
AVRDUDE
A program for download/uploading AVR microcontroller flash and eeprom.

For AVRDUDE, Version 4.1.0, 17 April 2003.

by Brian S. Dean

(Send bugs and comments on AVRDUDE to avrdude-dev@nongnu.org.)

Copyright c© 2003 Brian S. Dean

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

mailto:avrdude-dev@nongnu.org

i

Table of Contents

1 Introduction . 1
1.1 History . 1

2 Command Line Options . 2
2.1 Option Descriptions . 2
2.2 Example Command Line Invocations . 4

3 Terminal Mode Operation 6
3.1 Terminal Mode Commands. 6
3.2 Terminal Mode Examples . 6

4 Configuration File . 9
4.1 AVRDUDE Defaults . 9
4.2 Programmer Definitions . 9
4.3 Part Definitions . 9

4.3.1 Instruction Format . 10
4.4 Other Notes . 11

Appendix A Platform Dependent Information
. 12
A.1 Unix . 12

A.1.1 Unix Installation . 12
A.1.1.1 FreeBSD Installation. 12
A.1.1.2 Linux Installation . 12

A.1.2 Unix Configuration Files . 12
A.1.2.1 FreeBSD Configuration Files 13
A.1.2.2 Linux Configuration Files 13

A.1.3 Unix Port Names . 13
A.1.4 Unix Documentation . 13

A.2 Windows . 13
A.2.1 Installation . 13
A.2.2 Configuration Files . 14

A.2.2.1 Configuration file names 14
A.2.2.2 How AVRDUDE finds the configuration

files. 14
A.2.3 Port Names . 14

A.2.3.1 Serial Ports . 14
A.2.3.2 Parallel Ports . 14

A.2.4 Using the parallel port . 15
A.2.4.1 Windows NT/2K/XP 15
A.2.4.2 Windows 95/98 . 15

A.2.5 Documentation . 15
A.2.6 Credits. 16

Chapter 1: Introduction 1

1 Introduction

AVRDUDE - AVR Downloader Uploader - is a program for downloading and uploading
the on-chip memories of Atmel’s AVR microcontrollers. It can program the Flash and
EEPROM, and where supported by the serial programming protocol, it can program fuse
and lock bits. AVRDUDE also supplies a direct instruction mode allowing one to issue any
programming instruction to the AVR chip regardless of whether AVRDUDE implements
that specific feature of a particular chip.

AVRDUDE can be used effectively via the command line to read or write all chip memory
types (eeprom, flash, fuse bits, lock bits, signature bytes) or via an interactive (terminal)
mode. Using AVRDUDE from the command line works well for programming the entire
memory of the chip from the contents of a file, while interactive mode is useful for exploring
memory contents, modifing individual bytes of eeprom, programming fuse/lock bits, etc.

AVRDUDE supports three basic programmer types: Atmel’s STK500, appnote avr910
and the PPI (parallel port interface). PPI represents a class of simple programmers where
the programming lines are directly connected to the PC parallel port. Several pin config-
urations exist for several variations of the PPI programmers, and AVRDUDE can be be
configured to work with them by either specifying the appropriate programmer on the com-
mand line or by creating a new entry in its configuration file. All that’s usually required
for a new entry is to tell AVRDUDE which pins to use for each programming function.

The STK500 and avr910 use the serial port to communicate with the PC and contains on-
board logic to control the programming of the target device. The fundamental difference
between the two types lies in the protocol used to control the programmer. The av910
protocol is very simplistic and can easily be used as the basis for a simple, home made
programer since the firmware is available online. On the other hand, the STK500 protocol
is more robust and complicated and the firmware is not openly available.

1.1 History

AVRDUDE was written by Brian S. Dean under the name of AVRPROG to run on the
FreeBSD Operating System. Brian renamed the software to be called AVRDUDE when
interest grew in a Windows port of the software so that the name did not conflict with
AVRPROG.EXE which is the name of Atmel’s Windows programming software.

The AVRDUDE source now resides in the public CVS repository on savannah.gnu.org
(http://savannah.gnu.org/projects/avrdude/), where it continues to be enhanced and
ported to other systems. In addition to FreeBSD, AVRDUDE now runs on Linux and Win-
dows. The developers behind the porting effort primarily were Ted Roth, Eric Weddington,
and Joerg Wunsch.

