackets, the meta-characters are as follows:

\  general escape character with several uses

N assert start of subject (or line, in multiline mode)

$ assert end of subject (or line, in multiline mode)

match any character except newline (by default)

[ start character class definition

| start of alternative branch

( start subpattern

)  end subpattern

?  extends the meaning of (

also 0 or 1 quantifier

also quantifier minimizer

* 0 or more quantifier

ICI Technical Description Page69 of 88 Last Updated: October 18, 1999



+ 1 or more quantifier
{ start min/max quantifier

Part of a pattern that is in square brackets is called a “character class”. In a character class
the only meta-characters are:

\  general escape character

N negate the class, but only if the first character

- indicates character range

] terminates the character class
The following sections describe the use of each of the meta-characters.
BACKSLASH
The backslash character has several uses. Firstly, if it is followed by a non-alphameric
character, it takes away any special meaning that character may have. This use of back-
slash as an escape character applies both inside and outside character classes.
For example, if you want to match a “*’ character, you write “\*” in the pattern. This ap-
plies whether or not the following character would otherwise be interpreted as a meta-char-
acter, so it is always safe to precede a non-alphameric with “\" to specify that it stands for
itself. In particular, if you want to match a backslash, you write “\\".
If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (oth-
er than in a character class) and characters between a “#” outside a character class and the
next newline character are ignored. An escaping backslash can be used to include a
whitespace or “#” character as part of the pattern.
A second use of backslash provides a way of encoding non-printing characters in patterns
in a visible manner. There is no restriction on the appearance of non-printing characters,
apart from the binary zero that terminates a pattern, but when a pattern is being prepared by
text editing, it is usually easier to use one of the following escape sequences than the binary
character it represents:

\a alarm, that is, the BEL character (hex 07)

\cx “control-x", where x is any character

\e escape (hex 1B)

\f formfeed (hex 0C)

\n  newline (hex 0A)

\r  carriage return (hex OD)

\t tab (hex 09)

\xhh character with hex code hh

ICI Technical Description Page70 of 88 Last Updated: October 18, 1999



\ddd character with octal code ddd, or backreference
The precise effect of “\cx” is as follows: if “x” is a lower case letter, it is converted to
upper case. Then bit 6 of the character (hex 40) is inverted. Thus “\cz” becomes hex 1A,
but “\c{* becomes hex 3B, while “\c;” becomes hex 7B.
After “\x”, up to two hexadecimal digits are read (letters can be in upper or lower case).
After “\O” up to two further octal digits are read. In both cases, if there are fewer than two
digits, just those that are present are used. Thus the sequence “\O\x\07” specifies two binary
zeros followed by a BEL character. Make sure you supply two digits after the initial zero
if the character that follows is itself an octal digit.
The handling of a backslash followed by a digit other than 0 is complicated. Outside a
character class, PCRE reads it and any following digits as a decimal number. If the number
is less than 10, or if there have been at least that many previous capturing left parentheses
inthe expression, the entire sequence is taken as a back reference. A description of how
this works is given later, following the discussion of parenthesized subpatterns.
Inside a character class, or if the decimal number is greater than 9 and there have not been
that many capturing subpatterns, PCRE re-reads up to three octal digits following the back-
slash, and generates a single byte from the least significant 8 bits of the value. Any subse-
quent digits stand for themselves. For example:

\040 is another way of writing a space

\40 is the same, provided there are fewer than 40 previous capturing subpatterns

\7 is always a back reference

\11 might be a back reference, or another way of writing a tab

\011 is always a tab

\0113 is a tab followed by the character “3”

\113 isthe character with octal code 113 (since there can be no more than 99 back
references)

\377 is a byte consisting entirely of 1 bits
\81 s either a back reference, or a binary zero followed by the two characters “8” and “1”

Note that octal values of 100 or greater must not be introduced by a leading zero, because
no more than three octal digits are ever read.

All the sequences that define a single byte value can be used both inside and outside char-
acter classes. In addition, inside a character class, the sequence “\b” is interpreted as the
backspace character (hex 08). Outside a character class it has a different meaning (see be-
low).

The third use of backslash is for specifying generic character types:

\d any decimal digit

ICI Technical Description Page71 of 88 Last Updated: October 18, 1999



\D any character that is not a decimal digit any whitespace character
\S any character that is not a whitespace character

\w any “word” character

\W any “non-word” character

Each pair of escape sequences partitions the complete set of characters into two disjoint
sets. Any given character matches one, and only one, of each pair.

A “word” character is any letter or digit or the underscore character, that is, any character
which can be part of a Perl “word”. The definition of letters and digits is controlled by
PCRE's character tables, and may vary if locale-specific matching is taking place (see “Lo-
cale support” above). For example, in the “fr” (French) locale, some character codes greater
than 128 are used for accented letters, and these are matched by \w.

