
networkx

API Documentation

August 21, 2005

Contents

Contents 1

1 Package networkx 5

1.1 Modules . 5
1.2 Variables . 7

2 Module networkx.base 8

2.1 Functions . 12
2.2 Variables . 13
2.3 Class DiGraph . 13

2.3.1 Methods . 15
2.4 Class Graph . 21

2.4.1 Methods . 21
2.5 Class NetworkXError . 29

2.5.1 Methods . 29
2.6 Class NetworkXException . 29

2.6.1 Methods . 29

3 Module networkx.centrality 30

3.1 Functions . 30
3.2 Variables . 31

4 Module networkx.cliques 32

4.1 Functions . 32
4.2 Variables . 35

5 Module networkx.cluster 36

5.1 Functions . 36
5.2 Variables . 36

6 Module networkx.cores 38

6.1 Functions . 38
6.2 Variables . 38

1

CONTENTS CONTENTS

7 Package networkx.drawing 39

7.1 Modules . 39

8 Module networkx.drawing.layout 40

8.1 Functions . 40
8.2 Variables . 40

9 Module networkx.drawing.nx pydot 42

9.1 Functions . 42
9.2 Variables . 42

10 Module networkx.drawing.nx pylab 44

10.1 Functions . 44
10.2 Variables . 46

11 Module networkx.drawing.nx vtk 47

11.1 Functions . 47
11.2 Variables . 47

12 Package networkx.generators 48

12.1 Modules . 48

13 Module networkx.generators.atlas 49

13.1 Functions . 49
13.2 Variables . 49

14 Module networkx.generators.classic 50

14.1 Functions . 50
14.2 Variables . 54

15 Module networkx.generators.degree seq 55

15.1 Functions . 55
15.2 Variables . 58

16 Module networkx.generators.geometric 59

16.1 Functions . 59
16.2 Variables . 59

17 Module networkx.generators.random graphs 60

17.1 Functions . 60
17.2 Variables . 65

18 Module networkx.generators.small 66

18.1 Functions . 66
18.2 Variables . 70

19 Module networkx.hybrid 71

19.1 Functions . 71
19.2 Variables . 71

2

CONTENTS CONTENTS

20 Module networkx.io 72

20.1 Functions . 72
20.2 Variables . 74

21 Module networkx.isomorph 75

21.1 Functions . 75
21.2 Variables . 75

22 Module networkx.operators 76

22.1 Functions . 76
22.2 Variables . 79

23 Module networkx.paths 80

23.1 Functions . 80
23.2 Variables . 82

24 Module networkx.queues 84

24.1 Variables . 84
24.2 Class BFS . 84

24.2.1 Methods . 84
24.3 Class DFS . 85

24.3.1 Methods . 85
24.4 Class FIFO . 85

24.4.1 Methods . 85
24.5 Class LIFO . 86

24.5.1 Methods . 86
24.6 Class Priority . 86

24.6.1 Methods . 86
24.7 Class Random . 87

24.7.1 Methods . 87
24.8 Class RFS . 87

24.8.1 Methods . 87

25 Module networkx.release 88

25.1 Variables . 88

26 Module networkx.search 89

26.1 Functions . 89
26.2 Variables . 91

27 Module networkx.search class 92

27.1 Variables . 92
27.2 Class Forest . 92

27.2.1 Methods . 93
27.3 Class Length . 93

27.3.1 Methods . 93
27.4 Class Postorder . 94

27.4.1 Methods . 94
27.5 Class Predecessor . 95

3

CONTENTS CONTENTS

27.5.1 Methods . 95
27.6 Class Preorder . 95

27.6.1 Methods . 96
27.7 Class Search . 96

27.7.1 Methods . 97
27.8 Class Successor . 98

27.8.1 Methods . 98

28 Module networkx.spectrum 100

28.1 Functions . 100
28.2 Variables . 100

29 Module networkx.threshold 101

29.1 Functions . 101
29.2 Variables . 106

30 Module networkx.utils 108

30.1 Functions . 108
30.2 Variables . 109

31 Module networkx.xbase 110

31.1 Variables . 114
31.2 Class XDiGraph . 115

31.2.1 Methods . 117
31.3 Class XGraph . 125

31.3.1 Methods . 126

Index 134

4

Package networkx

1 Package networkx

NetworkX

NetworkX (NX) is a Python package for the creation, manipulation, and

study of the structure, dynamics, and functions of complex networks.

Using

Just write in Python

>>> import networkx as NX

>>> G=NX.Graph()

>>> G.add edge(1,2)

>>> G.add node("spam")

>>> print G.nodes()

[1, 2, ’spam’]

>>> print G.edges()

[(1, 2)]

See networkx.base for the details of the API.

1.1 Modules

• base:
Base classes for graphs and digraphs.

(Section 2, p. 8)
• centrality:
Centrality measures.

(Section 3, p. 30)
• cliques:
Cliques - Find and manipulate cliques of graphs

(Section 4, p. 32)
• cluster:
Compute clustering coefficients and transitivity of graphs.

(Section 5, p. 36)
• cores:
Find and manipulate the k-cores of a graph

(Section 6, p. 38)
• drawing (Section 7, p. 39)

– layout:
Layout (positioning) algorithms for graph drawing.

(Section 8, p. 40)
– nx pydot:

Import and export networkx networks to dot format using pydot.

(Section 9, p. 42)
– nx pylab:

Draw networks with matplotlib/pylab.

5

Package networkx Modules

(Section 10, p. 44)
– nx vtk:

Draw networks in 3d with vtk.

(Section 11, p. 47)
• generators:
A package for generating various graphs in networkx.

(Section 12, p. 48)
– atlas:

Generators for the small graph atlas.

(Section 13, p. 49)
– classic:

Generators for some classic graphs.

(Section 14, p. 50)
– degree seq:

Generate graphs with a given degree sequence.

(Section 15, p. 55)
– geometric:

Generators for geometric graphs.

(Section 16, p. 59)
– random graphs:

Generators for random graphs

(Section 17, p. 60)
– small:

Various small and named graphs, together with some compact generators.

(Section 18, p. 66)
• hybrid:
Hybrid

(Section 19, p. 71)
• io:
Read and write graphs and networks.

(Section 20, p. 72)
• isomorph:
Fast checking to see if graphs are not isomorphic.

(Section 21, p. 75)
• operators:
Operations on graphs; including union, complement, subgraph.

(Section 22, p. 76)
• paths:
Shortest paths, diameter, radius, eccentricity, and related methods.

(Section 23, p. 80)
• queues:
Helper queues for use in graph searching.

(Section 24, p. 84)
• release:
Release data for NetworkX.

(Section 25, p. 88)
• search:
Search algorithms, shortest path, spanning trees, etc.

6

Package networkx Variables

(Section 26, p. 89)
• search class:
Graph search classes

(Section 27, p. 92)
• spectrum:
Laplacian, adjacency matrix, and spectrum of graphs.

(Section 28, p. 100)
• threshold:
Threshold Graphs - Creation, manipulation and identification.

(Section 29, p. 101)
• utils:
Utilities for networkx package

(Section 30, p. 108)
• xbase:
Methods for general graphs (XGraph) and digraphs (XDiGraph)

allowing self-loops, multiple edges, arbitrary (hashable) objects as

nodes and arbitrary objects associated with edges.

(Section 31, p. 110)

1.2 Variables

Name Description

author Value: ’Aric Hagberg <hagberg@lanl.gov>\nDan Schult <-

dschult@colgate.edu>\nPieter Sw...

(type=str)
date Value: ’Sun Aug 21 08:07:12 2005’ (type=str)
license Value: ’LGPL’ (type=str)
version Value: ’0.24’ (type=str)

7

Module networkx.base

2 Module networkx.base

Base classes for graphs and digraphs.

Unless otherwise specified, by graph we mean a simple graph that has

no self-loops or multiple (parallel) edges. (See the module xbase.py

for graph classes XGraph and XDiGraph that allow for self-loops,

mutiple edges and arbitrary objects associated with edges.)

The following classes are provided:

Graph

The basic operations common to graph-like classes.

DiGraph

Operations common to digraphs, a graph with directed edges.

Subclass of Graph.

An empty graph or digraph is created with

G=Graph()

G=DiGraph()

This module implements graphs using data structures based on an

adjacency list implemented as a node-centric dictionary of

dictionaries. The dictionary contains keys corresponding to the nodes

and the values are dictionaries of neighboring node keys with the

value 1. This allows fast addition, deletion and lookup of nodes and

neighbors in large graphs. The underlying datastructure should only

be visible in this module. In all other modules, instances of

graph-like objects are manipulated solely via the methods defined here

and not by acting directly on the datastructure.

The following notation is used throughout NetworkX documentation and

code: (we use mathematical notation n,v,w,... to indicate a node,

v=vertex=node).

G,G1,G2,H,etc:

Graphs

n,n1,n2,u,v,v1,v2:

nodes (v stands for vertex=node)

8

Module networkx.base

nlist,vlist:

a list of nodes

nbunch:

a "bunch" of nodes (vertices). an nbunch is any iterable container

of nodes that is not itself a node in the graph. (It can be an

iterable or an iterator, e.g. a list, set, graph, file, etc..)

e=(n1,n2):

an edge (a python "2-tuple"), also written u-v. In Xgraph

G.add edge(n1,n2) is equivalent to add edge(n1,n2,1). However,

G.delete edge(n1,n2) will delete all edges between n1 and n2.

elist:

a list of edges (as tuples)

ebunch:

a bunch of edges (as tuples)

an ebunch is any iterable (non-string) container

of edge-tuples. (Similar to nbunch, also see add edge).

Warning:

The ordering of objects within an arbitrary nbunch/ebunch

can be machine- or implementation-dependent.

Algorithms should treat an arbitrary nbunch/ebunch as

once-through-and-exhausted iterable containers.

len(nbunch) and len(ebunch) need not be defined.

Methods

The Graph class provides rudimentary graph operations:

Mutating Graph methods

G.add node(n), G.add nodes from(nbunch)

G.delete node(n), G.delete nodes from(nbunch)

G.add edge(n1,n2), G.add edge(e), where e=(u,v)

9

Module networkx.base

G.add edges from(ebunch)

G.delete edge(n1,n2), G.delete edge(e), where e=(u,v)

G.delete edges from(ebunch)

G.add path(nlist)

G.add cycle(nlist)

G.clear()

G.subgraph(nbunch,inplace=True)

Non-mutating Graph methods

len(G)

n in G (equivalent to G.has node(n))

G.has node(n)

G.nodes()

G.nodes iter()

G.has edge(n1,n2)

G.edges(), G.edges(n), G.edges(nbunch)

G.edges iter(), G.edges iter(n), G.edges iter(nbunch)

G.neighbors(n)

G[n] (equivalent to G.neighbors(n))

G.neighbors iter(n) # iterator over neighbors

G.number of nodes()

G.number of edges()

G.degree(n), G.degree(nbunch)

G.degree iter(n), G.degree iter(nbunch)

G.is directed()

10

Module networkx.base

Methods returning a new graph

G.subgraph(nbunch)

G.subgraph(nbunch,create using=H)

G.copy()

G.to undirected()

G.to directed()

Examples

Create an empty graph structure (a "null graph") with

zero nodes and zero edges.

>>> from networkx import *

>>> G=Graph()

G can be grown in several ways.

By adding one node at a time:

>>> G.add node(1)

by adding a list of nodes:

>>> G.add nodes from([2,3])

by using an iterator:

>>> G.add nodes from(xrange(100,110))

or by adding any nbunch of nodes (see above definition of an nbunch):

>>> H=path graph(10)

>>> G.add nodes from(H)

(H can be another graph, or dict, or set, or even a file.)

>>> G.add node(H)

(Any hashable object can represent a node, e.g. a Graph,

a customized node object, etc.)

G can also be grown by adding one edge at a time:

>>> G.add edge((1,2))

11

Module networkx.base Functions

by adding a list of edges:

>>> G.add edges from([(1,2),(1,3)])

or by adding any ebunch of edges (see above definition of an ebunch):

>>> G.add edges from(H.edges())

There are no complaints when adding existing nodes or edges:

>>> G=Graph()

>>> G.add edge([(1,2),(1,3)])

will add new nodes as required.

2.1 Functions

degree(G, nbunch=None, with labels=False)

Return degree of single node or of nbunch of nodes.

If nbunch is ommitted, then return degrees of all nodes.

degree histogram(G)

Return a list of the frequency of each degree value.

The degree values are the index in the list.

Note: the bins are width one, hence len(list) can be large

(Order(number of edges))

density(G)

Return the density of a graph.

density = size/(order*(order-1)/2)

density()=0.0 for an edge-less graph and 1.0 for a complete graph.

edges(G, nbunch=None, with labels=False)

Return list of edges adjacent to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

edges iter(G, nbunch=None, with labels=False)

Return iterator over edges adjacent to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

12

Module networkx.base Class DiGraph

neighbors(G, n, with labels=False)

Return a list of nodes connected to node n.

nodes(G)

Return a copy of the graph nodes in a list.

nodes iter(G)

Return an iterator over the graph nodes.

number of edges(G)

Return the size of a graph = number of edges.

number of nodes(G)

Return the order of a graph = number of nodes.

2.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult(d...

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-24 14:16:40 -0600 (Fri, 24 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1061 $’ (type=str)

2.3 Class DiGraph

builtin .object

networkx.base.Graph

DiGraph

Known Subclasses: XDiGraph

A graph with directed edges. Subclass of Graph.

DiGraph inherits from Graph, overriding the following methods:

init : replaces self.adj with the dicts self.pred and self.succ

13

Module networkx.base Class DiGraph

getitem

add node

delete node

add edge

delete edge

add nodes from

delete nodes from

add edges from

delete edges from

edges iter

degree iter

degree

copy

clear

subgraph

is directed

to directed

to undirected

Digraph adds the following methods to those of Graph:

successors

successors iter

predecessors

predecessors iter

out degree

14

Module networkx.base Class DiGraph

out degree iter

in degree

in degree iter

2.3.1 Methods

init (self, **kwds)

Initialize Graph.

>>> G=Graph(name="empty") creates empty graph G with G.name="empty"

Overrides: networkx.base.Graph. init extit(inherited documentation)

getitem (self, n)

Return the in- and out-neighbors of node n as a list.

This provides digraph G the natural property that G[n] returns

the neighbors of G.

Overrides: networkx.base.Graph. getitem

add edge(self, u, v=None)

Add a single directed edge (u,v) to the digraph.