And in the spirit of many open source projects, this manual also draws on the work
of others. The initial revision was composed of parts of the original Unix manual page
written by Joerg Wunsch, the original web site documentation by Brian Dean, and from
the comments describing the fields in the AVRDUDE configuration file by Brian Dean. The
texi formatting was modeled after that of the Simulavr documentation by Ted Roth.

Chapter 2: Command Line Options 2

2 Command Line Options

2.1 Option Descriptions

AVRDUDE is a command line tool, used as follows:

avrdude -p partno options ...

Command line options are used to control AVRDUDE’s behaviour. The following options
are recognized:

-p partno

This is the only mandatory option and it tells AVRDUDE what type of part
(MCU) that is connected to the programmer. The partno parameter is the
part’s id listed in the configuration file. Specify -p ? to list all parts in the
configuration file. If a part is unknown to AVRDUDE, it means that there
is no config file entry for that part, but it can be added to the configuration
file if you have the Atmel datasheet so that you can enter the programming
specifications. Currently, the following MCU types are understood:

t15 ATtiny15
1200 AT90S1200
2313 AT90S2313
2333 AT90S2333
2343 AT90S2343 (*)
4414 AT90S4414
4433 AT90S4433
4434 AT90S4434
8515 AT90S8515
8535 AT90S8535
m163 ATMEGA163
m169 ATMEGA169
m128 ATMEGA128
m103 ATMEGA103
m16 ATMEGA16
m8 ATMEGA8

(*) The AT90S2323 uses the same algorithm.

-c programmer-id

Specify the programmer to be used. AVRDUDE knows about several common
programmers. Use this option to specify which one to use. The programmer-id
parameter is the programmer’s id listed in the configuration file. Specify -c ? to
list all programmers in the configuration file. If you have a programmer that is
unknown to AVRDUDE, and the programmer is controlled via the PC parallel
port, there’s a good chance that it can be easily added to the configuration file
without any code changes to AVRDUDE. Simply copy an existing entry and
change the pin definitions to match that of the unknown programmer.

Chapter 2: Command Line Options 3

-C config-file

Use the specified config file for configuration data. This file contains all pro-
grammer and part definitions that AVRDUDE knows about. If you have a
programmer or part that AVRDUDE does not know about, you can add it to
the config file (be sure and submit a patch back to the author so that it can
be incorporated for the next version). If not specified, AVRDUDE reads the
configuration file from /usr/local/etc/avrdude.conf (FreeBSD and Linux). See
Appendix A for the method of searching for the configuration file for Windows.

-e Causes a chip erase to be executed. This will reset the contents of the flash
ROM and EEPROM to the value ‘0xff’, and is basically a prerequisite command
before the flash ROM can be reprogrammed again. The only exception would
be if the new contents would exclusively cause bits to be pro- grammed from
the value ‘1’ to ‘0’. Note that in order to reprogram EERPOM cells, no explicit
prior chip erase is required since the MCU provides an auto-erase cycle in that
case before programming the cell.

-E exitspec[,...]
By default, AVRDUDE leaves the parallel port in the same state at exit as it
has been found at startup. This option modifies the state of the ‘/RESET’ and
‘Vcc’ lines the par- allel port is left at, according to the exitspec arguments
provided, as follows:

reset The ‘/RESET’ signal will be left activated at pro- gram exit, that
is it will be held low, in order to keep the MCU in reset state
afterwards. Note in particular that the programming algorithm for
the AT90S1200 device mandates that the ‘/RESET’ signal is active
before powering up the MCU, so in case an external power supply
is used for this MCU type, a previous invocation of AVRDUDE
with this option specified is one of the possible ways to guarantee
this condition.

noreset The ‘/RESET’ line will be deactivated at program exit, thus al-
lowing the MCU target program to run while the programming
hardware remains connected.

vcc This option will leave those parallel port pins active (i. e. high)
that can be used to supply ‘Vcc’ power to the MCU.

novcc This option will pull the ‘Vcc’ pins of the paral- lel port down at
program exit.