These character type sequences can appear both inside and outside character classes.
They each match one character of the appropriate type. If the current matching point is at
the end of the subject string, all of them fail, since there is no character to match.
The fourth use of backslash is for certain simple assertions. An assertion specifies a condi-
tion that has to be met at a particular point in a match, without consuming any characters
from the subject string. The use of subpatterns for more complicated assertions is described
below. The backslashed assertions are

\b  word boundary

\B not a word boundary

\A  start of subject (independent of multiline mode)

\Z end of subject or newline at end (independent of multiline mode)

\z  end of subject (independent of multiline mode)

These assertions may not appear in character classes (but note that “\b” has a different
meaning, namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and the
previous character do not both match \w or \W (i.e. one matches \w and the other matches
\W), or the start or end of the string if the first or last character matches \w, respectively.

The\A, \Z, and \z assertions differ from the traditional circumflex and dollar (described be-
low) in that they only ever match at the very start and end of the subject string, whatever
options are set. They are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options.
If the startoffset argument of pcre_exec() is non-zero, \A can never match. The difference
between \Z and \z is that \Z matches before a newline that is the last character of the string
as well as at the end of the string, whereas \z matches only at the end.

CIRCUMFLEX AND DOLLAR

Outside a character class, in the default matching mode, the circumflex character is an as-

ICI Technical Description Page72 of 88 Last Updated: October 18, 1999



sertion which is true only if the current matching point is at the start of the subject string.
If the startoffset argument of pcre_exec() is non-zero, circumflex can never match. Inside
a character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are in-
volved, but it should be the first thing in each alternative in which it appears if the pattern
is ever to match that branch. If all possible alternatives start with a circumflex, that is, if the
pattern is constrained to match only at the start of the subject, it is said to be an “anchored”
pattern. (There are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current matching point is at the
end of the subject string, or immediately before a newline character thatis the last charac-
ter in the string (by default). Dollar need not be the last character of the pattern ifa number
of alternatives are involved, butit should be the lastitem in any branch in which it appears.
Dollar has no special meaning in a character class.

The meaning of dollar can be changed so that it matches only at the very end of the
string, by setting the PCRE_DOLLAR_ENDONLY option at compile or matching time.
This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the
PCRE_MULTILINE option is set. When this is the case, they match immediately after and
immediately before an internal “\n” character, respectively, in addition to matching at the
start and end of the subject string. For example, the pattern /*abc$/ matches the subject
string “def\nabc” in multiline mode, but not otherwise. Consequently, patterns that are an-
chored in single line mode because all branches start with “*” are not anchored in multiline
mode, and a match for circumflex is possible when the startoffset argument of pcre_exec()
is non-zero. The PCRE_DOLLAR_ENDONLY optionis ignored if PCRE_MULTILINE

is set.

Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject
in both modes, and if all branches of a pattern start with \A is it always anchored, whether
PCRE_MULTILINE is set or not.

FULL STOP (PERIOD, DOT)

Outside a character class, a dot in the pattern matches any one character in the subject, in-
cluding a non-printing character, but not (by default) newline. If the PCRE_DOTALL op-

tion is set, then dots match newlines as well. The handling of dot is entirely independent of
the handling of circumflex and dollar, the only relationship being that they both involve
newline characters. Dot has no special meaning in a character class.

SQUARE BRACKETS

An opening square bracket introduces a character class, terminated by a closing square
bracket. A closing square bracket on its own is not special. If a closing square bracket is
required as a member of the class, it should be the first data character in the class (after an
initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject; the character must be in the set
of characters defined by the class, unless the first character in the class is a circumflex, in

ICI Technical Description Pager3 of 88 Last Updated: October 18, 1999



which case the subject character must not be in the set defined by the class. If a circumflex
is actually required as a member of the class, ensure it is not the first character, or escape it
with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [aeiou]
matches any character that is not a lower case vowel. Note that a circumflex is just a con-
venient notation for specifying the characters which are in the class by enumerating those
that are not. It is not an assertion: it still consumes a character from the subject string, and
fails if the current pointer is at the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and low-
er case versions, so for example, a caseless [aeiou] matches “A” as well as “a”, and a case-
less [“aeiou] does not match “A”, whereas a caseful version would.

The newline character is never treated in any special way in character classes, whatever
the setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A class such as
[*a] will always match a newline.

The minus (hyphen) character can be used to specify a range of characters in a character
class. For example, [d-m] matches any letter between d and m, inclusive. If a minus char-
acter is requiredin a class, it must be escaped with a backslash or appear in a position where
it cannot be interpreted as indicating a range, typically as the first or last character in the
class.

It is not possible to have the literal character “]” as the end character of a range. A pattern
such as [W-]46] is interpreted as a class of two characters (“W” and “-") followed by a lit-
eral string “46]", so it would match “W46]” or “-46]". However, if the “]” is escaped with

a backslash it is interpreted as the end of range, so [W-\]46] is interpreted as a single class
containing a range followed by two separate characters. The octal or hexadecimal represen-

tation of “]” can also be used to end a range.

Ranges operate in ASCII collating sequence. They can also be used for characters speci-
fied numerically, for example \000-\037]. If a range that includes letters is used when
caseless matching is set, it matches the letters in either case. For example, [W-c] is equiv-
alent to [J[\"_‘wxyzabc], matched caselessly, and if character tables for the “fr” locale
are in use, [\xc8-\xcb] matches accented E characters in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and add
the characters that they match to the class. For example, \dABCDEF] matches any hexa-
decimal digit. A circumflex can conveniently be used with the upper case character types
to specify a more restricted set of characters than the matching lower case type. For exam-
ple, the class ["\W_] matches any letter or digit, but not underscore.