Can be used in two basic forms:

G.add edge(u,v) or G.add edge((u,v)) are equivalent

forms of adding a single edge between nodes u and

v. Nodes are nor required to exist before adding an

edge; they will be added in silence.

For example, the following examples all add the edge (1,2) to

the digraph G.

>>> G=DiGraph()

>>> G.add edge(1, 2) # explicit two node form

>>> G.add edge((1,2)) # single edge as tuple of two nodes

>>> G.add edges from([(1,2)]) # list of edges form

Overrides: networkx.base.Graph.add edge

15

Module networkx.base Class DiGraph

add edges from(self, ebunch)

Add all the edges in ebunch to the graph.

ebunch: Container of 2-tuples (u,v). The container must be

iterable or an iterator. It is iterated over once. Adding the

same edge twice has no effect and does not raise an exception.

See add edge for an example.

Overrides: networkx.base.Graph.add edges from

add node(self, n)

Add a single node to the digraph.

n can be any hashable object (it is used as a key in a

dictionary). On many platforms this includes mutables

such as Graphs e.g., though one should be careful the hash

doesn’t change during the lifetime of the graph.

>>> G=DiGraph()

>>> K3=complete graph(3)

>>> G.add nodes from(K3) # add the nodes from K3 to G

>>> G.nodes()

[1,2,3]

>>> G.clear()

>>> G.add node(K3) # add the graph K3 as a node in G.

>>> number of nodes(G)

1

Overrides: networkx.base.Graph.add node

add nodes from(self, nbunch)

Add multiple nodes to the digraph.

nbunch:

A container of nodes that will be iterated through

once (thus it can be an iterator or an iterable). A node can

be any hashable object (it is used as a key in a dictionary

Overrides: networkx.base.Graph.add nodes from

clear(self)

Remove name and delete all nodes and edges from digraph.

Overrides: networkx.base.Graph.clear

16

Module networkx.base Class DiGraph

copy(self)

Return a (shallow) copy of the digraph.

Identical to dict.copy() of adjacency dicts pred and succ,

with name and dna copied as well.

Overrides: networkx.base.Graph.copy

degree(self, nbunch=None, with labels=False)

Return degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

degrees of all nodes.

If nbunch is a single node n, return degree of n.

If nbunch is an iterable (non-string) container

of nodes, return a list of values, one for each n in nbunch.

(omitting nbunch or nbunch=None is interpreted as nbunch = all

nodes in graph.)

If with labels==True, then return a dict that maps each n

in nbunch to degree(n).

Any nodes in nbunch that are not in the graph are

(quietly) ignored.

Overrides: networkx.base.Graph.degree

degree iter(self, nbunch=None, with labels=False)

Return iterator that return degree(n) or (n,degree(n))

for all n in nbunch. If nbunch is ommitted, then iterate

over all nodes.

nbunch: a singleton node, a string (which is treated

as a singleton node), or any iterable (non-string)

container of nodes for which len(nbunch) is

defined. For example, a list, dict, set, Graph,

numeric array, or user-defined iterable object.

If with labels=True, iterator will return an (n,degree(n)) tuple of

node and degree.

Any nodes in nbunch but not in the graph will be (quietly) ignored.

Overrides: networkx.base.Graph.degree iter

17

Module networkx.base Class DiGraph

delete edge(self, u, v=None)

Delete the single directed edge (u,v) from the digraph.

Can be used in two basic forms: G.delete edge(u,v) or

G.delete edge((u,v)) are equivalent forms of deleting a

directed edge u->v. If the nodes do not exist; return

without complaining.

Overrides: networkx.base.Graph.delete edge

delete edges from(self, ebunch)

Delete the directed edges in ebunch from the digraph.

ebunch: Container of 2-tuples (u,v). The container must be

iterable or an iterator. It is iterated over once. Edges

that are not in the digraph are ignored.

Overrides: networkx.base.Graph.delete edges from

delete node(self, n)

Delete node n from the digraph.

Attempting to delete a non-existent node will raise a NetworkXError.

Overrides: networkx.base.Graph.delete node

delete nodes from(self, nbunch)

Remove nodes in nbunch from the digraph.

nbunch: an iterable or iterator containing valid (hashable)

node names.

Attempting to delete a non-existent node will raise an exception.

This could mean some nodes in nbunch were deleted and some valid

nodes were not!

Overrides: networkx.base.Graph.delete nodes from

18

Module networkx.base Class DiGraph

edges iter(self, nbunch=None, with labels=False)

Return iterator that iterates once over each edge adjacent

to nodes in nbunch, or over all edges in digraph if no

nodes are specified.

See add node for definition of nbunch.

Those nodes in nbunch that are not in the graph will be

(quietly) ignored.

with labels=True is not supported (in that case

you should probably use neighbors())

Overrides: networkx.base.Graph.edges iter

foo(self)

in degree(self, nbunch=None, with labels=False)

Return in-degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

in-degrees of all nodes.

in degree iter(self, nbunch=None, with labels=False)

Return iterator that return in degree(n) or (n,in degree(n))

for all n in nbunch. If nbunch is ommitted, then iterate

over all nodes.

See degree iter method for Digraph Class for more details.

is directed(self)

Return True if a directed graph.

Overrides: networkx.base.Graph.is directed

neighbors(self, n, with labels=False)

Return a list of all nodes connected to node n.

If with labels=True, return a dict keyed by neighbors.

Overrides: networkx.base.Graph.neighbors

19

Module networkx.base Class DiGraph

neighbors iter(self, n, with labels=False)

Return an iterator over all nodes connected to node n.

If with labels=True, return an iterator of (neighbor, 1) tuples.

Overrides: networkx.base.Graph.neighbors iter

out degree(self, nbunch=None, with labels=False)

Return out-degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

out-degrees of all nodes.

out degree iter(self, nbunch=None, with labels=False)

Return iterator that return out degree(n) or (n,out degree(n))

for all n in nbunch. If nbunch is ommitted, then iterate

over all nodes.

See degree iter method for Digraph Class for more details.

predecessors(self, v, with labels=False)

Return predecessor nodes of v.

predecessors iter(self, v, with labels=False)

Return an iterator for predecessor nodes of v.

reverse(self)

Return a new digraph with the same vertices and edges

as G but with the directions of the edges reversed.

successors(self, v, with labels=False)

Return sucessor nodes of v.

successors iter(self, v, with labels=False)

Return an iterator for successor nodes of v.

to directed(self)

Return a directed representation of the digraph.

This is already directed, so merely return a copy.

Overrides: networkx.base.Graph.to directed

20

Module networkx.base Class Graph

to undirected(self)

Return the undirected representation of the digraph.

A new graph is returned (the underlying graph). The edge u-v

is in the underlying graph if either u->v or v->u is in the

digraph.

Overrides: networkx.base.Graph.to undirected

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr

Inherited from Graph: contains , iter , len , str , add cycle, add path, edge boundary, edges,
has edge, has neighbor, has node, node boundary, nodes, nodes iter, number of edges, number of nodes,
order, print dna, size, subgraph

2.4 Class Graph

builtin .object

Graph

Known Subclasses: DiGraph, XGraph

Graph is a simple graph without any multiple (parallel) edges

or self-loops. Attempting to add either will not change

the graph and will not report an error.

2.4.1 Methods

init (self, **kwds)

Initialize Graph.

>>> G=Graph(name="empty") creates empty graph G with G.name="empty"

Overrides: builtin .object. init

contains (self, n)

Return True if n is a node in graph.

Allows the expression ’n in G’.

Testing whether an unhashable object, such as a list, is in the

dict datastructure (self.adj) will raise a TypeError.

Rather than propagate this to the calling method, just

return False.

21

Module networkx.base Class Graph

getitem (self, n)

Return the neighbors of node n as a list.

This provides graph G the natural property that G[n] returns

the neighbors of G.

iter (self)

Return an iterator over the nodes in G.

This is the iterator for the underlying adjacency dict.

(Allows the expression ’for n in G’)

len (self)

Return the number of nodes in graph.

str (self)
Overrides: builtin .object. str

add cycle(self, nlist)

Add the cycle of nodes in nlist to graph

add edge(self, u, v=None)

Add a single edge (u,v) to the graph.

Can be used in two basic forms:

G.add edge(u,v) or G.add edge((u,v)) are equivalent

forms of adding a single edge between nodes u and

v. Nodes are nor required to exist before adding an

edge; they will be added in silence.

The following examples all add the edge (1,2) to graph G.

>>> G=Graph()

>>> G.add edge(1, 2) # explicit two node form

>>> G.add edge((1,2)) # single edge as tuple of two nodes

>>> G.add edges from([(1,2)]) # add edges from iterable container

22

Module networkx.base Class Graph

add edges from(self, ebunch)

Add all the edges in ebunch to the graph.

ebunch: Container of 2-tuples (u,v). The container must be

iterable or an iterator. It is iterated over once. Adding the

same edge twice has no effect and does not raise an exception.

add node(self, n)

Add a single node n to the graph.

The node n can be any hashable object

(it is used as a key in a dictionary).

On many platforms this includes mutables such as Graphs e.g.,

though one should be careful the hash doesn’t change on mutables.

Examples:

>>> G=Graph()

>>> K3=complete graph(3)

>>> G.add node(1)

>>> G.add node(’Hello’)

>>> G.add node(K3)

>>> G.nodes()

[1, ’Hello’, <networkx.base.Graph object at 0x5f7430>]

add nodes from(self, nbunch)

Add multiple nodes to the graph.

nbunch:

A container of nodes that will be iterated through once

(thus it can be an iterator or an iterable)

Each element of the container should be hashable.

Examples:

>>> G=Graph()

>>> K3=complete graph(3)

>>> G.add nodes from(1)

NetworkXError, Container 1 is not an iterator or iterable. Use add node?

>>> G.add nodes from(’Hello’)

>>> G.add nodes from(K3)

>>> G.nodes()

[’H’, ’e’, ’l’, ’l’, ’o’, 1, 2, 3]

23

Module networkx.base Class Graph

add path(self, nlist)

Add the path through the nodes in nlist to graph

clear(self)

Remove name and delete all nodes and edges from graph.

copy(self)

Return a (shallow) copy of the graph.

Identical to dict.copy() of adjacency dict adj, with name and

dna copied as well.

degree(self, nbunch=None, with labels=False)

Return degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

degrees of all nodes.

The degree of a node is the number of edges attached to that

node.

Can be called in three ways:

G.degree(n): return the degree of node n

G.degree(nbunch): return a list of values, one for each n in nbunch

(nbunch is any iterable container of nodes.)

G.degree(): same as nbunch = all nodes in graph.

If with labels==True, then return a dict that maps each n

in nbunch to degree(n).

Any nodes in nbunch that are not in the graph are

(quietly) ignored.

24

Module networkx.base Class Graph

degree iter(self, nbunch=None, with labels=False)

Return iterator that return degree(n) or (n,degree(n))

for all n in nbunch. If nbunch is ommitted, then iterate

over all nodes.

Can be called in three ways:

G.degree iter(n): return iterator the degree of node n

G.degree iter(nbunch): return a list of values,

one for each n in nbunch (nbunch is any iterable container of nodes.)

G.degree iter(): same as nbunch = all nodes in graph.

If with labels==True, iterator will return an (n,degree(n)) tuple of

node and degree.

Those nodes in nbunch that are not in the graph will be

(quietly) ignored.

delete edge(self, u, v=None)

Delete the single edge (u,v).

Can be used in two basic forms: Both G.delete edge(u,v) and

G.delete edge((u,v)) are equivalent forms of deleting a

single edge between nodes u and

v. Return quietly witoutt complaining if the nodes or the edge

do not exist.

delete edges from(self, ebunch)

Delete the edges in ebunch from the graph.

ebunch: an iterator or iterable of 2-tuples (u,v).

Edges that are not in the graph are ignored.

delete node(self, n)

Delete node n from graph.

Attempting to delete a non-existent node will raise an exception.

25

Module networkx.base Class Graph

delete nodes from(self, nbunch)

Remove nodes in nbunch from graph.

nbunch:

an iterable or iterator containing valid (hashable) node names.

Attempting to delete a non-existent node will raise an exception.

This could mean some nodes got deleted and other valid nodes did

not.

edge boundary(self, nbunch1, nbunch2=None)

Return list of edges (n1,n2) with n1 in nbunch1 and n2 in

nbunch2. If nbunch2 is omitted or nbunch2=None, then nbunch2

is all nodes not in nbunch1.

Nodes in nbunch1 and nbunch2 that are not in the graph are

ignored.

nbunch1 and nbunch2 must be disjoint, else raise an exception.

edges(self, nbunch=None, with labels=False)

Return list of all edges that are adjacent to a node in nbunch,

or a list of all edges in graph if no nodes are specified.

See add node for definition of nbunch.

Those nodes in nbunch that are not in the graph will be

(quietly) ignored.

with labels=True option is not supported because in that case

you should probably use neighbors().

edges iter(self, nbunch=None, with labels=False)

Return iterator that iterates once over each edge adjacent

to nodes in nbunch, or over all edges in graph if no

nodes are specified.

See add node for definition of nbunch.

Those nodes in nbunch that are not in the graph will be

(quietly) ignored.

with labels=True option is not supported because in that case

you should probably use neighbors().

26

Module networkx.base Class Graph

has edge(self, u, v=None)

Return True if graph contains edge u-v.

has neighbor(self, u, v=None)

Return True if node u has neighbor v.

has node(self, n)

Return True if graph has node n.

(duplicates self. contains)

"n in G" is a more readable version of "G.has node(n)"?

is directed(self)

Return True if graph is directed.

neighbors(self, n, with labels=False)

Return a list of nodes connected to node n.

If with labels=True, return a dict keyed by neighbors.

neighbors iter(self, n, with labels=False)

Return an iterator over all neighbors of node n.

If with labels=True, return an iterator of (neighbor, 1) tuples.

node boundary(self, nbunch1, nbunch2=None)

Return list of all nodes on external boundary of nbunch1 that are

in nbunch2. If nbunch2 is omitted or nbunch2=None, then nbunch2

is all nodes not in nbunch1.

Note that by definition the node boundary is external to nbunch1.

Nodes in nbunch1 and nbunch2 that are not in the graph are

ignored.

nbunch1 and nbunch2 must be disjoint (when restricted to the

graph), else a NetworkXError is raised.

nodes(self)

Return a copy of the graph nodes in a list.