Multiple exitspec arguments can be separated with commas.

-f format

This option specifies the file format for the input or out- put files to be processed.
Format can be one of:

i Intel Hex
s Motorola S-record
r raw binary; little-endian byte order, in the case of the flash ROM

data
a auto detect; valid for input only, and only if the input is not pro-

vided at stdin.

Chapter 2: Command Line Options 4

The default is to use auto detection for input files, and raw binary format for
output files.

-F Normally, AVRDUDE tries to verify that the device signature read from the
part is reasonable before continuing. Since it can happen from time to time that
a device has a broken (erased or overwritten) device signature but is otherwise
operating normally, this options is provided to override the check.

-i filename

Specifies the input file to be programmed into the MCU. Can be specified as ‘-’
to use stdin as the input.

-m memtype

Specifies which program area of the MCU to read or write; allowable values
depend on the MCU being programmed, but most support at least eeprom
for the EEPROM, and flash for the flash ROM. Use the ‘-v’ option on the
command line or the part command from terminal mode to display all the
memory types supported by a particular device. The default is flash.

-n No-write - disables actually writing data to the MCU (useful for debugging
AVRDUDE).

-o filename

Specifies the name of the output file to write, and causes the respective memory
area to be read from the MCU. Can be specified as ‘-’ to write to stdout.

-P port Use port to identify the device to which the programmer is attached. By default
the /dev/ppi0 port is used, but if the programmer type normally connects to
the serial port, the /dev/cuaa0 port is the default. If you need to use a different
parallel or serial port, use this option to spec- ify the alternate port name.

-t Tells AVRDUDE to enter the interactive “terminal” mode instead of up- or
downloading files. See below for a detailed description of the terminal mode.

-v Enable verbose output.

-V Disable automatic verify check when uploading data.

-y Tells AVRDUDE to use the last four bytes of the connected parts’ EEPROM
memory to track the number of times the device has been erased. When this
option is used and the ‘-e’ flag is specified to generate a chip erase, the previous
counter will be saved before the chip erase, it is then incremented, and written
back after the erase cycle com- pletes. Presumably, the device would only be
erased just before being programmed, and thus, this can be utilized to give an
indication of how many erase-rewrite cycles the part has undergone. Since the
FLASH memory can only endure a finite number of erase-rewrite cycles, one
can use this option to track when a part is nearing the limit. The typ- ical limit
for Atmel AVR FLASH is 1000 cycles. Of course, if the application needs the
last four bytes of EEPROM mem- ory, this option should not be used.

-Y cycles

Instructs AVRDUDE to initialize the erase-rewrite cycle counter residing at the
last four bytes of EEPROM memory to the specified value. If the application
needs the last four bytes of EEPROM memory, this option should not be used.

Chapter 2: Command Line Options 5

2.2 Example Command Line Invocations

Download the file m128diag.hex to the ATmega128 chip using the STK500 programmer
connected to the default serial port:

� �
% avrdude -p m128 -c stk500 -y -e -i m128diag.hex

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9702
avrdude: erasing chip
avrdude: erase-rewrite cycle count is now 52
avrdude: done.
avrdude: reading input file "m128diag.hex"
avrdude: input file m128diag.hex auto detected as Intel Hex
avrdude: writing flash (18130 bytes):
18175
avrdude: 18176 bytes of flash written
avrdude: verifying flash memory against m128diag.hex:
avrdude: reading on-chip flash data:
18175
avrdude: verifying ...
avrdude: 18176 bytes of flash verified

avrdude done. Thank you.

%
 	
Upload the flash memory from the ATmega128 connected to the STK500 programmer and
save it in raw binary format in the file named m128diag.flash:

� �
% avrdude -p m128 -c stk500 -f r -o m128diag.flash

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9702
avrdude: current erase-rewrite cycle count is 52 (if being tracked)
avrdude: reading flash memory:
131071
avrdude: writing output file "m128diag.flash"

avrdude done. Thank you.

%
 	

Chapter 3: Terminal Mode Operation 6

3 Terminal Mode Operation

AVRDUDE has an interactive mode called terminal mode that is enabled by the ‘-t’
option. This mode allows one to enter interactive commands to display and modify the
various device memories, perform a chip erase, display the device signature bytes and part
parameters, and to send raw programming commands. Commands and parameters may be
abbreviated to their shortest unambiguous form. Terminal mode also supports a command
history so that previously entered commands can be recalled and edited.