All non-alphameric characters other than\, -, ~ (at the start) and the terminating ] are
non-special in character classes, but it does no harm if they are escaped.

VERTICAL BAR
Vertical bar characters are used to separate alternative patterns. For example, the pattern
gilbert|sullivan

matches either “gilbert” or “sullivan”. Any number of alternatives may appear, and an emp-

ICI Technical Description Page74 of 88 Last Updated: October 18, 1999



ty alternative is permitted (matching the empty string). The matching process tries each al-
ternative in turn, from left to right, and the first one that succeeds is used. If the alternatives

are within a subpattern (defined below), “succeeds” means matching the rest of the main
pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
PCRE_EXTENDED can be changed from within the pattern by a sequence of Perl option
letters enclosed between “(?” and “)”. The option letters are

i for PCRE_CASELESS
m for PCRE_MULTILINE
s for PCRE_DOTALL

x for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It is also possible to unset these op-
tions by preceding the letter with a hyphen, and a combined setting and unsetting such as
(?im-sx), which sets PCRE_CASELESS and PCRE_MULTILINE while unsetting
PCRE_DOTALL and PCRE_EXTENDED, is also permitted. If a letter appears both be-
fore and after the hyphen, the option is unset.

The scope of these option changes depends on where in the pattern the setting occurs.
For settings that are outside any subpattern (defined below), the effect is the same as if the
options were set or unset at the start of matching. The following patterns all behave in ex-
actly the same way:

(?Dabc a(?i)bc ab(?i)c abc(?i)

whichin turn is the same as compiling the pattern abc with PCRE_CASELESS set. In other
words, such “top level” settings apply to the whole pattern (unless there are other changes
inside subpatterns). If there is more than one setting of the same option at top level, the
rightmost setting is used.

If an option change occurs inside a subpattern, the effectis different. This is a change of
behaviour in Perl 5.005. An option change inside a subpattern affects only that part of the
subpattern that follows it, so

(@(?ib)c

matches abc and aBc and no other strings (assuming PCRE_CASELESS is notused).
By this means, options can be made to have different settings in different parts of the pat-
tern. Any changes made in one alternative do carry on into subsequent branches within
the same subpattern. For example,

(a(?iblc)
matches “ab”, “aB”, “c”, and “C”, even though when matching “C” the first branch is aban-

doned before the option setting. This is because the effects of option settings happen at
compile time. There would be some very weird behaviour otherwise.

ICI Technical Description Page75 of 88 Last Updated: October 18, 1999



The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in
the same way as the Perl-compatible options by using the characters U and X respectively.
The (?X) flag setting is special in that it must always occur earlier in the pattern than any
of the additional features it turns on, even when it is at top level. It is best put at the start.

SUBPATTERNS

Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking
part of a pattern as a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern
cat(aract|erpillar|)

matches one of the words “cat”, “cataract”, or “caterpillar’. Without the parentheses, it
would match “cataract”, “erpillar’ or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above). When the whole
pattern matches, that portion of the subject string that matched the subpattern is passed back
to the caller via the ovector argument of pcre_exec(). Opening parentheses are counted
from left to right (starting from 1) to obtain the numbers of the capturing subpatterns.

For example, if the string “the red king” is matched against the pattern

the ((red|white) (king|queen))
the captured substrings are “red king”, “red”, and “king”, and are numbered 1, 2, and 3.
The fact that plain parentheses fulfil two functions is not always helpful. There are often
times when a grouping subpattern is required without a capturing requirement. If an open-
ing parenthesis is followed by “?:”, the subpattern does not do any capturing, and is not
counted when computing the number of any subsequent capturing subpatterns. For exam-
ple, if the string “the white queen” is matched against the pattern

the ((?:red|white) (king|queen))
the captured substrings are “white queen” and “queen”, and are numbered 1 and 2. The
maximum number of captured substrings is 99, and the maximum number of all subpat-
terns, both capturing and non-capturing, is 200.
As a convenient shorthand, if any option settings are required at the start of a non-
capturing subpattern, the option letters may appear between the “?” and the “.". Thus the
two patterns

(?i:saturday|sunday)

(?:(?i)saturday|sunday)
match exactly the same set of strings. Because alternative branches are tried from left to
right, and options are not reset until the end of the subpattern is reached, an option setting

in one branch does affect subsequent branches, so the above patterns match “SUNDAY”
as well as “Saturday”.

ICI Technical Description Page76 of 88 Last Updated: October 18, 1999



REPETITION
Repetition is specified by quantifiers, which can follow any of the following items:

a single character, possibly escaped

the . metacharacter

a character class

a back reference (see next section)

a parenthesized subpattern (unless itis an assertion - see below)
The general repetition quantifier specifies a minimum and maximum number of permit-
ted matches, by giving the two numbers in curly brackets (braces), separated by a com-
ma. The numbers must be less than 65536, and the first must be less than or equal to the
second. For example:

z{2,4}
matches “zz”, “zzz”, or “zzzz". A closing brace on its own is not a special character. If the
second number is omitted, but the comma is present, there is no upper limit; if the second
number and the comma are both omitted, the quantifier specifies an exact number of re-
quired matches. Thus

[aeiou]{3,}
matches at least 3 successive vowels, but may match many more, while

\d{8}
matches exactly 8 digits. An opening curly bracket that appears in a position where a quan-
tifier is not allowed, or one that does not match the syntax of a quantifier, is taken as a literal

character. For example, {,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previous item
and the quantifier were not present.