27

Module networkx.base Class Graph

nodes iter(self)

Return an iterator over the graph nodes.

number of edges(self)

Return the size of a graph = number of edges.

number of nodes(self)

Return number of nodes.

order(self)

Return the order of a graph = number of nodes.

print dna(self)

Print graph "DNA": a dictionary of graph names and properties.

In this version the dna is provided as a user-defined variable

and should not be relied on.

size(self)

Return the size of a graph = number of edges.

subgraph(self, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: either a singleton node, a string (which is treated

as a singleton node), or any iterable (non-string) container

of nodes for which len(nbunch) is defined. For example, a list,

dict, set, Graph, numeric array, or user-defined iterable object.

Setting inplace=True will return the induced subgraph in original graph

by deleting nodes not in nbunch. This overrides create using.

Warning: this can destroy the graph.

Unless otherwise specified, return a new graph of the same

type as self. Use (optional) create using=R to return the

resulting subgraph in R. R can be an existing graph-like

object (to be emptied) or R can be a call to a graph object,

e.g. create using=DiGraph(). See documentation for empty graph()

Note: use subgraph(G) rather than G.subgraph() to access the more

general subgraph() function from the operators module.

28

Module networkx.base Class NetworkXError

to directed(self)

Return a directed representation of the graph G.

A new digraph is returned with the same name, same nodes and

with each edge u-v represented by two directed edges

u->v and v->u.

to undirected(self)

Return the undirected representation of the graph G.

This graph is undirected, so merely return a copy.

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr

2.5 Class NetworkXError

exceptions.Exception

networkx.base.NetworkXException

NetworkXError

Exception for a serious error in NetworkX

2.5.1 Methods

Inherited from Exception: init , getitem , str

2.6 Class NetworkXException

exceptions.Exception

NetworkXException

Known Subclasses: NetworkXError

Base class for exceptions in NetworkX.

2.6.1 Methods

Inherited from Exception: init , getitem , str

29

Module networkx.centrality

3 Module networkx.centrality

Centrality measures.

3.1 Functions

betweenness centrality(G, v=False, cutoff=False, normalized=True)

Betweenness centrality for nodes.

The fraction of number of shortests paths that go

through each node.

>>> b=betweeness centrality(G)

Returns a dictionary of betweenness values keyed by node.

The betweenness is normalized to be between [0,1].

The algorithm is described in brandes-2003-faster.

If normalized=False the resulting betweenness is not normalized.

Reference:

brandes-2003-faster

Ulrik Brandes,

Faster Evaluation of Shortest-Path Based Centrality Indices, 2003,

available at http://citeseer.nj.nec.com/brandes00faster.html

closeness centrality(G, v=False)

Closeness centrality for nodes (1/average distance to all nodes).

Returns a dictionary of closeness centrality values keyed by node.

The closeness centrality is normalized to be bewtween [0,1].

degree centrality(G, v=False)

Degree centrality for nodes (fraction of nodes connected to).

Returns a dictionary of degree centrality values keyed by node.

The degree centrality is normalized to be bewtween [0,1].

30

Module networkx.centrality Variables

edge betweenness(G, nodes=False, cutoff=False)

Edge Betweenness

WARNING:

This module is for demonstration and testing purposes.

3.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-07-06 08:02:28 -0600 (Wed, 06 Jul -

2005) $’

(type=str)
revision Value: ’$Revision: 1064 $’ (type=str)

31

Module networkx.cliques

4 Module networkx.cliques

Cliques - Find and manipulate cliques of graphs

Note that finding the largest clique of a graph has been

shown to be an NP complete problem so the algorithms here

could take a LONG time to run. In practice it hasn’t been

too bad for the graphs tested.

4.1 Functions

cliques containing node(G, nodes=None, cliques=None, with labels=False)

Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes.

Returns a dict keyed by node if "with labels=True".

Optional list of cliques can be input if already computed.

32

Module networkx.cliques Functions

find cliques(G)

Find cliques algorithm based on Bron & Kerbosch

This algorithm searchs for maximal cliques in a graph.

maximal cliques are the largest complete subgraph containing

a given point. The largest maximal clique is sometimes called

the maximum clique.

This algorithm produces the list of maximal cliques each

of which are a list of the members of the clique.

Based on Algol algorithm published by Bron & Kerbosch

A C version is available as part of the rambin package.

http://www.ram.org/computing/rambin/rambin.html

Reference:

@article{362367,
author = {Coen Bron and Joep Kerbosch},
title = {Algorithm 457: finding all cliques of an undirected graph},
journal = {Commun. ACM},
volume = {16},
number = {9},
year = {1973},
issn = {0001-0782},
pages = {575--577},
doi = {http://doi.acm.org/10.1145/362342.362367},
publisher = {ACM Press},
}

graph clique number(G, cliques=None)

Return the clique number (size the largest clique) for G.

Optional list of cliques can be input if already computed.

graph number of cliques(G, cliques=None)

Returns the number of maximal cliques in G

Optional list of cliques can be input if already computed.

33

Module networkx.cliques Functions

make clique bipartite(G, fpos=None, create using=None, **kwds)

Create a bipartite clique graph from a graph G.

Nodes of G are retained as the "bottom nodes" of B and

cliques of G become "top nodes" of B.

Edges are present if a bottom node belongs to the clique

represented by the top node.

Returns a Graph with additional attribute B.node type

which is "Bottom" or "Top" appropriately.

if fpos is not None, a second additional attribute B.pos

is created to hold the position tuple of each node for viewing

the bipartite graph.

make max clique graph(G, create using=None, **kwds)

Create the maximal clique graph of a graph.

It finds the maximal cliques and treats these as nodes.

The nodes are connected if they have common members in

the original graph. Theory has done a lot with clique

graphs, but I haven’t seen much on maximal clique graphs.

Note: This should be the same as make clique bipartite followed

by project up, but it saves all the intermediate stuff.

node clique number(G, nodes=None, with labels=False, cliques=None)

Returns the size of the largest maximal clique containing

each given node.

Returns a single or list depending on input nodes.

Returns a dict keyed by node if "with labels=True".

Optional list of cliques can be input if already computed.

number of cliques(G, nodes=None, cliques=None, with labels=False)

Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes.

Returns a dict keyed by node if "with labels=True".

Optional list of cliques can be input if already computed.

34

Module networkx.cliques Variables

project down(B, create using=None, **kwds)

Project a bipartite graph B down onto its "Bottom Nodes".

The nodes retain their names and are connected if they

share a common Top Node in the Bipartite Graph.

Returns a Graph.

project up(B, create using=None, **kwds)

Project a bipartite graph B up onto its "Top Nodes".

The nodes retain their names and are connected if they

share a common Bottom Node in the Bipartite Graph.

Returns a Graph.

4.2 Variables

Name Description

author Value: ’Dan Schult (dschult@colgate.edu)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 07:56:03 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1021 $’ (type=str)

35

Module networkx.cluster

5 Module networkx.cluster

Compute clustering coefficients and transitivity of graphs.

Clustering coefficient

For each node find the fraction of possible triangles that are triangles,

c i = triangles i / (k i*(k i-1)/2)

where k i is the degree of node i.

A coefficient for the whole graph is the average C = avg(c i)

Transitivity

Find the fraction of all possible triangles which are in fact triangles.

Possible triangles are identified by the number of "triads" (two edges

with a shared vertex)

T = 3*triangles/triads

5.1 Functions

average clustering(G)

Average clustering coefficient for a graph.

Note: this is a space saving routine; It might be faster

to use clustering to get a list and then take average.

clustering(G, nbunch=None, **kwds)

Clustering coefficient for each node in nbunch

transitivity(G)

Transitivity (fraction of transitive triangles) for a graph

triangles(G, nbunch=None, **kwds)

Return number of triangles for nbunch of nodes.

If nbunch is None, then return triangles for every node.

Note: Each triangle is counted three times: once at each vertex.

5.2 Variables

36

Module networkx.cluster Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult (...

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-14 12:48:10 -0600 (Tue, 14 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1012 $’ (type=str)

37

Module networkx.cores Variables

6 Module networkx.cores

Find and manipulate the k-cores of a graph

6.1 Functions

find cores(G, with labels=True)

Return the core number for each vertex.

See: arXiv:cs.DS/0310049 by Batagelj and Zaversnik

If with labels is True a dict is returned keyed by node to the core number.

If with labels is False a list of the core numbers is returned.

6.2 Variables

Name Description

author Value: ’Dan Schult(dschult@colgate.edu)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-03-30 16:56:28 -0700 (Wed, 30 Mar -

2005) $’

(type=str)
revision Value: ’$Revision: 911 $’ (type=str)

38

Package networkx.drawing

7 Package networkx.drawing

7.1 Modules

• layout:
Layout (positioning) algorithms for graph drawing.

(Section 8, p. 40)
• nx pydot:
Import and export networkx networks to dot format using pydot.

(Section 9, p. 42)
• nx pylab:
Draw networks with matplotlib/pylab.

(Section 10, p. 44)
• nx vtk:
Draw networks in 3d with vtk.

(Section 11, p. 47)

39

Module networkx.drawing.layout

8 Module networkx.drawing.layout

Layout (positioning) algorithms for graph drawing.

8.1 Functions

circular layout(G, dim=2)

Circular layout.

Crude version that doesn’t try to minimize edge crossings.

graph low ev pi(uhat, G, eps=0.001, iterations=10000)

Power Iteration method to find smallest eigenvectors of Laplacian(G).

Note: constant eigenvector has eigenvalue=0 but is not included

in the count of smallest eigenvalues.

uhat -- list of p initial guesses (dicts) for the p eigenvectors.

G -- The Graph from which Laplacian is calculated.

eps -- tolerance for norm of change in eigenvalue estimate.

iterations -- maximum number of iterations to use.

random layout(G, dim=2)

Random layout.

shell layout(G, nlist=None, dim=2)

Shell layout.

Crude version that doesn’t try to minimize edge crossings.

nlist is an optional list of lists of nodes to be drawn

at each shell level. Only one shell with all nodes will

be drawn if not specified.

spectral layout(G, dim=2, vpos=None, iterations=1000, eps=0.001)

Return the position vectors for drawing G using spectral layout.

spring layout(G, iterations=50, dim=2, node pos=False)

Spring force model layout

8.2 Variables

40

Module networkx.drawing.layout Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nDan Schult(ds-

chult@colgate.edu)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 08:53:26 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1033 $’ (type=str)

41

Module networkx.drawing.nx pydot

9 Module networkx.drawing.nx pydot

Import and export networkx networks to dot format using pydot.

References:

pydot Homepage: http://www.dkbza.org/pydot.html

Graphviz: http://www.research.att.com/sw/tools/graphviz/

DOT Language: http://www.research.att.com/~erg/graphviz/info/lang.html

9.1 Functions

networkx from pydot(D, result=False)

Creates an networkx graph from an pydot graph D

pydot from networkx(N)

Creates a pydot graph from an networkx graph N

pydot layout(G, **kwds)

Create layout using pydot and graphviz.

Returns a dictionary of positions keyed by node.

>>> pos=pydot layout(G)

>>> pos=pydot layout(G,prog="twopi")

read dot(path=False)

Creates an networkx graph from a dot file

write dot(G, path=False)

Write G to a graphviz dot file.

9.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 08:55:33 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
continued on next page

42

Module networkx.drawing.nx pydot Variables

Name Description

revision Value: ’$Revision: 1034 $’ (type=str)

43

Module networkx.drawing.nx pylab

10 Module networkx.drawing.nx pylab

Draw networks with matplotlib/pylab.

References:

matplotlib: http://matplotlib.sourceforge.net/

10.1 Functions

draw(G, **kwargs)

Draw networkx graph using spring layout.

NB:

pylab.draw() has been renamed to pylab.redraw()

so use redraw() from pylab interface.

draw circular(G, **kwargs)

Draw networkx graph in circular layout

draw nx(G, node pos, **kwargs)

Draw networkx graph with nodes at node pos.

See layout.py for functions that compute node positions.

node pos is a dictionary keyed by vertex with a two-tuple

of x-y positions as the value.

Use kwarg of node color with a dictionary keyed by vertex with a

floating point number as a value.

Use kwarg of node size with a dictionary keyed by vertex with a

floating point number as a value.

draw nxpydot(G, **kwds)

Draw networkx graph using pydot and graphviz layout.

>>> G=barbell graph(5,10)

>>> d=G.degree(with labels=True)

>>> draw nxpydot(G)

>>> draw nxpydot(G,node color=d,cmap=cm.pink)

>>> draw nxpydot(G,prog=’neato’)

Can use prog= "neato", "dot", "circo", "twopi", or "fdp"

44

Module networkx.drawing.nx pylab Functions

draw nxpydot nolabels(G, **kwargs)

Draw networkx graph without labels in textbook style.

node color is black, unless specified in kwargs

(with node color= a dictionary that maps each key=node to a

floating point number.)

e.g.

>>> G=star graph(10)

>>> d=G.degree(with labels=True)

>>> draw nxpydot nolabels(G)

>>> draw nxpydot nolabels(G,node color=d,cmap=cm.pink)

>>> draw nxpydot nolabels(G,prog=’neato’)

Can use prog= "neato", "dot", "circo", "twopi", or "fdp"

draw pydot(P, **kwargs)

Draw pydot graph P with matplotlib.

The pydot graph must have position information in graphviz dot format.

draw pydot subgraph(ax, P, **kwds)

Draw a pydot network P that has nested subgraphs.

draw random(G, **kwargs)

Draw networkx graph with random layout.

draw shell(G, **kwargs)

Draw networkx graph with shell layout

draw spectral(G, **kwargs)

Draw networkx graph with spectral layout.

draw spring(G, **kwargs)

Draw networkx graph with spring layout

drawg(G, **kwargs)

Draw networkx graph using spring layout

45

Module networkx.drawing.nx pylab Variables

mpl network(ax, node pos, edge pos, node size=300, node color=’r’, node marker=’o’,
node labels=True, fonts={}, edge color=’k’, edge width=1.0, cmap=None, norm=None, vmin=None,
vmax=None, alpha=1.0, digraph=False)

Draw network with matplotlib using node positions=node pos

and edge positions=edge pos.

Steals heavily from matplotlib.axes.scatter.

10.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 11:29:39 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1035 $’ (type=str)

46

Module networkx.drawing.nx vtk Variables

11 Module networkx.drawing.nx vtk

Draw networks in 3d with vtk.