3.1 Terminal Mode Commands

The following commands are implemented:

dump memtype addr nbytes

Read nbytes from the specified memory area, and display them in the usual
hexadecimal and ASCII form.

dump Continue dumping the memory contents for another nbytes where the previous
dump command left off.

write memtype addr byte1 ... byteN

Manually program the respective memory cells, starting at address addr, using
the values byte1 through byteN. This feature is not implemented for bank-
addressed memories such as the flash memory of ATMega devices.

erase Perform a chip erase.

send b1 b2 b3 b4

Send raw instruction codes to the AVR device. If you need access to a feature
of an AVR part that is not directly supported by AVRDUDE, this command
allows you to use it, even though AVRDUDE does not implement the command.

sig Display the device signature bytes.

part Display the current part settings.

?
help Give a short on-line summary of the available commands.

quit Leave terminal mode and thus AVRDUDE.

3.2 Terminal Mode Examples

Display part parameters, modify eeprom cells, perform a chip erase:

Chapter 3: Terminal Mode Operation 7� �
% avrdude -p m128 -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9702
avrdude: current erase-rewrite cycle count is 52 (if being tracked)
avrdude> part
>>> part

AVR Part : ATMEGA128
Chip Erase delay : 9000 us
PAGEL : PD7
BS2 : PA0
RESET disposition : dedicated
RETRY pulse : SCK
serial program mode : yes
parallel program mode : yes
Memory Detail :

Page Polled
Memory Type Paged Size Size #Pages MinW MaxW ReadBack
----------- ------ ------ ---- ------ ----- ----- ---------
eeprom no 4096 8 0 9000 9000 0xff 0xff
flash yes 131072 256 512 4500 9000 0xff 0x00
lfuse no 1 0 0 0 0 0x00 0x00
hfuse no 1 0 0 0 0 0x00 0x00
efuse no 1 0 0 0 0 0x00 0x00
lock no 1 0 0 0 0 0x00 0x00
calibration no 1 0 0 0 0 0x00 0x00
signature no 3 0 0 0 0 0x00 0x00

avrdude> dump eeprom 0 16
>>> dump eeprom 0 16
0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> write eeprom 0 1 2 3 4
>>> write eeprom 0 1 2 3 4

avrdude> dump eeprom 0 16
>>> dump eeprom 0 16
0000 01 02 03 04 ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> erase
>>> erase
avrdude: erasing chip
avrdude> dump eeprom 0 16
>>> dump eeprom 0 16
0000 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude>
 	

Chapter 3: Terminal Mode Operation 8

Program the fuse bits of an ATmega128 (disable M103 compatibility, enable high speed
external crystal, enable brown-out detection). First display the factory defaults, then re-
program:

� �
% avrdude -p m128 -c stk500 -t

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9702
avrdude: current erase-rewrite cycle count is 52 (if being tracked)
avrdude> d efuse
>>> d efuse
0000 fd |. |

avrdude> d hfuse
>>> d hfuse
0000 99 |. |

avrdude> d lfuse
>>> d lfuse
0000 e1 |. |

avrdude> w efuse 0 0xff
>>> w efuse 0 0xff

avrdude> w hfuse 0 0x89
>>> w hfuse 0 0x89

avrdude> w lfuse 0 0x2e
>>> w lfuse 0 0x2e

avrdude>
 	

Chapter 4: Configuration File 9

4 Configuration File

AVRDUDE reads a configuration file upon startup which describes all of the parts and
programmers that it knows about. The advantage of this is that if you have a chip that
is not currently supported by AVRDUDE, you can add it to the configuration file without
waiting for a new release of AVRDUDE. Likewise, if you have a parallel port programmer
that is not supported by AVRDUDE, chances are good that you can copy and existing
programmer definition, and with only a few changes, make your programmer work with
AVRDUDE.