For convenience (and historical compatibility) the three most common quantifiers have
single-character abbreviations:

* is equivalent to {0,}
+ s equivalent to {1,}
? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no
characters with a quantifier that has no upper limit, for example:

(@?)*

ICI Technical Description Page77 of 88 Last Updated: October 18, 1999



Earlier versions of Perl and PCRE used to give an error at compile time for such patterns.
However, because there are cases where this can be useful, such patterns are now ac-
cepted, but if any repetition of the subpattern does in fact match no characters, the loop is
forcibly broken.

By default, the quantifiers are “greedy”, that is, they match as much as possible (up to the
maximum number of permitted times), without causing the rest of the pattern to fail. The
classic example of where this gives problems is in trying to match comments in C programs.
These appear between the sequences /* and */ and within the sequence, individual * and /
characters may appear. An attempt to match C comments by applying the pattern

I\*5\*/
to the string
[* first command */ not comment /* second comment */
fails, because it matches the entire string due to the greediness of the .* item.

However, if a quantifier is followed by a question mark, then it ceases to be greedy, and
instead matches the minimum number of times possible, so the pattern

Aard Y

does the right thing with the C comments. The meaning of the various quantifiers is not oth-
erwise changed, just the preferred number of matches. Do not confuse this use of question
mark with its use as a quantifier in its own right. Because it has two uses, it can sometimes
appear doubled, as in

\d??\d

which matches one digit by preference, but can match two if that is the only way the rest
of the pattern matches.

If the PCRE_UNGREEDY option is set (an option which is not available in Perl) then
the quantifiers are not greedy by default, but individual ones can be made greedy by follow-
ing them with a question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater
than 1 or with a limited maximum, more store is required for the compiled pattern, in pro-
portion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl’s /s)

is set, thus allowing the . to match newlines, then the pattern is implicitly anchored, because
whatever follows will be tried against every character position in the subject string, so there
is no point in retrying the overall match at any position after the first. PCRE treats such a
pattern as though it were preceded by \A. In cases where it is known that the subject string
contains no newlines, it is worth setting PCRE_DOTALL when the pattern begins with .*
in order to obtain this optimization, or alternatively using * to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value captured is the substring that matched
the final iteration. For example, after

(tweedle[dume]{3}\s*)+

ICI Technical Description Pager8 of 88 Last Updated: October 18, 1999



has matched “tweedledum tweedledee” the value of the captured substring is “tweedledee”.
However, if there are nested capturing subpatterns, the corresponding captured values may
have been set in previous iterations. For example, after

I(a|(b))+/

matches “aba” the value of the second captured substring is “b”.

BACK REFERENCES

Outside a character class, a backslash followed by a digit greater than 0 (and possibly
further digits) is a back reference to a capturing subpattern earlier (i.e. to its left) in the
pattern, provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always taken

as a back reference, and causes an error only if there are not that many capturing left paren-
theses in the entire pattern. In other words, the parentheses that are referenced need not be
to the left of the reference for numbers less than 10. See the section entitled “Backslash”
above for further details of the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current
subject string, rather than anything matching the subpattern itself. So the pattern

(sens|respons)e and \libility

matches “sense and sensibility” and “response and responsibility”, but not “sense and re-
sponsibility”. If caseful matching is in force at the time of the back reference, then the case
of letters is relevant. For example,

((?i)rah)\s+\1

matches “rah rah” and “RAH RAH”, but not “RAH rah”, even though the original cap-
turing subpattern is matched caselessly.

There may be more than one back reference to the same subpattern. If a subpattern has not
actually been used in a particular match, then any back references to it always fail. For ex-
ample, the pattern

(@l(bc))\2

always fails if it starts to match “a” rather than “bc”. Because there may be up to 99
back references, all digits following the backslash are taken as part of a potential back
reference number. If the pattern continues with a digit character, then some delimiter must
be used to terminate the back reference. If the PCRE_EXTENDED option is set, this can
be whitespace. Otherwise an empty comment can be used.

A back reference that occurs inside the parentheses to which it refers fails when the sub-
pattern is first used, so, for example, (a\l) never matches. However, such references can
be useful inside repeated subpatterns. For example, the pattern

(alb\1)+

matches any number of “a’s and also “aba”, “ababaa” etc. At each iteration of the subpat-

ICI Technical Description Pager9 of 88 Last Updated: October 18, 1999



tern, the back reference matches the character string corresponding to the previous iteration.
In order for this to work, the pattern must be such that the first iteration does not need to
match the back reference. This can be done using alternation, as in the example above, or
by a quantifier with a minimum of zero.