References:

vtk: http://www.vtk.org/

11.1 Functions

draw nxvtk(G, node pos)

Draw networkx graph in 3d with nodes at node pos.

See layout.py for functions that compute node positions.

node pos is a dictionary keyed by vertex with a three-tuple

of x-y positions as the value.

The node color is plum.

The edge color is banana.

All the nodes are the same size.

11.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-17 08:10:29 -0600 (Fri, 17 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1051 $’ (type=str)

47

Package networkx.generators

12 Package networkx.generators

A package for generating various graphs in networkx.

12.1 Modules

• atlas:
Generators for the small graph atlas.

(Section 13, p. 49)
• classic:
Generators for some classic graphs.

(Section 14, p. 50)
• degree seq:
Generate graphs with a given degree sequence.

(Section 15, p. 55)
• geometric:
Generators for geometric graphs.

(Section 16, p. 59)
• random graphs:
Generators for random graphs

(Section 17, p. 60)
• small:
Various small and named graphs, together with some compact generators.

(Section 18, p. 66)

48

Module networkx.generators.atlas Variables

13 Module networkx.generators.atlas

Generators for the small graph atlas.

See

"An Atlas of Graphs" by Ronald C. Read and Robin J. Wilson,

Oxford University Press, 1998.

13.1 Functions

graph atlas g()

Return the list [G1,G2,...,G1252] of graphs as named in the Graph Atlas.

G1,...,G1252 are all graphs with up to 7 nodes.

The graphs are listed:

in increasing order of number of nodes;

for a fixed number of nodes,

in increasing order of the number of edges;

for fixed numbers of nodes and edges,

in increasing order of the degree sequence,

for example 111223 < 112222;

for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for

GAG=graph atlas g(), then

G123=GAG[123] and G[0]=empty graph(0)

13.2 Variables

Name Description

author Value: ’Pieter Swart (swart@lanl.gov)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-03-30 16:56:28 -0700 (Wed, 30 Mar -

2005) $’

(type=str)
revision Value: ’$Revision: 911 $’ (type=str)

49

Module networkx.generators.classic

14 Module networkx.generators.classic

Generators for some classic graphs.

The typical graph generator is called as follows:

>>> G=complete graph(100)

returning the complete graph on n nodes labeled 1,..,100

as a simple graph. Except for empty graph, all these generators return

a Graph class (i.e. a simple undirected graph).

14.1 Functions

balanced tree(r, h)

Return the perfectly balanced r-tree of height h.

For r>=2, h>=1, this is the rooted tree where all leaves

are at distance h from the root.

The root has degree r and all other internal nodes have degree r+1.

Graph order=1+r+r**2+...+r**h=(r**(h+1)-1)/(r-1), graph size=order-1.

Node labels are integers numbered 1 (the root) up to order.

barbell graph(m1, m2)

Return the Barbell Graph: two complete graphs connected by a path.

For m1>1 and m2>=0.

Two complete graphs K {m1} form the left and right bells,

and are connected by a path P {m2}. The 2*m1+m2

nodes are numbered 1,...,m1 for the left barbell,

m1+1,...,m1+m2 for the path, and m1+m2+1,...,2*m1+m2 for the right

barbell. The 3 subgraphs are joined via the edges (m1,m1+1)

and (m1+m2,m1+m2+1). If m2=0, this is merely two complete graphs

joined together.

This graph is an extremal example in David Aldous

and Jim Fill’s etext on Random Walks on Graphs.

50

Module networkx.generators.classic Functions

circular ladder graph(n)

Return the circular ladder graph CL n of length n.

CL n consists of two concentric n-cycles in which

each of the n pairs of concentric nodes are joined by an edge.

complete bipartite graph(n1, n2)

Return the complete bipartite graph K {n1 n2}.

Contains n1 nodes in the first subgraph and n2 nodes

in the second subgraph.

complete graph(n)

Return the Complete graph K n with n nodes.

cycle graph(n)

Return the cycle graph C n over n nodes.

C n is P n with two end-nodes connected.

dorogovtsev goltsev mendes graph(n)

Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

n is the generation.

See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

51

Module networkx.generators.classic Functions

empty graph(n=0, create using=None, **kwds)

Return the empty graph with n nodes

(with integer labels 1,...,n) and zero edges.

>>> G=empty graph(n)

The variable create using should point to a "graph"-like object that

will be cleaned (nodes and edges will be removed) and refitted as

an empty "graph" with n nodes with integer labels. This capability

is useful for specifying the class-nature of the resulting empty

"graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

Firstly, the variable create using can be used to create an

empty digraph, network,etc. For example,

>>> G=empty graph(n,create using=DiGraph())

will create an empty digraph on n nodes, and

>>> G=empty graph(n,create using=DiGraph())

will create an empty digraph on n nodes.

Secondly, one can pass an existing graph (digraph, pseudograph,

etc.) via create using. For example, if G is an existing graph

(resp. digraph, pseudograph, etc.), then empty graph(n,create using=G)

will empty G (i.e. delete all nodes and edges using G.clear() in

baseNX) and then add n nodes and zero edges, and return the modified

graph (resp. digraph, pseudograph, etc.).

WARNING: The graph dna is not scrubbed in this process.

See also create empty copy(G).

grid 2d graph(m, n)

Return the 2d grid graph of mxn nodes,

each connected to its nearest neighbors.

52

Module networkx.generators.classic Functions

grid graph(dim, periodic=False)

Return the n-dimensional grid graph.

The dimension is the length of the list ’dim’ and the

size in each dimension is the value of the list element.

E.g. G=grid graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

hypercube graph(n)

return the n-dimensional hypercube.

ladder graph(n)

Return the Ladder graph of length n.

This is two rows of n nodes,

each pair connected by a single edge.

lollipop graph(m, n)

Return the Lollipop Graph; K m connected to P n.

This is the Barbell Graph without the right barbell.

For m>1 and n>=0, the complete graph K m is connected to the

path P n. The resulting m+n nodes are labelled 1,...,m for the

complete graph and m+1,...,m+n for the path. The 2 subgraphs

are joined via the edge (m,n). If n=0, this is merely a complete

graph.

(This graph is an extremal example in David Aldous and Jim

Fill’s etext on Random Walks on Graphs.)

null graph(create using=None, **kwds)

Return the Null graph with no nodes or edges.

path graph(n)

Return the Path graph P n of n nodes linearly connected

by n-1 edges.

53

Module networkx.generators.classic Variables

periodic grid 2d graph(m, n)

Return the 2-D Grid Graph of mxn nodes,

each connected to its nearest neighbors.

Boundary nodes are identified in a periodic fashion.

star graph(n)

Return the Star graph with n+1 nodes:

one center node, connected to n outer nodes.

trivial graph()

Return the Trivial graph with one node (with integer label 1)

and no edges.

wheel graph(n)

Return the wheel graph: a single hub node connected

to each node of the (n-1)-node cycle graph.

14.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-17 14:06:03 -0600 (Fri, 17 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1056 $’ (type=str)

54

Module networkx.generators.degree seq

15 Module networkx.generators.degree seq

Generate graphs with a given degree sequence.

15.1 Functions

configuration model(deg sequence, seed=None)

Return a pseudograph with given degree sequence.

deg sequence: degree sequence, a list of integers with each entry

corresponding to the degree of a node (need not be

sorted). A non-graphical degree sequence (i.e. one

not realizable by some simple graph) will raise an

Exception.

seed: seed for random number generator (default=None)

Steps:

Check if deg sequence is a valid degree sequence.

Create N nodes with stubs of given degree.

Randomly select two available stubs and connect them with an edge.

As described by Newman [newman-2003-structure].

Nodes are labeled 1,.., len(deg sequence),

corresponding to their position in deg sequence.

This process can lead to duplicate edges and loops, and therefore

returns a pseudograph type. You can call remove parallel() and

remove selfloops() to get a simple graph (but likely without

the exact specified degree sequence). This "finite-size effect"

decreases as the size of the graph increases.

References:

[newman-2003-structure] M.E.J. Newman, "The structure and function

of complex networks", SIAM REVIEW 45-2, pp 167-256, 2003.

55

Module networkx.generators.degree seq Functions

create degree sequence(n, sfunction=None, max tries=50, **kwds)

Attempt to create a valid degree sequence of length n using

specified function sfunction(n,kwds).

n: length of degree sequence = number of nodes

sfunction: a function, called as "sfunction(n,kwds)",

that returns a list of n real or integer values.

max tries: max number of attempts at creating valid degree

sequence.

Repeatedly create a degree sequence by calling sfunction(n,kwds)

until achieving a valid degree sequence. If unsuccessful after

max tries attempts, raise an exception.

For examples of sfunctions that return sequences of random numbers,

see networkx.Utils.

>>> from networkx.utils import *

>>> seq=create degree sequence(10,uniform sequence)

degree sequence tree(deg sequence)

Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so

the degree sequence must have

len(deg sequence)-sum(deg sequence)/2=1

56

Module networkx.generators.degree seq Functions

havel hakimi graph(deg sequence, seed=None)

Return a simple graph with given degree sequence, constructed using the

Havel-Hakimi algorithm.

deg sequence: degree sequence, a list of integers with each entry

corresponding to the degree of a node (need not be sorted).

A non-graphical degree sequence (not sorted).

A non-graphical degree sequence (i.e. one

not realizable by some simple graph) raises an Exception.

seed: seed for random number generator (default=None)

The Havel-Hakimi algorithm constructs a simple graph by

successively connecting the node of highest degree to other nodes

of highest degree, resorting remaining nodes by degree, and

repeating the process. The resulting graph has a high

degree-associativity. Nodes are labeled 1,.., len(deg sequence),

corresponding to their position in deg sequence.

See Theorem 1.4 in [chartrand-graphs-1996].

This algorithm is also used in the function is valid degree sequence.

References:

[chartrand-graphs-1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs",

Chapman and Hall/CRC, 1996.

57

Module networkx.generators.degree seq Variables

is valid degree sequence(deg sequence)

Return True if deg sequence is a valid sequence of integer degrees

equal to the degree sequence of some simple graph.

deg sequence: degree sequence, a list of integers with each entry

corresponding to the degree of a node (need not be sorted).

A non-graphical degree sequence (i.e. one not realizable by some

simple graph) will raise an exception.

See Theorem 1.4 in [chartrand-graphs-1996]. This algorithm is also used

in havel hakimi graph()

References:

[chartrand-graphs-1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs",

Chapman and Hall/CRC, 1996.

15.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult (...

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 12:42:59 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1037 $’ (type=str)

58

Module networkx.generators.geometric Variables

16 Module networkx.generators.geometric

Generators for geometric graphs.

16.1 Functions

random geometric graph(n, radius, result=False, **kwds)

Random geometric graph in the unit cube

Returned Graph has added attribute G.pos which is a

dict keyed by node to the position tuple for the node.

16.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 12:44:45 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1038 $’ (type=str)

59

Module networkx.generators.random graphs

17 Module networkx.generators.random graphs

Generators for random graphs

17.1 Functions

barabasi albert graph(n, m, seed=None)

Return random graph using Barabasi-Albert preferential attachment model.

A graph of n nodes is grown by attaching new nodes

each with m edges that are preferentially attached

to existing nodes with high degree.

The initialization is a graph with with m nodes.

Reference:

@ARTICLE{barabasi-1999-emergence,
TITLE = {Emergence of scaling in random networks},
AUTHOR = {A. L. Barabasi and R. Albert},
JOURNAL = {SCIENCE},
VOLUME = {286},
NUMBER = {5439},
PAGES = {509 -- 512},
MONTH = {OCT},
YEAR = {1999},
}

Parameters

n: the number of nodes

m: average degree and must be an positive integer

seed: seed for random number generator (default=None)

binomial graph(n, p, seed=None)

Return a binomial random graph G {n,p}.

Parameters

n: the number of nodes

p: probability that any given edge exist

seed: seed for random number generator (default=None)

60

Module networkx.generators.random graphs Functions

erdos renyi graph(n, m, seed=None)

Return the Erdos-Renyi random graph G {n,m}.

Parameters

n: the number of nodes

m: the number of edges

seed: seed for random number generator (default=None)

newman watts strogatz graph(n, k, p, seed=None)

Return a Newman-Watts-Strogatz small world graph.

The graph is a ring with k neighbors with new edges (shortcuts)

added randomly with probability p for each edge. No edges

are removed.

Parameters

n: the number of nodes

k: each vertex is connected to k neighbors in the circular topology

p: the probability of adding a new edge for each edge

seed: seed for random number generator (default=None)

61

Module networkx.generators.random graphs Functions

powerlaw cluster graph(n, m, p, seed=None)

Holme and Kim algorithm for growing graphs with powerlaw

degree distribution and approximate average clustering.

Reference:

@Article{growing-holme-2002,
author = {P. Holme and B. J. Kim},
title = {Growing scale-free networks with tunable clustering},
journal = {Phys. Rev. E},
year = {2002},
volume = {65},
number = {2},
pages = {026107},
}

The average clustering has a hard time getting above

a certain cutoff that depends on m. This cutoff is often quite low.

It is essentially the Barabasi-Albert growth model with an

extra step that each random edge is followed by a chance of

making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on B-A in the sense that it enables a

higher average clustering to be attained if desired. The largest

average clustering seems to be independent of n and attained with

m=1 and p=1 (cc=0.74 or so).

Parameters

n: the number of nodes

m: the number of random edges to add for each new node

p: probability of adding a triangle after adding a random edge

seed: seed for random number generator (default=None)

random lobster(n, p1, p2, seed=None)

Return a random lobster.

A caterpillar is a tree that reduces to a path graph when pruning

all leave nodes. A lobster is a tree that reduces to a caterpillar

when pruning all leave nodes.

Parameters

n: the expected number of nodes in the backbone

p1: probability of adding an edge to the backbone

p2: probability of adding an edge one level beyond backbone

seed: seed for random number generator (default=None)

62

Module networkx.generators.random graphs Functions

random powerlaw tree(n, gamma=3, seed=None, tries=100)

Return a tree with a powerlaw degree distribution.

A trial powerlaw degree sequence is chosen and then elements are

swapped with new elements from a powerlaw distribution until

the sequence makes a tree (#edges=#nodes-1).

Parameters

n: the number of nodes

gamma: exponent of power law is gamma

seed: seed for random number generator (default=None)

tries: number of attempts to adjust sequence to make a tree

random powerlaw tree sequence(n, gamma=3, seed=None, tries=100)

Return a degree sequence for a tree with a powerlaw distribution.