AVRDUDE first looks for a system wide configuration file in a platform dependent
location. On Unix, this is usually /usr/local/etc/avrdude.conf, while on Windows it
is usally in the same location as the executable file. The name of this file can be changed
using the ‘-C’ command line option. After the system wide configuration file is parsed,
AVRDUDE looks for a per-user configuration file to augment or override the system wide
defaults. On Unix, the per-user file is .avrduderc within the user’s home directory. On
Windows, this file is the avrdude.rc file located in the same directory as the executable.

4.1 AVRDUDE Defaults

default_parallel = "default-parallel-device";
Assign the default parallel port device. Can be overidden using the ‘-P’ option.

default_serial = "default-serial-device";
Assign the default serial port device. Can be overidden using the ‘-P’ option.

default_programmer = "default-programmer-id";
Assign the default programmer id. Can be overidden using the ‘-c’ option.

4.2 Programmer Definitions

The format of the programmer definition is as follows:

programmer
id = <id1> [, <id2> [, <id3>] ...] ; # <idN> are quoted strings
desc = <description> ; # quoted string
type = par | stk500 ; # programmer type
vcc = <num1> [, <num2> ...] ; # pin number(s)
reset = <num> ; # pin number
sck = <num> ; # pin number
mosi = <num> ; # pin number
miso = <num> ; # pin number
errled = <num> ; # pin number
rdyled = <num> ; # pin number
pgmled = <num> ; # pin number
vfyled = <num> ; # pin number

;

Chapter 4: Configuration File 10

4.3 Part Definitions

part
id = <id> ; # quoted string
desc = <description> ; # quoted string
devicecode = <num> ; # numeric
chip_erase_delay = <num> ; # micro-seconds
pagel = <num> ; # pin name in hex, i.e., 0xD7
bs2 = <num> ; # pin name in hex, i.e., 0xA0
reset = dedicated | io;
retry_pulse = reset | sck;
pgm_enable = <instruction format> ;
chip_erase = <instruction format> ;
memory <memtype>

paged = <yes/no> ; # yes / no
size = <num> ; # bytes
page_size = <num> ; # bytes
num_pages = <num> ; # numeric
min_write_delay = <num> ; # micro-seconds
max_write_delay = <num> ; # micro-seconds
readback_p1 = <num> ; # byte value
readback_p2 = <num> ; # byte value
pwroff_after_write = <yes/no> ; # yes / no
read = <instruction format> ;
write = <instruction format> ;
read_lo = <instruction format> ;
read_hi = <instruction format> ;
write_lo = <instruction format> ;
write_hi = <instruction format> ;
loadpage_lo = <instruction format> ;
loadpage_hi = <instruction format> ;
writepage = <instruction format> ;

;
;

4.3.1 Instruction Format

Instruction formats are specified as a comma seperated list of string values containing
information (bit specifiers) about each of the 32 bits of the instruction. Bit specifiers may
be one of the following formats:

1 The bit is always set on input as well as output

0 the bit is always clear on input as well as output

x the bit is ignored on input and output

a the bit is an address bit, the bit-number matches this bit specifier’s position
within the current instruction byte

Chapter 4: Configuration File 11

aN the bit is the Nth address bit, bit-number = N, i.e., a12 is address bit 12 on
input, a0 is address bit 0.

i the bit is an input data bit

o the bit is an output data bit

Each instruction must be composed of 32 bit specifiers. The instruction specification
closely follows the instruction data provided in Atmel’s data sheets for their parts. For
example, the EEPROM read and write instruction for an AT90S2313 AVR part could be
encoded as:

read = "1 0 1 0 0 0 0 0 x x x x x x x x",
"x a6 a5 a4 a3 a2 a1 a0 o o o o o o o o";

write = "1 1 0 0 0 0 0 0 x x x x x x x x",
"x a6 a5 a4 a3 a2 a1 a0 i i i i i i i i";

4.4 Other Notes

• The devicecode parameter is the device code used by the STK500 and are obtained
from the software section (avr061.zip of Atmel’s AVR061 application note available
from http://www.atmel.com/atmel/acrobat/doc2525.pdf.