ASSERTIONS

An assertion is a test on the characters following or preceding the current matching point
that does not actually consume any characters. The simple assertions coded as \b, \B, \A,
\Z,\z, ~and $ are described above. More complicated assertions are coded as subpatterns.
There are two kinds: those that look ahead of the current position in the subject string, and
those that look behind it.

An assertion subpattern is matched in the normal way, except that it does not cause the
current matching position to be changed. Lookahead assertions start with (?= for positive
assertions and (?! for negative assertions. For example,

\w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match,
and

foo(?'bar)

matches any occurrence of “foo” that is not followed by “bar”. Note that the apparently
similar pattern

(?'foo)bar
does not find an occurrence of “bar” that is preceded by something other than “foo”; it
finds any occurrence of “bar” whatsoever, because the assertion (?!foo) is always true
when the next three characters are “bar”. A lookbehind assertion is needed to achieve
this effect.

Look-behind assertions start with (?<= for positive assertions and (?<! for negative asser-
tions. For example,

(?<!foo)bar
does find an occurrence of “bar” that is not preceded by “foo”. The contents of a lookbe-
hind assertion are restricted such that all the strings it matches must have a fixed length.
However, if there are several alternatives, they do not all have to have the same fixed length.
Thus

(?<=bullock|donkey)
is permitted, but

(?<!dogs?|cats?)
causes an error at compile time. Branches that match different length strings are permitted

only at the top level of a lookbehind assertion. This is an extension compared with Perl
5.005, which requires all branches to match the same length of string. An assertion such as

ICI Technical Description Page30 of 88 Last Updated: October 18, 1999



(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it
is acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move
the current position back by the fixed width and then try to match. If there are insufficient
characters before the current position, the match is deemed to fail. Lookbehinds in conjunc-
tion with once-only subpatterns can be particularly useful for matching at the ends of
strings; an example is given at the end of the section on once-only subpatterns.

Several assertions (of any sort) may occur in succession. For example,
(?<=\d{3})(?<!999)foo

matches “foo” preceded by three digits that are not “999”. Notice that each of the asser-

tions is applied independently at the same point in the subject string. First there is a check

that the previous three characters are all digits, then there is a check that the same three

characters are not “999”. This pattern does not match “foo” preceded by six characters,

the first of which are digits and the last three of which are not “999”. For example, it
doesn’'t match “123abcfoo”. A pattern to do that is

(?<=\d{3}...)(?<!999)foo
This time the first assertion looks at the preceding six characters, checking that the first
three are digits, and then the second assertion checks that the preceding three characters
are not “999".
Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of “baz” that is preceded by “bar” which in turn is not preceded
by “foo”, while

(7<=\d{3}(?1999)...)foo

is another pattern which matches “foo” preceded by three digits and any three characters
that are not “999".

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it
makes no sense to assert the same thing several times. If any kind of assertion contains cap-
turing subpatterns within it, these are counted for the purposes of numbering the capturing
subpatterns in the whole pattern. However, substring capturing is carried out only for pos-
itive assertions, because it does not make sense for negative assertions.

Assertions count towards the maximum of 200 parenthesized subpatterns.

ONCE-ONLY SUBPATTERNS

With both maximizing and minimizing repetition, failure of what follows normally causes

ICI Technical Description PageB1 of 88 Last Updated: October 18, 1999



the repeated item to be re-evaluated to see if a different number of repeats allows the rest
of the pattern to match. Sometimes it is useful to prevent this, either to change the nature of
the match, or to cause it fail earlier than it otherwise might, when the author of the pattern
knows there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the subject line
123456bar

After matching all 6 digits and then failing to match “foa”, the normal action of the matcher
is to try again with only 5 digits matching the \d+ item, and then with 4, and so on, before
ultimately failing. Once-only subpatterns provide the means for specifying that once a por-
tion of the pattern has matched, it is not to be re-evaluated in this way, so the matcher
would give up immediately on failing to match “foo” the first time. The notation is an-
other kind of special parenthesis, starting with (?> as in this example:

(?>\d+)bar

This kind of parenthesis “locks up” the part of the pattern it contains once it has matched,
and a failure further into the pattern is prevented from backtracking into it. Backtracking
past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters
that an identical standalone pattern would match, if anchored at the current point in the sub-
ject string.

Once-only subpatterns are not capturing subpatterns. Simple cases such as the above ex-
ample can be thought of as a maximizing repeat that must swallow everything it can. So,
while both \d+ and \d+? are prepared to adjust the number of digits they match in order to
make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it can be
nested.

Once-only subpatterns can be used in conjunction with look-behind assertions to specify
efficient matching at the end of the subject string. Consider a simple pattern such as

abcd$

when applied to along string which does not match it. Because matching proceeds from
left to right, PCRE will look for each “a” in the subject and then see if what follows
matches the rest of the pattern. If the pattern is specified as

A *abcd$

then the initial .* matches the entire string at first, but when this fails, it backtracks to match
all but the last character, then all but the last two characters, and so on. Once again the
search for “a” covers the entire string, from right to left, so we are no better off. However,

if the pattern is written as

N?>.*)(?<=abcd)
then there can be no backtracking for the .* item; it can match only the entire string.