A trial powerlaw degree sequence is chosen and then elements are

swapped with new elements from a powerlaw distribution until

the sequence makes a tree (#edges=#nodes-1).

Parameters

n: the number of nodes

gamma: exponent of power law is gamma

seed: seed for random number generator (default=None)

tries: number of attempts to adjust sequence to make a tree

63

Module networkx.generators.random graphs Functions

random regular graph(d, n, seed=None)

Return a random regular graph of n nodes each with degree d, G {n,d}.
Return False if unsuccessful.

n*d must be even

Nodes are numbered 0...n-1.

To get a uniform sample from the space of random graphs

you should chose d<n^{1/3}.
.

For algorith see Kim and Vu’s paper.

Reference:

@inproceedings{kim-2003-generating,
author = {Jeong Han Kim and Van H. Vu},
title = {Generating random regular graphs},
booktitle = {Proceedings of the thirty-fifth ACM symposium on Theory of computing},
year = {2003},
isbn = {1-58113-674-9},
pages = {213--222},
location = {San Diego, CA, USA},
doi = {http://doi.acm.org/10.1145/780542.780576},
publisher = {ACM Press},
}

The algorithm is based on an earlier paper:

@misc{ steger-1999-generating,

author = "A. Steger and N. Wormald",

title = "Generating random regular graphs quickly",

text = "Probability and Computing 8 (1999), 377-396.",

year = "1999",

url = "citeseer.ist.psu.edu/steger99generating.html",

}

64

Module networkx.generators.random graphs Variables

random shell graph(constructor, seed=None)

Return a random shell graph for the constructor given.

constructor: a list of three-tuples [(n1,m1,d1),(n2,m2,d2),..]

one for each shell, starting at the center shell.

n : the number of nodes in the shell

m : the number or edges in the shell

d

the ratio of inter (next) shell edges to intra shell edges.

d=0 means no intra shell edges.

d=1 for the last shell

seed: seed for random number generator (default=None)

>>> constructor=[(10,20,0.8),(20,40,0.8)]

>>> G=random shell graph(constructor)

watts strogatz graph(n, k, p, seed=None)

Return a Watts-Strogatz small world graph.

The graph is a ring with k neighbors with

edges rewired randomly with probability p.

Parameters

n: the number of nodes

k: each vertex is connected to k neighbors in the circular topology

p: the probability of rewiring an edge

seed: seed for random number generator (default=None)

17.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult(d...

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-17 08:06:22 -0600 (Fri, 17 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1049 $’ (type=str)

65

Module networkx.generators.small

18 Module networkx.generators.small

Various small and named graphs, together with some compact generators.

18.1 Functions

bull graph()

Return the Bull graph.

chvatal graph()

Return the Chvatal graph.

cubical graph()

Return the 3-regular Platonic Cubical graph.

desargues graph()

Return the Desargues graph.

diamond graph()

Return the Diamond graph.

dodecahedral graph()

Return the Platonic Dodecahedral graph.

frucht graph()

Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose

automorphism group consists only of the identity element.

heawood graph()

Return the Heawood graph, a (3,6) cage.

house graph()

Return the House graph (square with triangle on top).

66

Module networkx.generators.small Functions

house x graph()

Return the House graph with a cross inside the house square.

icosahedral graph()

Return the Platonic Icosahedral graph.

krackhardt kite graph()

Return the Krackhardt Kite Social Network.

A 10 actor social network introduced by David Krackhardt

to illustrate: degree, betweenness, centrality, closeness, etc.

The traditional labeling is:

Andre=1, Beverley=2, Carol=3, Diane=4,

Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.

67

Module networkx.generators.small Functions

LCF graph(n, shift list, repeats)

Return the cubic graph specified in LCF notation.

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed

notation used in the generation of various cubic Hamiltonian

graphs of high symmetry. See, for example, dodecahedral graph,

desargues graph, heawood graph and pappus graph below.

n (number of nodes)

The starting graph is the n-cycle with nodes 1,...,n.

(The null graph is returned if n < 0.)

shift list = [s1,s2,..,sk], a list of integer shifts mod n,

repeats

integer specifying the number of times that shifts in shift list

are successively applied to each v current in the n-cycle

to generate an edge between v current and v current+shift mod n.

For v1 cycling through the n-cycle a total of k*repeats

with shift cycling through shiftlist repeats times connect

v1 with v1+shift mod n

The utility graph K {3,3}

>>> G=LCF graph(6,[3,-3],3)

The Heawood graph

>>> G=LCF graph(14,[5,-5],7)

See http://mathworld.wolfram.com/LCFNotation.html for a description

and references.

68

Module networkx.generators.small Functions

make small graph(graph description, create using=None, **kwds)

Return the small graph described by graph description and kwds.

graph description is a list of the form [type,name,n,xlist]

Here type is one of "adjacencylist" or "edgelist",

name is the name of the graph and n the number of nodes.

This constructs a graph of n nodes with integer labels 1,..,n.

If type="adjacencylist" then xlist is an adjacency list

with exactly n entries, in with the j’th entry (which can be empty)

specifies the nodes connected to vertex j.

e.g. the "square" graph C 4 can be obtained by

>>> G=make small graph(["adjacencylist","C 4",4,[[2,4],[1,3],[2,4],[1,3]]])

or, since we do not need to add edges twice,

>>> G=make small graph(["adjacencylist","C 4",4,[[2,4],[3],[4],[]]])

If type="edgelist" then xlist is an edge list

written as [[v1,w2],[v2,w2],...,[vk,wk]],

where vj and wj integers in the range 1,..,n

e.g. the "square" graph C 4 can be obtained by

>>> G=make small graph(["edgelist","C 4",4,[[1,2],[3,4],[2,3],[4,1]]])

Other graph descriptors can be passed to Graph() using kwds

moebius kantor graph()

Return the Moebius-Kantor graph.

octahedral graph()

Return the Platonic Octahedral graph.

pappus graph()

Return the Pappus graph.

petersen graph()

Return the Petersen graph.

69

Module networkx.generators.small Variables

sedgewick maze graph()

Return a small maze with a cycle.

This is the maze used in Sedgewick,3rd Edition, Part 5, Graph

Algorithms, Chapter 18, e.g. Figure 18.2 and following.

Nodes are numbered 0,..,7

tetrahedral graph()

Return the 3-regular Platonic Tetrahedral graph.

truncated cube graph()

Return the skeleton of the truncated cube.

truncated tetrahedron graph()

Return the skeleton of the truncated Platonic tetrahedron.

tutte graph()

Return the Tutte graph.

18.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 12:53:08 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1040 $’ (type=str)

70

Module networkx.hybrid Variables

19 Module networkx.hybrid

Hybrid

19.1 Functions

is kl connected(G, k, l, **kwds)

Returns True if G is kl connected

kl connected subgraph(G, k, l, **kwds)

Returns the maximum locally (k,l) connected subgraph of G.

(k,l)-connected subgraphs are presented by Fan Chung and Li

in "The Small World Phenomenon in hybrid power law graphs"

to appear in "Complex Networks" (Ed. E. Ben-Naim) Lecture

Notes in Physics, Springer (2004)

low memory=True then use a slightly slower, but lower memory version

same as graph=True then return a tuple with subgraph and

pflag for if G is kl-connected

19.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nDan Schult (d-

schult@colgate.edu)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-03-30 16:56:28 -0700 (Wed, 30 Mar -

2005) $’

(type=str)
revision Value: ’$Revision: 911 $’ (type=str)

71

Module networkx.io

20 Module networkx.io

Read and write graphs and networks.

The example undirected graph below consists of the two edges (a,b),(a,c).

20.1 Functions

read adjlist(path=False, create using=None)

Read graph in single line adjacency list format from path.

The default is to create a simple graph from the adjacency list.

The optional create using argument allows other types of graphs.

>>> G=DiGraph()

>>> G=read adjlist(file, create using=G)

Example adjacency list file format:

node degree

a b c

b a

c a

read edgelist(path=False, create using=None)

Read graph in edgelist format

Example adjacency list file format:

node degree

a b

a c

read gpickle(path=False)

Read graph object in python pickle format

See cPickle.

72

Module networkx.io Functions

read multiline adjlist(path=False, create using=None)

Read graph in multiline adjacency list format.

Example multiline adjacency list file format:

node degree

a 2

b

c

b 1

a

c 1

a

write adjlist(G, path=False)

Write graph in single line adjacency list format in file path.

If no file is given, write to standard output.

Example adjacency list file format:

node degree

a b c

b a

c a

write edgelist(G, path=False)

Write graph G in edgelist format on file path.

If no file is given write to standard output.

Example adjacency list file format:

node degree

a b

a c

write gpickle(G, path=False)

Write graph object in python pickle format

See cPickle.

73

Module networkx.io Variables

write multiline adjlist(G, path=False)

Write graph in multiline adjacency list format.

Example multiline adjacency list file format:

node degree

a 2

b

c

b 1

a

c 1

a

20.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nDan Schult (d-

schult@colgate.edu)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-07-06 07:58:26 -0600 (Wed, 06 Jul -

2005) $’

(type=str)
revision Value: ’$Revision: 1063 $’ (type=str)

74

Module networkx.isomorph Variables

21 Module networkx.isomorph

Fast checking to see if graphs are not isomorphic.

This isn’t a graph isomorphism checker.

21.1 Functions

fast graph could be isomorphic(G1, G2)

Returns False if graphs G1 and G2 are definitely not isomorphic.

True does NOT garantee isomorphism.

Checks for matching degree and triangle sequences.

faster graph could be isomorphic(G1, G2)

Returns False if graphs G1 and G2 are definitely not isomorphic.

True does NOT garantee isomorphism.

Checks for matching degree sequences in G1 and G2.

graph could be isomorphic(G1, G2)

Returns False if graphs G1 and G2 are definitely not isomorphic.

True does NOT garantee isomorphism.

Checks for matching degree, triangle, and number of cliques sequences.

21.2 Variables

Name Description

author Value: ’Pieter Swart (swart@lanl.gov)\nDan Schult (dsc-

hult@colgate.edu)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-05-31 17:00:13 -0600 (Tue, 31 May -

2005) $’

(type=str)
revision Value: ’$Revision: 1002 $’ (type=str)

75

Module networkx.operators

22 Module networkx.operators

Operations on graphs; including union, complement, subgraph.

22.1 Functions

cartesian product(G, H)

Return the Cartesian product of G and H.

Tested only on Graph class.

complement(G, create using=None, **kwds)

Return graph complement of G.

Unless otherwise specified, return a new graph of the same type as

self. Use (optional) create using=R to return the resulting

subgraph in R. R can be an existing graph-like object (to be

emptied) or R can be a call to a graph object,

e.g. create using=DiGraph(). See documentation for empty graph()

Implemented for Graph, DiGraph, XGraph, XDiGraph.

Note that complement() is not well-defined for XGraph and XDiGraph

objects that allow multiple edges or self-loops.

compose(G, H, create using=None, **kwds)

Return a new graph of G composed with H.

The node sets of G and H need not be disjoint.

A new graph is returned, of the same class as G.

It is recommended that G and H be either both directed or both

undirected.

Optional create using=R returns graph R filled in with the

compose(G,H). Otherwise a new graph is created, of the

same class as G. It is recommended that G and H be either

both directed or both undirected.

Implemented for Graph, DiGraph, XGraph, XDiGraph

76

Module networkx.operators Functions

convert node labels to integers(G, first label=1, ordering=’default’, discard old labels=True)

Return a copy of G, with n node labels replaced with integers,

starting at first label.

first label: (optional, default=1)

An integer specifying the offset in numbering nodes.

The n new integer labels are numbered first label, ..., n+first label.

ordering: (optional, default="default")

specifies how nodes are ordered. Possible values: "default"

(inherit from G), "increasing degree", or "decreasing degree"

discard old labels

if True (default) discard old labels

if False, create a dict self.node labels that maps new

labels to old labels, and set self.dna["node labeled"]=True

Works for Graph, DiGraph, XGraph, XDiGraph

convert to directed(G)

Return a new directed representation of the graph G.

Works for Graph, DiGraph, XGraph, XDiGraph.

Note: convert to directed(G)=G.to directed()

convert to undirected(G)

Return a new undirected representation of the graph G.

Works for Graph, DiGraph, XGraph, XDiGraph.

Note: convert to undirected(G)=G.to undirected()

create empty copy(G)

Return a new, empty graph-like object of the same type/class as G.

Works for Graph, DiGraph, XGraph, XDiGraph

77

Module networkx.operators Functions

disjoint union(G, H)

Return the disjoint union of graphs G and H, forcing distinct integer

node labels.

A new graph is created, of the same class as G.

It is recommended that G and H be either both directed or both

undirected.

Implemented for Graph, DiGraph, XGraph, XDiGraph.

subgraph(G, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: either a singleton node, a string (which is treated

as a singleton node, or any iterable (non-string) container

of nodes for which len(nbunch) is defined. For example, a list,

dict, set, Graph, numeric array, or user-defined iterable object.

Setting inplace=True will return induced subgraph in original graph

by deleting nodes not in nbunch.

Unless otherwise specified, return a new graph of the same

type as self. Use (optional) create using=R to return the

resulting subgraph in R. R can be an existing graph-like

object (to be emptied) or R is a call to a graph object,

e.g. create using=DiGraph(). See documentation for

empty graph.

Implemented for Graph, DiGraph, XGraph, XDiGraph

Note: subgraph(G) calls G.subgraph()

78

Module networkx.operators Variables

union(G, H, create using=None, rename=False, **kwds)

Return the union of graphs G and H.

Graphs G and H must be disjoint, otherwise an exception is raised.

Node names of G and H can be changed be specifying the tuple

rename=(’G-’,’H-’) (for example).

Node u in G is then renamed "G-u" and v in H is renamed "H-v".

To force a disjoint union with node relabeling, use

disjoint union(G,H) or convert node labels to integers().

Optional create using=R returns graph R filled in with the

union of G and H. Otherwise a new graph is created, of the

same class as G. It is recommended that G and H be either

both directed or both undirected.

A new name can be specified in the form

X=graph union(G,H,name="new name")

Implemented for Graph, DiGraph, XGraph, XDiGraph.

22.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult(d...

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 08:09:52 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1024 $’ (type=str)

79

Module networkx.paths

23 Module networkx.paths

Shortest paths, diameter, radius, eccentricity, and related methods.