• Not all memory types will implement all instructions.
• AVR Fuse bits and Lock bits are implemented as a type of memory.
• Example memory types are: flash, eeprom, fuse, lfuse (low fuse), hfuse (high fuse),

efuse (extended fuse), signature, calibration, lock.
• The memory type specified on the AVRDUDE command line must match one of the

memory types defined for the specified chip.
• The pwroff_after_write flag causes AVRDUDE to attempt to power the device off

and back on after an unsuccessful write to the affected memory area if VCC programmer
pins are defined. If VCC pins are not defined for the programmer, a message indicating
that the device needs a power-cycle is printed out. This flag was added to work around
a problem with the at90s4433/2333’s; see the at90s4433 errata at:
http://www.atmel.com/atmel/acrobat/doc1280.pdf

Appendix A: Platform Dependent Information 12

Appendix A Platform Dependent Information

A.1 Unix

A.1.1 Unix Installation

To build and install from the source tarball on Unix like systems:
$ gunzip -c avrdude-4.1.0.tar.gz | tar xf -
$ cd avrdude-4.1.0
$./configure
$ make
$ su root -c ’make install’

The default location of the install is into /usr/local so you will need to be sure that
/usr/local/bin is in your PATH environment variable.

If you do not have root access to your system, you can do the the following instead:
$ gunzip -c avrdude-4.1.0.tar.gz | tar xf -
$ cd avrdude-4.1.0
$./configure --prefix=$HOME/local
$ make
$ make install

A.1.1.1 FreeBSD Installation

AVRDUDE is installed via the FreeBSD Ports Tree as follows:
% su - root
cd /usr/ports/devel/avrdude
make install

If you wish to install from a pre-built package instead of the source, you can use the
following instead:

% su - root
pkg_add -r avrdude

Of course, you must be connected to the Internet for these methods to work, since that
is where the source as well as the pre-built package is obtained.

A.1.1.2 Linux Installation

On rpm based linux systems (such as RedHat, SUSE, Mandrake, etc), you can build and
install the rpm binaries directly from the tarball:

$ su - root
rpmbuild -tb avrdude-4.1.0.tar.gz
rpm -Uvh /usr/src/redhat/RPMS/i386/avrdude-4.1.0-1.i386.rpm

Note that the path to the resulting rpm package, differs from system to system. The
above example is specific to RedHat.

Appendix A: Platform Dependent Information 13

A.1.2 Unix Configuration Files

When AVRDUDE is build using the default ‘--prefix’ configure option, the default con-
figuration file for a Unix system is located at /usr/local/etc/avrdude.conf. This can be
overridden by using the ‘-C’ command line option. Additionally, the user’s home directory
is searched for a file named .avrduderc, and if found, is used to augment the system default
configuration file.

A.1.2.1 FreeBSD Configuration Files

When AVRDUDE is installed using the FreeBSD ports system, the system configuration
file is always /usr/local/etc/avrdude.conf.

A.1.2.2 Linux Configuration Files

When AVRDUDE is installed using from an rpm package, the system configuration file will
be always be /etc/avrdude.conf.

A.1.3 Unix Port Names

The parallel and serial port device file names are system specific. The following table lists
the default names for a given system.

System Default Parallel Port Default Serial Port
FreeBSD /dev/ppi0 /dev/cuaa0
Linux /dev/parport0 /dev/ttyS0

On FreeBSD systems, AVRDUDE uses the ppi(4) interface for accessing the parallel
port and the sio(4) driver for serial port access.

On Linux systems, AVRDUDE uses the ppdev interface for accessing the parallel port
and the tty driver for serial port access.

A.1.4 Unix Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Note that these locations can be altered by various configure options such as ‘--prefix’.

A.2 Windows

Appendix A: Platform Dependent Information 14

A.2.1 Installation

A Windows executable of avrdude is included in WinAVR which can be found at
http://sourceforge.net/projects/winavr. WinAVR is a suite of executable, open
source software development tools for the AVR for the Windows platform.

To build avrdude from the source You must have Cygwin (http://www.cygwin.com/).
To build and install from the source tarball for Windows (using Cygwin):

$ set PREFIX=<your install directory path>
$ export PREFIX
$ gunzip -c avrdude-4.1.0.tar.gz | tar xf -
$ cd avrdude-4.1.0
$./configure LDFLAGS="-static" --prefix=$PREFIX --datadir=$PREFIX
--sysconfdir=$PREFIX/bin --enable-versioned-doc=no
$ make
$ make install

A.2.2 Configuration Files

A.2.2.1 Configuration file names

AVRDUDE on Windows looks for a system configuration file name of avrdude.conf and
looks for a user override configuration file of avrdude.rc.