The subsequent lookbehind assertion does a single test on the last four characters. If it fails,
the match fails immediately. For long strings, this approach makes a significant difference

ICI Technical Description PageB32 of 88 Last Updated: October 18, 1999



to the processing time.

CONDITIONAL SUBPATTERNS

It is possible to cause the matching process to obey a subpattern conditionally or to choose
between two alternative subpatterns, depending on the result of an assertion, or whether a
previous capturing subpattern matched or not. The two possible forms of conditional sub-
pattern are

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is
used. If there are more than two alternatives in the subpattern, a compile-time error occurs.

There are two kinds of condition. If the text between the parentheses consists of a sequence
of digits, then the condition is satisfied if the capturing subpattern of that number has pre-
viously matched. Consider the following pattern, which contains non-significant white
space to make it more readable (assume the PCRE_EXTENDED option) and to divide it
into three parts for ease of discussion:

(0?7 "0+ MY)

The first part matches an optional opening parenthesis, and if that character is present, sets
it as the first captured substring. The second part matches one or more characters that are
not parentheses. The third part is a conditional subpattern that tests whether the first set of
parentheses matched or not. If they did, that is, if subject started with an opening paren-
thesis, the condition is true, and so the yes-pattern is executed and a closing parenthesis
is required. Otherwise, since no-patternis not present, the subpattern matches nothing.
In other words, this pattern matches a sequence of non-parentheses, optionally enclosed
in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a positive
or negative lookahead or lookbehind assertion. Consider this pattern, again containing non-
significant white space, and with the two alternatives on the second line:

(?(?=["a-z]*[a-z])

\d{2}[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})
The condition is a positive lookahead assertion that matches an optional sequence of non-
letters followed by a letter. In other words, it tests for the presence of at least one letter
in the subject. If a letter is found, the subject is matched against the first alternative; oth-

erwise it is matched against the second. This pattern matches strings in one of the two
forms dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.

COMMENTS

The sequence (?# marks the start of a comment which continues up to the next closing pa-
renthesis. Nested parentheses are not permitted. The characters that make up a comment

ICI Technical Description PageB3 of 88 Last Updated: October 18, 1999



play no part in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character class
introduces a comment that continues up to the next newline character in the pattern.

PERFORMANCE

Certain items that may appear in patterns are more efficient than others. Itis more efficient
to use a character class like [aeiou] than a set of alternatives such as (a|eli|o|u). In general,
the simplest construction that provides the required behaviour is usually the most effi-
cient. Jeffrey Friedl's book contains a lot of discussion about optimizing regular expres-
sions for efficient performance.

When a pattern begins with .* and the PCRE_DOTALL option is set, the pattern isim-
plicitly anchored by PCRE, since it can match only at the start of a subject string. However,
if PCRE_DOTALL is not set, PCRE cannot make this optimization, because the . meta-
character does not then match a newline, and if the subject string contains newlines, the
pattern may match from the character immediately following one of them instead of from
the very start. For example, the pattern

(.*) second

matches the subject “first\nand second” (where \n stands for a newline character) with the
first captured substring being “and”. In order to do this, PCRE has to retry the maitch
starting after every newline in the subject.

If you are using such a pattern with subject strings that do not contain newlines, the best
performance is obtained by setting PCRE_DOTALL, or starting the pattern with ~.* to
indicate explicit anchoring. That saves PCRE from having to scan along the subject look-
ing for a newline to restart at.

Beware of patterns that contain nested indefinite repeats. These can take a long time to
run when applied to a string that does not match. Consider the pattern fragment

(a+)*

This can match “aaaa” in 33 different ways, and this number increases very rapidly as the
string gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases
other than 0, the + repeats can match different numbers of times.) When the remainder of
the pattern is such that the entire match is going to fail, PCRE has in principle to try every
possible variation, and this can take an extremely long time.

An optimization catches some of the more simple cases such as

(a+)*b
where a literal character follows. Before embarking on the standard matching procedure,
PCRE checks that there is a “b” later in the subject string, and if there is not, it fails the
match immediately. However, when there is no following literal this optimization cannot

be used. You can see the difference by comparing the behaviour of

(a+)"\d

ICI Technical Description Page34 of 88 Last Updated: October 18, 1999



with the pattern above. The former gives a failure almost instantly when applied to a
whole line of “a” characters, whereas the latter takes an appreciable time with strings
longer than about 20 characters.

AUTHOR

Philip Hazel <phl10@cam.ac.uk>

University Computing Service,

New Museums Site,

Cambridge CB2 3QG, England.

Phone: +44 1223 334714

Last updated: 29 July 1999

Copyright (c) 1997-1999 University of Cambridge.
Undefined variables and dynamic loading

During execution, should the ICI execution engine fail to find a variable within the current
scope, it will attempt to load a library based on the name of that variable. Such a library
may be a host specific dynamically loaded native machine code library, an ICI module,
or both.

In attempting to load an ICI module, a file name of the form:
ici var .ici

is considered, whenear is the as yet undefined variable name. This file is searched for on
the current host specific search path. If found, a new extern, static and auto scope is es-
tablished and the new extern scope struct is assigned o the outermost writable

scope available. That outermost writable scope also forms the super of the new extern
scope. The module is then parsed with the given scope, after which the variable lookup is
repeated. In normal practice this will mean that the loaded module has an outer scope
holding all the normal ICI primitives and a new empty extern scope. The intent of this
mechanism is that the loaded module should define all its published functions in its extern
scope. References by an invoking program to functions and other objects of the loaded
module would always be made explicitly throughthewhich references the module.