23.1 Functions

center(G, e=None)

Center of graph.

Nodes with eccentricity equal to radius.

diameter(G, e=None)

Diameter of graph.

Maximum of all pairs shortest path.

dijkstra(G, source, target=None)

Dijkstra’s algorithm for shortest paths in a weighted graph.

See

dijkstra path() - shortest path list of nodes

dijkstra path length() - shortest path length

Returns a tuple of two dictionaries keyed by node.

The first stores distance from the source.

The second stores the path from the source to that node.

Distances are calculated as sums of weighted edges traversed.

Edges must hold numerical values for XGraph and XDiGraphs.

The weights are 1 for Graphs and DiGraphs.

Optional target argument stops the search when target is found.

Based on python cookbook recipe (119466) at

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights

are negative or are floating point numbers (

overflows and roundoff erros can cause problems).

80

Module networkx.paths Functions

dijkstra path(G, source, target=None)

Returns the shortest path for a weighted graph using

Dikjstra’s algorithm.

The path is computed from the source to an optional target.

If a target is specified the path is returned as a list of nodes.

If the target is not specified a dictionary of path lists keyed

by target node is returned.

Edge data must be numerical values for XGraph and XDiGraphs.

The weights are assigned to be 1 for Graphs and DiGraphs.

See also "dijkstra" for more information about the algorithm.

dijkstra path length(G, source, target=None)

Returns the shortest path length for a weighted graph using

Dikjstra’s algorithm .

The path length is computed from the source to an optional target.

If a target is specified the length is returned as an integer.

If the target is not specified a dictionary of path lengths keyed

by target node is returned.

Edge data must be numerical values for XGraph and XDiGraphs.

The weights are assigned to be 1 for Graphs and DiGraphs.

See also "dijkstra" for more information about the algorithm.

eccentricity(G, v=None, sp=None, **kwds)

Eccentricity of node v.

Maximum of shortest paths to all other nodes.

If kwds with labels=True

return dict of eccentricities keyed by vertex.

is directed acyclic graph(G)

Test if a graph is a directed acyclic graph (DAG).

Return True if G is a DAG. False if not.

periphery(G, e=None)

Periphery of graph.

Nodes with eccentricity equal to diameter.

81

Module networkx.paths Variables

radius(G, e=None)

Radius of graph

Minimum of all pairs shortest path.

shortest path(G, source, target=None, cutoff=None)

Returns list of nodes in a shortest path between source

and target (there might be more than one).

If no target is specified, returns dict of lists of

paths from source to all nodes.

Cutoff is a limit on the number of hops traversed.

shortest path length(G, source, target=None)

Shortest path length from source to target.

topological sort(G)

Return a list of nodes of the graph G in topological sort order.

A topological sort is a nonunique permutation of the nodes

such that an edge from u to v implies that u appears before v in the

topological sort order.

If G is not a directed acyclic graph no topological sort exists

and the Python keyword None is returned.

This algorithm is based on a description and proof at

http://www2.toki.or.id/book/AlgDesignManual/book/book2/node70.htm

See also is directed acyclic graph()

topological sort recursive(G)

Return a list of nodes of the graph G in topological sort order.

This is a recursive version of topological sort.

23.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nDan Schult(ds-

chult@colgate.edu)’

(type=str)
credits Value: ’’ (type=str)

continued on next page

82

Module networkx.paths Variables

Name Description

date Value: ’$Date: 2005-06-16 14:29:18 -0600 (Thu, 16 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1046 $’ (type=str)

83

Module networkx.queues Class BFS

24 Module networkx.queues

Helper queues for use in graph searching.

LIFO: Last in first out queue (stack)

FIFO: First in first out queue

Priority(fcn): Priority queue with items are sorted by fcn

Random: Random queue

q.append(item) -- add an item to the queue

q.extend(items) -- equivalent to: for item in items: q.append(item)

q.pop() -- return the top item from the queue

len(q) -- number of items in q (also q. len())

24.1 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-03-30 16:56:28 -0700 (Wed, 30 Mar -

2005) $’

(type=str)
revision Value: ’$Revision: 911 $’ (type=str)

24.2 Class BFS

builtin .object

builtin .list

networkx.queues.FIFO

BFS

Breadth first search queue

24.2.1 Methods

init (self)
Overrides: networkx.queues.FIFO. init

84

Module networkx.queues Class DFS

update(self, item)

Inherited from list: add , contains , delitem , delslice , eq , ge , getattribute , getitem ,
getslice , gt , hash , iadd , imul , iter , le , len , lt , mul , ne , new , repr ,
reversed , rmul , setitem , setslice , append, count, extend, index, insert, remove, reverse, sort

Inherited from object: delattr , reduce , reduce ex , setattr , str
Inherited from FIFO: pop

24.3 Class DFS

builtin .object

builtin .list

networkx.queues.LIFO

DFS

Depth first search queue

24.3.1 Methods

init (self)
Overrides: networkx.queues.LIFO. init

update(self, item)

Inherited from list: add , contains , delitem , delslice , eq , ge , getattribute , getitem ,
getslice , gt , hash , iadd , imul , iter , le , len , lt , mul , ne , new , repr ,
reversed , rmul , setitem , setslice , append, count, extend, index, insert, pop, remove, reverse, sort

Inherited from object: delattr , reduce , reduce ex , setattr , str

24.4 Class FIFO

builtin .object

builtin .list

FIFO

Known Subclasses: BFS

24.4.1 Methods

init (self)
Overrides: builtin .list. init

85

Module networkx.queues Class LIFO

pop(self)
Overrides: builtin .list.pop

Inherited from list: add , contains , delitem , delslice , eq , ge , getattribute , getitem ,
getslice , gt , hash , iadd , imul , iter , le , len , lt , mul , ne , new , repr ,
reversed , rmul , setitem , setslice , append, count, extend, index, insert, remove, reverse, sort

Inherited from object: delattr , reduce , reduce ex , setattr , str

24.5 Class LIFO

builtin .object

builtin .list

LIFO

Known Subclasses: DFS

24.5.1 Methods

init (self)
Overrides: builtin .list. init

Inherited from list: add , contains , delitem , delslice , eq , ge , getattribute , getitem ,
getslice , gt , hash , iadd , imul , iter , le , len , lt , mul , ne , new , repr ,
reversed , rmul , setitem , setslice , append, count, extend, index, insert, pop, remove, reverse, sort

Inherited from object: delattr , reduce , reduce ex , setattr , str

24.6 Class Priority

24.6.1 Methods

init (self, f=<function <lambda> at 0xb7c428ec>)

len (self)

append(self, item)

extend(self, items)

pop(self)

smallest(self)

86

Module networkx.queues Class Random

24.7 Class Random

builtin .object

builtin .list

Random

Known Subclasses: RFS

24.7.1 Methods

init (self)
Overrides: builtin .list. init

pop(self)
Overrides: builtin .list.pop

Inherited from list: add , contains , delitem , delslice , eq , ge , getattribute , getitem ,
getslice , gt , hash , iadd , imul , iter , le , len , lt , mul , ne , new , repr ,
reversed , rmul , setitem , setslice , append, count, extend, index, insert, remove, reverse, sort

Inherited from object: delattr , reduce , reduce ex , setattr , str

24.8 Class RFS

builtin .object

builtin .list

networkx.queues.Random

RFS

Random search queue

24.8.1 Methods

init (self)
Overrides: networkx.queues.Random. init

update(self, item)

Inherited from list: add , contains , delitem , delslice , eq , ge , getattribute , getitem ,
getslice , gt , hash , iadd , imul , iter , le , len , lt , mul , ne , new , repr ,
reversed , rmul , setitem , setslice , append, count, extend, index, insert, remove, reverse, sort

Inherited from object: delattr , reduce , reduce ex , setattr , str
Inherited from Random: pop

87

Module networkx.release Variables

25 Module networkx.release

Release data for NetworkX.

25.1 Variables

Name Description

authors Value: {’Swart’: (’Pieter Swart’, ’swart@lanl.gov’), ’-

Schult’: (’Dan Schult’, ’dschu...

(type=dict)
date Value: ’Sun Aug 21 08:07:12 2005’ (type=str)
description Value: ’A package for creating and manipulating large -

graphs and networks.’

(type=str)
keywords Value: [’Networks’, ’Graph Theory’, ’Mathematics’]

(type=list)
license Value: ’LGPL’ (type=str)
long description Value: ’\nNetworkX is a python package for the creatio-

n, manipulation, and\nstudy of...

(type=str)
name Value: ’networkx’ (type=str)
platforms Value: [’Linux’, ’Mac OSX’, ’Windows XP/2000/NT’]

(type=list)
url Value: ’http://networkx.sourceforge.net’ (type=str)
version Value: ’0.24’ (type=str)

88

Module networkx.search

26 Module networkx.search

Search algorithms, shortest path, spanning trees, etc.

See also networkx.paths.

The following search methods available, see the documentation below.

number connected components(G)

connected components(G)

connected component subgraphs(G)

dfs preorder(G,v=None)

dfs postorder(G,v=None)

dfs predecessor(G,v=None)

dfs successor(G,v=None)

bfs length(G,source=None,target=None)

bfs path(G,source,target=None)

dfs forest(G,v=None)

These algorithms are based on Program 18.10 "Generalized graph search",

page 128, Algorithms in C, Part 5, Graph Algorithms by Robert Sedgewick

Reference:

@Book{sedgewick-2001-algorithms-5,
author = {Robert Sedgewick},
title = {Algorithms in C, Part 5: Graph Algorithms},
publisher = {Addison Wesley Professional},
year = {2001},
edition = {3rd},
}

26.1 Functions

bfs length(G, source, target=None)

Return a dictionary of nodes with the shortest path length from source.

89

Module networkx.search Functions

bfs path(G, source, target=None)

Return a dictionary of nodes with the paths

from source to all reachable nodes.

Optional target=target produces only one path as a list.

connected component subgraphs(G)

Return a list of graphs of each connected component of G.

The list is ordered from largest connected component to smallest.

To get the largest connected component:

>>> H=connected component subgraphs(G)[0]

connected components(G)

Return a list of lists of nodes in each connected component of G.

The list is ordered from largest connected component to smallest.

dfs forest(G, v=None)

Return a forest of trees built from depth first search (DFS).

Optional v=v limits search to component of graph containing v

and will return a single tree.

dfs postorder(G, v=None)

Return a list of nodes ordered by depth first search (DFS) postorder.

If the graph has more than one component return a list of lists.

Optional v=v limits search to component of graph containing v.

dfs predecessor(G, v=None)

Return a dictionary of nodes each with a list of predecessor

nodes in depth first search (DFS) order.

Optional v=v limits search to component of graph containing v.

dfs preorder(G, v=None)

Return a list of nodes ordered by depth first search (DFS) preorder.

If the graph has more than one component return a list of lists.

Optional v=v limits search to component of graph containing v.

dfs successor(G, v=None)

Return a dictionary of nodes each with a list of successor

nodes in depth first search (DFS) order.

Optional v=v limits search to component of graph containing v.

90

Module networkx.search Variables

is connected(G)

True if G is connected

node connected component(G, v)

Return the connected component to which v belongs as a list of nodes.

number connected components(G)

Return number of connected components of G.

26.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nDan Schult(ds-

chult@colgate.edu)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 08:19:25 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1026 $’ (type=str)

91

Module networkx.search class Class Forest

27 Module networkx.search class

Graph search classes

The search algorithms are implemented as an abstract class with

visitor functions that are called at points during the algorithm.

By designing different visitor functions the search algorithms

can produce shortest path lenghts, forests of search trees, etc.

The simplest way to access the search algorithms is by using

predefined visitor classes and search functions.

See the module networkx.search.

These algorithms are based on Program 18.10 "Generalized graph search",

page 128, Algorithms in C, Part 5, Graph Algorithms by Robert Sedgewick

Reference:

@Book{sedgewick-2001-algorithms-5,
author = {Robert Sedgewick},
title = {Algorithms in C, Part 5: Graph Algorithms},
publisher = {Addison Wesley Professional},
year = {2001},
edition = {3rd},
}

27.1 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)’ (type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 08:17:35 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1025 $’ (type=str)

27.2 Class Forest

builtin .object

networkx.search class.Search

Forest

Forest visitor: build a forest of trees as a list of networkx DiGraphs.

92

Module networkx.search class Class Length

27.2.1 Methods

init (self, G, queue=<class ’networkx.queues.DFS’>, **kwds)
Overrides: networkx.search class.Search. init

end tree(self, v)

Visitor function called at the search end

of each connected component.

Overrides: networkx.search class.Search.end tree

lastseen edge(self, e)

Visitor function called the last time an edge is encountered.

Overrides: networkx.search class.Search.lastseen edge

start tree(self, v)

Visitor function called at the search start

of each connected component.

Overrides: networkx.search class.Search.start tree

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from Search: firstseen edge, firstseen vertex, lastseen vertex, search

27.3 Class Length

builtin .object

networkx.search class.Search

Length

Path length visitor.

Returns dictionary of path lengths from vertex v.

Useful especially in BFS (gives shortest paths).

27.3.1 Methods

init (self, G, queue=<class ’networkx.queues.BFS’>, **kwds)
Overrides: networkx.search class.Search. init

lastseen edge(self, e)

Visitor function called the first time an edge is encountered.

Overrides: networkx.search class.Search.lastseen edge

93

Module networkx.search class Class Postorder

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from Search: end tree, firstseen edge, firstseen vertex, lastseen vertex, search, start tree

27.4 Class Postorder

builtin .object

networkx.search class.Search

Postorder

Postorder visitor

Builds a list of nodes in postorder of search.

Returns a list of lists if the graph is not connected.

27.4.1 Methods

init (self, G, queue=<class ’networkx.queues.DFS’>, **kwds)
Overrides: networkx.search class.Search. init

end tree(self, v)

Visitor function called at the search end

of each connected component.

Overrides: networkx.search class.Search.end tree

lastseen vertex(self, v)

Visitor function called the last time a vertex is encountered.

Overrides: networkx.search class.Search.lastseen vertex

start tree(self, v)

Visitor function called at the search start

of each connected component.

Overrides: networkx.search class.Search.start tree

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from Search: firstseen edge, firstseen vertex, lastseen edge, search

94

Module networkx.search class Class Predecessor

27.5 Class Predecessor

builtin .object

networkx.search class.Search

Predecessor

Predeceessor visitor

Builds a dict of nodes with sucessor vertex list as data.

path method returns path lengths from source to target.