A.2.2.2 How AVRDUDE finds the configuration files.

AVRDUDE on Windows has a different way of searching for the system and user configu-
ration files. Below is the search method for locating the configuration files:
1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory. On Windows NT, the name of this directory is

SYSTEM32.
4. Windows NT: The 16-bit Windows system directory. The name of this directory is

SYSTEM.
5. The Windows directory.
6. The directories that are listed in the PATH environment variable.

A.2.3 Port Names

A.2.3.1 Serial Ports

When you select a serial port (i.e. when using an STK500) use the Windows serial port
device names such as: com1, com2, etc.

Appendix A: Platform Dependent Information 15

A.2.3.2 Parallel Ports

AVRDUDE will only accept 3 Windows parallel port names: lpt1, lpt2, or lpt3. Each of
these names corresponds to a fixed parallel port base address:

lpt1 0x378

lpt2 0x278

lpt3 0x3BC

On your desktop PC, lpt1 will be the most common choice. If you are using a laptop,
you might have to use lpt3 instead of lpt1. Select the name of the port the corresponds to
the base address of the parallel port that you want.

A.2.4 Using the parallel port

A.2.4.1 Windows NT/2K/XP

On Windows NT, 2000, and XP user applications cannot directly access the parallel port.
However, kernel mode drivers can access the parallel port. giveio.sys is a driver that can
allow user applications to set the state of the parallel port pins.

Before using AVRDUDE, the giveio.sys driver must be loaded. The accompanying
command-line program, loaddrv.exe, can do just that.

To make things even easier there are 3 batch files that are also included:
1. install giveio.bat Install and start the giveio driver.
2. status giveio.bat Check on the status of the giveio driver.
3. remove giveio.bat Stop and remove the giveio driver from memory.

These 3 batch files calls the loaddrv program with various options to install, start, stop,
and remove the driver.

When you first execute install giveio.bat, loaddrv.exe and giveio.sys must be in the
current directory. When install giveio.bat is executed it will copy giveio.sys from your
current directory to your Windows directory. It will then load the driver from the Windows
directory. This means that after the first time install giveio is executed, you should be able
to subsequently execute the batch file from any directory and have it successfully start the
driver.

A.2.4.2 Windows 95/98

On Windows 95 and 98 the giveio.sys driver is not needed.

A.2.5 Documentation

AVRDUDE installs a manual page as well as info, HTML and PDF documentation. The
manual page is installed in /usr/local/man/man1 area, while the HTML and PDF doc-
umentation is installed in /usr/local/share/doc/avrdude directory. The info manual is
installed in /usr/local/info/avrdude.info.

Appendix A: Platform Dependent Information 16

Note that these locations can be altered by various configure options such as ‘--prefix’
and ‘--datadir’.

A.2.6 Credits.

Thanks to:
• Dale Roberts for the giveio driver.
• Paula Tomlinson for the loaddrv sources.
• Chris Liechti <cliechti@gmx.net> for modifying loaddrv to be command line driven and

for writing the batch files.

	Introduction
	History

	Command Line Options
	Option Descriptions
	Example Command Line Invocations

	Terminal Mode Operation
	Terminal Mode Commands
	Terminal Mode Examples

	Configuration File
	AVRDUDE Defaults
	Programmer Definitions
	Part Definitions
	Instruction Format

	Other Notes

	Platform Dependent Information
	Unix
	Unix Installation
	FreeBSD Installation
	Linux Installation

	Unix Configuration Files
	FreeBSD Configuration Files
	Linux Configuration Files

	Unix Port Names
	Unix Documentation

	Windows
	Installation
	Configuration Files
	Configuration file names
	How AVRDUDE finds the configuration files.

	Port Names
	Serial Ports
	Parallel Ports

	Using the parallel port
	Windows NT/2K/XP
	Windows 95/98

	Documentation
	Credits.