For example, a program might contain the fragment:

guery = cgi.decode_query();
cgi.start_page(“Query results”);

where “cgi” is undefined, but the fileicgi.ici exists on the search path and includes func-
tion definitions such as:

extern
decode_query()

{
}

extern
start_page(title)

}

ICI Technical Description PageB5 of 88 Last Updated: October 18, 1999



Upon first encountering the varialdgiin the code fragment the modutacgi.ici will be
parsed and its extern scope assigned to the new vadghlethe outermost scope of the
program (that is, the most global scope). The lookup of the var@lis then repeated,
this time finding the structure which contains the functi@eode querylhe second, and
all subsequent, use of the variabtg will be satisfied immediately from the already load-
ed module.

In attempting to load a host specific dynamically loaded native machine code library, a
file name of the form:

ici var . ext

Is considered, whenear is the as yet undefined variable name amntis the normal host
extension for such libraries. This file is searched for on the current host specific search
path. If found the file is loaded into the ICI interpreter’'s address space using the local
host’s dynamic library loading mechanism. An initialisation function in the loaded library
may return an ICI object (see below). Should an object be returned, it is assigaed to

in the outermost writable scope available. Further, should the returned variable be a struc-
ture, additional loading of an ICI module of the same name is allowed (as described
above) and the returned struct forms the structure for externs in that load.

The basics of writing dynamic loading native machine code modules

This description is bare-bones and assumes a knowledge of ICI’s internals.

The loaded library must contain a function of the following name and declaration:

object_t*

ici_ var _library_init()
{

}

wherevar is the as yet undefined variable name. This is the initialisation function which

is called when the library is loaded. This function should return an ICI object, or NULL
on error, in which case the ICI error variable must be set. The returned object will be as-
signed tovar as described above.

Modules of the dynamically loaded library which include ICI header files must have the
directory holding the ICI header files on their include search path and have two prepro-
cessor definitions established before any of the ICI headers are included (they are typical-
ly defined in the makefile or project settings). These are:

CONFIG_FILE Which must be defined to be the name of the ICI configuration
file which is specific to this installation. The defined value should
include double quotes around the name. For example:

“conf-w32.h”

is the file used by Windows, and this would be defined on the
command line or in the project settings with:

ICI Technical Description PageB6 of 88 Last Updated: October 18, 1999



/IDCONFIG_FILE=\"conf-w32.h\"

ICI_DLL Which must simply be defined. This causes certain changes in the
nature of data declarations in the ICI header files which are re-
quired on some systems (such as Windows) to allow imported

data references.

The following sample modulenbox.¢illistrates a typical form for a simple dynamically

loaded ICI module.

#include <windows.h>
#include "func.h"
#include "struct.h"

/*

* mbox_msg => mbox.msg(string) from ICI

*

* Pops up a modal message box with the given string in it and waits for the
* use to hit OK. Returns NULL.

*/

int

mbox_msg()

char *msg;

if (typecheck("s", &msg))

return 1;
MessageBox(NULL, msg, (LPCTSTR)"ICI", MB_OK | MB_SETFOREGROUND);
return null_ret();

}

/*

* Object stubs for our intrinsic functions.

*/

cfunc_tmbox_cfuncs[] =

{
{CF_OBJ,"msg",mbox_msg},
{CF_OBJ}

h

/*

* jci_mbox_library_init

*

* Initialisation routine called on load of this module into the ICI
* interpreters address space. Creates and returns a struct which will
* be assigned to "mbox". This struct contains references to our
* intrinsic functions.

*

object_t *

ici_mbox_library_init()

{

struct_t*s;

if ((s = new_struct()) == NULL)
return NULL;

if (ici_assign_cfuncs(s, mbox_cfuncs))
return NULL;

return objof(s);

}

The following simple Makefile illustrates forms suitable for compiling this module into a
DLL under Windows. Note in particular the defines in the CFLAGS and the use of /export

in the link line to make the functiaoi_mbox_library_initexternally visible.

CFLAGS= -I.. IDCONFIG_FILE=\"conf-w32.h\" /DICI_DLL

ICI Technical Description Page37 of 88 Last Updated: October 18, 1999



OBJS = mbox.obj
LIBS =../ici.lib user32.lib

icimbox.dll: $(OBJS)
link /dil /out:$3@ $(OBJS) /export:ici_mbox_library_init $(LIBS)

Note that there is no direct supprt for the /export option in the MS Developer Studio link
settings panel, but it can be entered directly irPigect Optiongext box.