27.5.1 Methods

init (self, G, queue=<class ’networkx.queues.DFS’>, **kwds)
Overrides: networkx.search class.Search. init

firstseen vertex(self, v)

Visitor function called the first time a vertex is encountered.

Overrides: networkx.search class.Search.firstseen vertex

lastseen edge(self, e)

Visitor function called the last time an edge is encountered.

Overrides: networkx.search class.Search.lastseen edge

path(self, target)

Gets one shortest path to target out of predecessor hash.

There might be more than one

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from Search: end tree, firstseen edge, lastseen vertex, search, start tree

27.6 Class Preorder

builtin .object

networkx.search class.Search

Preorder

Preorder visitor

Builds a list of nodes in preorder of search.

Returns a list of lists if the graph is not connected.

95

Module networkx.search class Class Search

27.6.1 Methods

init (self, G, queue=<class ’networkx.queues.DFS’>, **kwds)
Overrides: networkx.search class.Search. init

end tree(self, v)

Visitor function called at the search end

of each connected component.

Overrides: networkx.search class.Search.end tree

firstseen vertex(self, v)

Visitor function called the first time a vertex is encountered.

Overrides: networkx.search class.Search.firstseen vertex

start tree(self, v)

Visitor function called at the search start

of each connected component.

Overrides: networkx.search class.Search.start tree

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from Search: firstseen edge, lastseen edge, lastseen vertex, search

27.7 Class Search

builtin .object

Search

Known Subclasses: Forest, Length, Postorder, Predecessor, Preorder, Successor

Generic graph traversal (search) class.

Users should generally use the search functions defined below.

e.g. to get a list of all nodes of G in breadth first search (BFS)

order from v use

vertex list=bfs preorder(G,v)

To search the graph G from v do the following:

S=Search(G,queue=DFS)

S.search(v=v)

Depending on the type of queue you will get a different traversal type.

96

Module networkx.search class Class Search

You may use any of the following queues from the Queues class:

Name Queue Traversal

----- ------ ----------

DFS LIFO Depth First Search

BFS FIFO Breadth First Search

Random Random Random search

The generic search produces no data and thus is of limited utility.

Visitor callback functions are called at points along the search

which may be used to store shortest path data

27.7.1 Methods

init (self, G, queue=<class ’networkx.queues.DFS’>)
Overrides: builtin .object. init

end tree(self, v)

Visitor function called at the search end

of each connected component.

firstseen edge(self, e)

Visitor function called the first time an edge is encountered.

firstseen vertex(self, v)

Visitor function called the first time a vertex is encountered.

lastseen edge(self, e)

Visitor function called the last time an edge is encountered.

lastseen vertex(self, v)

Visitor function called the last time a vertex is encountered.

97

Module networkx.search class Class Successor

search(self, v=None)

Search the graph.

The search method is deteremined by the initialization of the

search object.

The optional v= argument can be a single vertex a list or None.

v=v: search the component of G reachable from v

v=vlist: search the component of G reachable from v

v=None: search the entire graph G even if it isn’t connected

Call visitor functions along the way.

start tree(self, v)

Visitor function called at the search start

of each connected component.

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

27.8 Class Successor

builtin .object

networkx.search class.Search

Successor

Successor visitor

Builds a dict of nodes with sucessor vertex list as data.

27.8.1 Methods

init (self, G, queue=<class ’networkx.queues.DFS’>, **kwds)
Overrides: networkx.search class.Search. init

firstseen vertex(self, v)

Visitor function called the first time a vertex is encountered.

Overrides: networkx.search class.Search.firstseen vertex

lastseen edge(self, e)

Visitor function called the last time an edge is encountered.

Overrides: networkx.search class.Search.lastseen edge

98

Module networkx.search class Class Successor

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr , str

Inherited from Search: end tree, firstseen edge, lastseen vertex, search, start tree

99

Module networkx.spectrum Variables

28 Module networkx.spectrum

Laplacian, adjacency matrix, and spectrum of graphs.

Uses Numeric.

28.1 Functions

adj matrix(G, u=None)

Return adjacency matrix of graph

If u is defined return row of adjacency matrix at row u.

generalized laplacian(G)

Return generalized Laplacian of graph

See Spectral Graph Theory by Fan Chung-Graham.

laplacian(G)

Return standard Laplacian of graph

28.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult(d...

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 14:18:07 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1044 $’ (type=str)

100

Module networkx.threshold

29 Module networkx.threshold

Threshold Graphs - Creation, manipulation and identification.

29.1 Functions

betweenness sequence(creation sequence)

Return betweenness for the threshold graph with the given creation

sequence. The result is unscaled. To scale the values

to the iterval [0,1] divide by (n-1)*(n-2).

cluster sequence(creation sequence)

Return cluster sequence for the given threshold graph creation sequence.

creation sequence(degree sequence, with labels=False, compact=False)

Determines the creation sequence for the given threshold degree sequence.

The creation sequence is a list of single characters ’d’

or ’i’: ’d’ for dominating or ’i’ for isolated vertices.

Dominating vertices are connected to all vertices present when it

is added. The first node added is by convention ’d’.

If with labels==True:

Returns a list of 2-tuples containing the vertex number

and a character ’d’ or ’i’ which describes the type of vertex.

If compact==True:

Returns the creation sequence in a compact form that is the number

of ’i’s and ’d’s alternating.

Examples:

[1,2,2,3] represents d,i,i,d,d,i,i,i

[3,1,2] represents d,d,d,i,d,d

Notice that the first number is the first vertex to be used for

construction and so is always ’d’.

with labels and compact cannot both be True.

Returns None if the sequence is not a threshold sequence

101

Module networkx.threshold Functions

creation sequence to weights(creation sequence)

Returns a list of node weights which create the threshold

graph designated by the creation sequence. The weights

are scaled so that the threshold is 1.0. The order of the

nodes is the same as that in the creation sequence.

degree correlation(creation sequence)

Return the degree-degree correlation over all edges.

degree sequence(creation sequence)

Return degree sequence for the threshold graph with the given

creation sequence

density(creation sequence)

Return the density of the graph with this creation sequence.

The density is the fraction of possible edges present.

eigenvalues(creation sequence)

Return sequence of eigenvalues of the Laplacian of the threshold

graph for the given creation sequence.

Based on the Ferrer’s diagram method. The spectrum is integral

and is the conjugate of the degree sequence.

See:

@Article{degree-merris-1994,
author = {Russel Merris},
title = {Degree maximal graphs are Laplacian integral},
journal = {Linear Algebra Appl.},
year = {1994},
volume = {199},
pages = {381--389},

}

find alternating 4 cycle(G)

Returns False if there aren’t any alternating 4 cycles.

Otherwise returns the cycle as [a,b,c,d] where (a,b)

and (c,d) are edges and (a,c) and (b,d) are not.

102

Module networkx.threshold Functions

find creation sequence(G)

Find a threshold subgraph that is close to largest in G.

Returns the labeled creation sequence of that threshold graph.

find threshold graph(G)

Return a threshold subgraph that is close to largest in G.

The threshold graph will contain the largest degree node in G.

If you just want the creation sequence you can use

creation sequence(find threshold graph(G).degree(with labels=True),

labeled=True)

is threshold graph(G)

Returns True if G is a threshold graph.

is threshold sequence(degree sequence)

Returns True if the sequence is a threshold degree seqeunce.

Uses the property that a threshold graph must be constructed by

adding either dominating or isolated nodes. Thus, it can be

deconstructed iteratively by removing a node of degree zero or a

node that connects to the remaining nodes. If this deconstruction

failes then the sequence is not a threshold sequence.

left d threshold sequence(n, m)

Create a skewed threshold graph with a given number

of vertices (n) and a given number of edges (m).

The routine returns an unlabeled creation sequence

for the threshold graph.

FIXME: describe algorithm

make compact(creation sequence)

Returns the creation sequence in a compact form

that is the number of ’i’s and ’d’s alternating.

Examples:

[1,2,2,3] represents d,i,i,d,d,i,i,i.

[3,1,2] represents d,d,d,i,d,d.

Notice that the first number is the first vertex

to be used for construction and so is always ’d’.

103

Module networkx.threshold Functions

random threshold sequence(n, p, seed=None)

Create a random threshold sequence of size n.

A creation sequence is built by randomly choosing d’s with

probabiliy p and i’s with probability 1-p.

>>> s=random threshold sequence(10,0.5)

returns a threshold sequence of length 10 with equal

probably of an i or a d at each position.

A "random" threshold graph can be built with

>>> G=threshold graph(random threshold sequence(n,p))

right d threshold sequence(n, m)

Create a skewed threshold graph with a given number

of vertices (n) and a given number of edges (m).

The routine returns an unlabeled creation sequence

for the threshold graph.

FIXME: describe algorithm

shortest path(creation sequence, u, v)

Find the shortest path between u and v in a

threshold graph G with the given creation sequence.

For an unlabeled creation sequence, the vertices

u and v must be integers in (0,len(sequence)) refering

to the position of the desired vertices in the sequence.

For a labeled creation sequence, u and v are labels of veritices.

Use cs=creation sequence(degree sequence,with labels=True)

to convert a degree sequence to a creation sequence.

Returns a list of vertices from u to v.

Example: if they are neighbors, it returns [u,v]

104

Module networkx.threshold Functions

shortest path length(creation sequence, i)

Return the shortest path length from indicated node to

every other node for the threshold graph with the given

creation sequence.

Node is indicated by index i in creation sequence unless

creation sequence is labeled in which case, i is taken to

be the label of the node.

Paths lengths in threshold graphs are at most 2.

Length to unreachable nodes is set to -1.

swap d(cs, p split=1.0, p combine=1.0, seed=None)

Perform a "swap" operation on a threshold sequence.

The swap preserves the number of nodes and edges

in the graph for the given sequence.

The resulting sequence is still a threshold sequence.

Perform one split and one combine operation on the

’d’s of a creation sequence for a threshold graph.

This operation maintains the number of nodes and edges

in the graph, but shifts the edges from node to node

maintaining the threshold quality of the graph.

threshold graph(creation sequence)

Create a threshold graph from the creation sequence or compact

creation sequence.

The input sequence can be a

creation sequence (e.g. [’d’,’i’,’d’,’d’,’d’,’i’])

labeled creation sequence (e.g. [(0,’d’),(2,’d’),(1,’i’)])

compact creation sequence (e.g. [2,1,1,2,0])

Use cs=creation sequence(degree sequence,labeled=True)

to convert a degree sequence to a creation sequence.

Returns None if the sequence is not valid

triangle sequence(creation sequence)

Return triangle sequence for the given threshold graph creation sequence.

105

Module networkx.threshold Variables

triangles(creation sequence)

Compute number of triangles in the threshold graph with the

given creation sequence.

uncompact(compact creation sequence)

Converts a compact creation sequence for a threshold

graph to a standard creation sequence (unlabeled).

See creation sequence.

weights to creation sequence(weights, threshold=1, with labels=False, compact=False)

Returns a creation sequence for a threshold graph

determined by the weights and threshold given as input.

If the sum of two node weights is greater than the

threshold value, an edge is created between these nodes.

The creation sequence is a list of single characters ’d’

or ’i’: ’d’ for dominating or ’i’ for isolated vertices.

Dominating vertices are connected to all vertices present

when it is added. The first node added is by convention ’d’.

If with labels==True:

Returns a list of 2-tuples containing the vertex number

and a character ’d’ or ’i’ which describes the type of vertex.

If compact==True:

Returns the creation sequence in a compact form that is the number

of ’i’s and ’d’s alternating.

Examples:

[1,2,2,3] represents d,i,i,d,d,i,i,i

[3,1,2] represents d,d,d,i,d,d

Notice that the first number is the first vertex to be used for

construction and so is always ’d’.

with labels and compact cannot both be True.

29.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult (...

(type=str)
credits Value: ’’ (type=str)

continued on next page

106

Module networkx.threshold Variables

Name Description

date Value: ’$Date: 2005-06-17 08:06:22 -0600 (Fri, 17 Jun -

2005) $’

(type=str)
version Value: ’$Revision: 1049 $’ (type=str)

107

Module networkx.utils

30 Module networkx.utils

Utilities for networkx package

30.1 Functions

discrete sequence(n, **kwds)

Return sample sequence of length n from a given discrete distribution

distribution=histogram of values, will be normalized

gsl pareto sequence(n, **kwds)

Return sample sequence of length n from a Pareto distribution.

gsl poisson sequence(n, **kwds)

Return sample sequence of length n from a Poisson distribution.

gsl powerlaw sequence(n, **kwds)

Return sample sequence of length n from a power law distribution.

gsl uniform sequence(n, **kwds)

Return sample sequence of length n from a uniform distribution.

is list of ints(intlist)

Return True if list is a list of ints.

is singleton(obj)

Is string like or not iterable.

is string like(obj)

Check if obj is string.

iterable(obj)

Return True if obj is iterable with a well-defined len()

pareto sequence(n, **kwds)

Return sample sequence of length n from a Pareto distribution.

108

Module networkx.utils Variables

powerlaw sequence(n, **kwds)

Return sample sequence of length n from a power law distribution.

scipy discrete sequence(n, **kwds)

Return sample sequence of length n from a given discrete distribution

distribution=histogram of values, will be normalized

scipy pareto sequence(n, **kwds)

Return sample sequence of length n from a Pareto distribution.

scipy poisson sequence(n, **kwds)

Return sample sequence of length n from a Poisson distribution.

scipy powerlaw sequence(n, **kwds)

Return sample sequence of length n from a power law distribution.

scipy uniform sequence(n)

Return sample sequence of length n from a uniform distribution.

uniform sequence(n)

Return sample sequence of length n from a uniform distribution.

30.2 Variables

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nDan Schult(ds-

chult@colgate.edu)’

(type=str)
credits Value: ’’ (type=str)
date Value: ’$Date: 2005-06-15 08:30:40 -0600 (Wed, 15 Jun -

2005) $’

(type=str)
revision Value: ’$Revision: 1029 $’ (type=str)

109

Module networkx.xbase

31 Module networkx.xbase

Methods for general graphs (XGraph) and digraphs (XDiGraph)

allowing self-loops, multiple edges, arbitrary (hashable) objects as

nodes and arbitrary objects associated with edges.