The following Makefile achieves an equivalent result under Solaris:

CcC = gcc -pipe -g
CFLAGS= -fpic -I.. -DCONFIG_FILE=""conf-sun.h™ -DICI_DLL

OBJS = mbox.o

icimbox.so : $(OBJS)
Id -0 $@ -dc -dp $(OBJS)

ICI Technical Description PageB8 of 88 Last Updated: October 18, 1999



	ICI Technical Description
	Version 1.1
	Tim Long
	Portions © 1992-1998 Canon Information Systems Research Australia
	Portions © 1997-1999 University of Cambridge
	Portions © 1992-1995 Tim Long
	Permission granted to reproduce provided copyright notices are preserved.
	The lexical analyser
	An introduction to variables, modules and scope
	The parser
	An introduction to arrays, sets and structs
	Back to expression syntax
	Prefix operators
	Postfix operators
	Binary operators
	Simple expression statements
	Compound statements
	The if statement
	The while statement
	The do-while statement
	The for statement
	The forall statement
	The switch, case, and default statements
	The break and continue statements
	The return statement
	The try statement
	The null statement
	Declaration statements
	Abbreviated function declarations
	Functions
	Method Calls
	Objects
	Equality
	Structure and set keys
	Structure super types
	An aside on variables and scope
	Pointers
	Data types
	Operators
	Standard functions
	float|int = abs(float|int)
	angle = acos(x)
	float = asin(x)
	value = assign(struct, key, value)
	angle = atan(x)
	angle = atan2(y, x)
	return = call(func, args)
	new = copy(old)
	x = cos(angle)
	file = currentfile()
	del(struct, key)
	int = eof([file])
	eq(obj1, obj2)
	evetloop()
	exit([string|int|NULL])
	float = exp(x)
	array = explode(string)
	fail(string)
	value = fetch(struct, key)
	value = float(x)
	file = fopen(name [, mode])
	fprintf(file, fmt, args...)
	string = getchar([file])
	string = getfile([file])
	string = getline([file])
	string = gettoken([file [, seps]])
	array = gettokens([file [, seps [, terms]]])
	string = gsub(string, string|regexp, string)
	struct = include(string [, scope])
	value = int(any)
	subpart = interval(str_or_array, start [, length])
	isatom(any)
	array = keys(struct)
	float = log(x)
	float = log10(x)
	mem = mem(start, nwords [, wordz])
	file = mopen(mem [, mode])
	int = nels(any)
	number = num(x)
	scope = parse(source [, scope])
	any = pop(array)
	file = popen(string, [flags])
	printf([file,] fmt, args...)
	any = push(array, any)
	put(string [, file])
	int = rand([seed])
	reclaim()
	re = regexp(string [, int])
	re = regexpi(string [, int])
	remove(string)
	current = scope([replacement])
	int = seek(file, int, int)
	set = set(any...)
	x = sin(angle)
	int = sizeof(any)
	sort(array, func)
	x = sqrt(float)
	string = string(any)
	struct = struct([super,] key, value...)
	string = sub(string, string|regexp, string)
	current = super(struct [, replacement])
	x = tan(angle)
	foat = now()
	float|struct = calendar(struct|float)
	string = tochar(int)
	int = toint(string)
	string = typeof(any)
	array = vstack()
	event = waitfor(event...)
	Command Line Arguments
	argv
	argc
	Unix System Calls
	Win32 Support
	int = access(string [, int])
	int = creat(string, int)
	int = dup(int [, int])
	exec(string, array)
	exec(string, string...)
	int = lseek(int, int [, int])
	int = open(string, int [, int])
	array = pipe()
	struct = stat(string|int|file)
	int = wait()
	string = ctime(int)
	int = time()
	file = fdopen(int [, mode])
	string = getcwd()
	alarm(int)
	acct(string)
	chdir(string)
	chmod(string, int)
	chown(string, int, int)
	chroot(string)
	_close(int)
	_exit(int)
	int = fork()
	int = getpid()
	int = getpgrp()
	int = getppid()
	int = getuid()
	int = geteuid()
	int = getgid()
	int = getegid()
	kill(int, int)
	link(string, string)
	mkdir(string, int)
	mknod(string, int, int)
	nice(int)
	pause()
	rmdir(string)
	setpgrp()
	setuid(int)
	setgid(int)
	signal(int, int)
	sync()
	ulimit(int, int)
	umask(int)
	unlink(string)
	system(string)
	sleep(int)
	int = spawn([mode,] string, string...)
	int = spawn([mode, ] string, array)
	int = spawnp([mode,] string, string...)
	int = spawnp([mode, ] string, array)
	rename(string, string)
	struct = passwd(int | string)
	array = passwd()
	Sockets Interface
	Network Addresses
	skt = socket(string)
	skt = accept(skt)
	skt = listen(skt)
	skt = connect(skt, address)
	skt = bind(skt [, address|int])
	struct = select([int,] set|NULL [, set|NULL [, set|NULL]])
	int = getsockopt(skt, string, int)
	setsockopt(skt, string, int)
	string = domainname()
	string = hostname()
	string = username([int])
	string = getpeername(skt)
	string = getsockname(skt)
	sendto(skt, string, string)
	array = socketpair()
	struct = recvfrom(skt, int)
	send(skt, string)
	string = recv(skt, int)
	int = getportno(skt)
	string = gethostbyname(string)
	int = sktno(skt)
	file = sktopen(skt [, mode])
	Regular Expression Syntax
	Undefined variables and dynamic loading
	The basics of writing dynamic loading native machine code modules