The XGraph and XDiGraph classes are extensions of the Graph and

DiGraph classes in base.py. The key difference

is that an XGraph edge is a 3-tuple e=(n1,n2,x), representing an

undirected edge between nodes n1 and n2 that is decorated with the

object x. Here n1 and n2 are (hashable) node objects and x is a (not

necessarily hashable) edge object. Since the edge is undirected,

edge (n1,n2,x) is equivalent to edge (n2,n1,x).

An XDiGraph edge is a similar 3-tuple e=(n1,n2,x), with the additional

property of directedness. I.e. e=(n1,n2,x) is a directed edge from n1 to

n2 decorated with the object x, and is not equivalent to the edge (n2,n1,x).

Whether a graph or digraph allow self-loops or multiple edges is

determined at the time of object instantiation via

specifying the parameters selfloops=True/False and

multiedges=True/False. For example,

an empty XGraph is created with:

>>> G=XGraph()

which is equivalent to

>>> G=XGraph(name="No Name", selfloops=False, multiedges=False)

and similarly for XDiGraph.

>>> G=XDiGraph(name="empty", multiedges=True)

creates an empty digraph G with G.name="empty", that do not

allow the addition of selfloops but do allow for multiple edges.

XGraph and XDiGraph are implemented using a data structure based on an

adjacency list implemented as a dictionary of dictionaries. The outer

dictionary is keyed by node to an inner dictionary keyed by

neighboring nodes to the edge data/labels/objects (which default to 1

to correspond the datastructure used in classes Graph and DiGraph).

If multiedges=True, a list of edge data/labels/objects is stored as

the value of the inner dictionary. This double dict structure

mimics a sparse matrix and allows fast addition, deletion and lookup

of nodes and neighbors in large graphs. The underlying datastructure

should only be visible in this module. In all other modules,

110

Module networkx.xbase

graph-like objects are manipulated solely via the methods defined here

and not by acting directly on the datastructure.

Similarities between XGraph and Graph

XGraph and Graph differ fundamentally; XGraph edges are 3-tuples

(n1,n2,x) and Graph edges are 2-tuples (n1,n2). XGraph inherits from the

Graph class, and XDiGraph from the DiGraph class.

They do share important similarities.

1. Edgeless graphs are the same in XGraph and Graph.

For an edgeless graph, represented by G (member of the Graph class)

and XG (member of XGraph class), there is no difference between

the datastructures G.adj and XG.adj, other than in the ordering of the

keys in the adj dict.

2. Basic graph construction code for G=Graph() will also work for G=XGraph().

In the Graph class, the simplest graph construction consists of a graph

creation command G=Graph() followed by a list of graph construction commands,

consisting of successive calls to the methods:

G.add node, G.add nodes from, G.add edge, G.add edges, G.add path,

G.add cycle G.delete node, G.delete nodes from, G.delete edge,

G.delete edges from

with all edges specified as 2-tuples,

If one replaces the graph creation command with G=XGraph(), and then

apply the identical list of construction commands, the resulting XGraph

object will be a simple graph G with identical datastructure G.adj. This

property ensures reuse of code developed for graph generation in the

Graph class.

Notation

The following shorthand is used throughout NetworkX documentation and code:

(we use mathematical notation n,v,w,... to indicate a node, v=vertex=node).

G,G1,G2,H,etc:

Graphs

n,n1,n2,u,v,v1,v2:

nodes (vertices)

nlist:

111

Module networkx.xbase

a list of nodes (vertices)

nbunch:

a "bunch" of nodes (vertices).

an nbunch is any iterable (non-string) container

of nodes that is not itself a node of the graph.

e=(n1,n2):

an edge (a python "2-tuple"), also written n1-n2 (if undirected)

and n1->n2 (if directed). In Xgraph G.add edge(n1,n2) is equivalent

to add edge(n1,n2,1). However, G.delete edge(n1,n2) will delete all

edges between n1 and n2.

e=(n1,n2,x):

an edge triple ("3-tuple") containing the two nodes connected and the

edge data/label/object stored associated with the edge. The object x,

or a list of objects (if multiedges=True), can be obtained using

G.get edge(n1,n2)

elist:

a list of edges (as 2- or 3-tuples)

ebunch:

a bunch of edges (as 2- or 3-tuples)

an ebunch is any iterable (non-string) container

of edge-tuples (either 2-tuples, 3-tuples or a mixture).

(similar to nbunch, also see add edge).

Warning:

The ordering of objects within an arbitrary nbunch/ebunch

can be machine-dependent.

Algorithms should treat an arbitrary nbunch/ebunch as

once-through-and-exhausted iterable containers.

len(nbunch) and len(ebunch) need not be defined.

Methods

The XGraph class provides rudimentary graph operations:

112

Module networkx.xbase

Mutating Graph methods

G.add node(n), G.add nodes from(nbunch)

G.delete node(n), G.delete nodes from(nbunch)

G.add edge(n1,n2,x), G.add edge(e),

G.add edges from(ebunch)

G.delete edge(n1,n2), G.delete edge(n1,n2,x), G.delete edge(e),

G.delete edges from(ebunch)

G.add path(nlist)

G.add cycle(nlist)

G.to directed()

G.ban multiedges()

G.allow multiedges()

G.delete multiedges()

G.ban selfloops()

G.allow selfloops()

G.delete selfloops()

G.clear()

G.subgraph(nbunch, inplace=True)

Non-mutating Graph methods

G.has node(n)

G.nodes()

G.nodes iter()

G.order()

G.neighbors(n), G.neighbors iter(n)

113

Module networkx.xbase Variables

G.has edge(n1,n2), G.has neighbor(n1,n2)

G.edges(), G.edges(nbunch)

G.edges iter(), G.edges iter(nbunch,

G.size()

G.get edge(n1,n2)

G.degree(), G.degree(n), G.degree(nbunch)

G.degree iter(), G.degree iter(n), G.degree iter(nbunch)

G.number of selfloops()

G.nodes with selfloops()

G.selfloop edges()

G.copy()

G.subgraph(nbunch)

Examples

Create an empty graph structure (a "null graph") with

zero nodes and zero edges

>>> from networkx import *

>>> G=XGraph(directed=True) # default no-loops, no-multiedges

You can add nodes in the same way as the simple Graph class

>>> G.add nodes from(xrange(100,110))

You can add edges as for simple Graph class, but with optional edge

data/labels/objects.

>>> G.add edges from([(1,2,0.776),(1,3,0.535)])

For graph coloring problems, one could use

>>> G.add edges from([(1,2,"blue"),(1,3,"red")])

31.1 Variables

114

Module networkx.xbase Class XDiGraph

Name Description

author Value: ’Aric Hagberg (hagberg@lanl.gov)\nPieter Swart -

(swart@lanl.gov)\nDan Schult(d...

(type=str)

31.2 Class XDiGraph

builtin .object

networkx.base.Graph

networkx.base.DiGraph

XDiGraph

A class implementing general undirected digraphs, allowing

(optional) self-loops, multiple edges, arbitrary (hashable)

objects as nodes and arbitrary objects associated with

edges.

As in XGraph, an XDiGraph edge is uniquely specified by a 3-tuple

e=(n1,n2,x), where n1 and n2 are (hashable) objects (nodes) and x

is an arbitrary (and not necessarily unique) object associated with

that edge.

XDiGraph inherits from DiGraph, with all purely node-specific methods

identical to those of DiGraph. XDiGraph edges are identical to XGraph

edges, except that they are directed rather than undirected.

XDiGraph replaces the following DiGraph methods:

init : read multiedges and selfloops kwds.

add edge

add edges from

delete edge

delete edges from

has edge

edges iter

degree iter

degree

115

Module networkx.xbase Class XDiGraph

copy

clear

subgraph

is directed

to directed

XDiGraph also adds the following methods to those of DiGraph:

allow selfloops

remove selfloops

ban selfloops

allow multiedges

remove multiedges

ban multiedges

XDigraph adds the following methods to those of XGraph:

has successor

successors

successors iter

has predecessor

predecessors

predecessors iter

out degree

out degree iter

in degree

in degree iter

to undirected

116

Module networkx.xbase Class XDiGraph

is directed

31.2.1 Methods

init (self, **kwds)

Initialize XDiGraph.

Optional arguments::

name: digraph name (default="No Name")

selfloops: if True then selfloops are allowed (default=False)

multiedges: if True then multiple edges are allowed (default=False)

Overrides: networkx.base.DiGraph. init

117

Module networkx.xbase Class XDiGraph

add edge(self, n1, n2=None, x=None)

Add a single directed edge to the digraph.

Can be called as G.add edge(n1,n2,x)

or as G.add edge(e), where e=(n1,n2,x).

If called as G.add edge(n1,n2) or G.add edge(e), with e=(n1,n2),

then this is interpreted as adding the edge (n1,n2,1), so as to

be compatible with the Graph and DiGraph classes.

n1,n2 are (hashable) node objects, and are added silently to

the Graph if not already present.

x is an arbitrary (not necessarily hashable) object associated

with this edge. It can be used to associate one or more,

labels, data records, weights or any arbirary objects to

edges.

For example, if the graph G was created with

>>> G=XDiGraph()

then G.add edge(1,2,"blue") will add the directed edge (1,2,"blue").

If G.multiedges=False, then a subsequent G.add edge(1,2,"red")

will change the above edge (1,2,"blue") into the edge (1,2,"red").

On the other hand, if G.multiedges=True, then two successive calls to

G.add edge(1,2,"red") will result in 2 edges of the form

(1,2,"red") that can not be distinguished from one another.

If self.selfloops=False, then any attempt to create a self-loop

with add edge(n1,n1,x) will have no effect on the digraph and

will not elicit a warning.

Objects imbedded in the edges from n1 to n2 (if any), can be

retrieved using get edge(n1,n2), or calling edges(n1) or

edge iter(n1) to return all edges attached to n1.

Overrides: networkx.base.DiGraph.add edge

118

Module networkx.xbase Class XDiGraph

add edges from(self, ebunch)

Add multiple directed edges to the digraph.

ebunch: Container of edges. Each edge e in container will be added

using add edge(e). See add edge documentation.

The container must be iterable or an iterator.

It is iterated over once.

Overrides: networkx.base.DiGraph.add edges from

allow multiedges(self)

Henceforth allow addition of multiedges (more than one

edge between two nodes).

Warning: This causes all edge data to be converted to lists.

allow selfloops(self)

Henceforth allow addition of self-loops

(edges from a node to itself).

This doesn’t change the graph structure, only what you can do to it.

ban multiedges(self)

Remove multiedges retaining the data from the first edge.

Henceforth do not allow multiedges.

ban selfloops(self)

Remove self-loops from the graph and henceforth do not allow

their creation.

copy(self)

Return a (shallow) copy of the digraph.

Return a new XDiGraph with same name and same attributes for

selfloop and multiededges. Each node and each edge in original

graph are added to the copy.

Overrides: networkx.base.DiGraph.copy

119

Module networkx.xbase Class XDiGraph

degree(self, nbunch=None, with labels=False)

Return the out-degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

out-degrees of all nodes.

If with labels=True, then return a dict that maps each n

in nbunch to out degree(n).

Any nodes in nbunch that are not in the graph are

(quietly) ignored.

Overrides: networkx.base.DiGraph.degree

delete edge(self, n1, n2=None, x=None)

Delete the directed edge (n1,n2,x) from the graph.

Can be called either as G.delete edge(n1,n2,x)

or as G.delete edge(e), where e=(n1,n2,x).

If x is unspecified, i.e. if called with an edge e=(n1,n2),

or as G.delete edge(n1,n2), then delete all edges between n1 and n2.

If the edge does not exist, do nothing.

Overrides: networkx.base.DiGraph.delete edge

delete edges from(self, ebunch, data=None)

Delete edges in ebunch from the graph.

ebunch: Container of edges. Each edge must be a 3-tuple

(n1,n2,x) or a 2-tuple (n1,n2). The container must be

iterable or an iterator, and is iterated over once. Edges

that are not in the graph are ignored.

Overrides: networkx.base.DiGraph.delete edges from

delete multiedges(self)

Remove multiedges retaining the data from the first edge

delete selfloops(self)

Remove self-loops from the graph (edges from a node to itself).

120

Module networkx.xbase Class XDiGraph

edges iter(self, nbunch=None, with labels=False)

Return iterator that iterates once over each edge adjacent

to nodes in nbunch, or over all edges in digraph if no

nodes are specified.

See add node for definition of nbunch.

Those nodes in nbunch that are not in the graph will be

(quietly) ignored.

with labels=True is not supported. (In that case

you should probably use neighbors().)

Overrides: networkx.base.DiGraph.edges iter

get edge(self, n1, n2)

Return the objects associated with each edge between n1 and n2.

If multiedges=False, a single object is returned.

If multiedges=True, a list of objects is returned.

If no edge exists, raise an exception.

has edge(self, n1, n2=None, x=None)

Return True if digraph contains directed edge (n1,n2,x).

Can be called as G.has edge(n1,n2,x)

or as G.has edge(e), where e=(n1,n2,x).

If x is unspecified, i.e. if called with an edge of the form

e=(n1,n2), then return True if there exists ANY edge from n1

to n2 (equivalent to has successor(n1,n2)).

Overrides: networkx.base.Graph.has edge

has neighbor(self, n1, n2)

Return True if node n1 and n2 are connected.

True if there exists ANY edge (n1,n2,x) or (n2,n1,x)

for some x.

Overrides: networkx.base.Graph.has neighbor

has predecessor(self, n1, n2)

Return True if node n1 has a predecessor n2.

Return True if there exists ANY edge (n2,n1,x) for some x.

121

Module networkx.xbase Class XDiGraph

has successor(self, n1, n2)

Return True if node n1 has a successor n2.

Return True if there exists ANY edge (n1,n2,x) for some x.

in degree(self, nbunch=None, with labels=False)

Return the in-degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

in-degrees of all nodes.

If with labels=True, then return a dict that maps each n

in nbunch to in degree(n).

Any nodes in nbunch that are not in the graph are

(quietly) ignored.

Overrides: networkx.base.DiGraph.in degree

neighbors(self, n, with labels=False)

Return a list of all nodes connected to node n.

If with labels=True, return a dict keyed by neighbors to

edge data for that edge. If neighbor has both in and out

edge, the edge data is returned as the list [indata, outdata]

The node n will be a neighbor of itself if a selfloop exists.

Overrides: networkx.base.DiGraph.neighbors

neighbors iter(self, n, with labels=False)

Return an iterator for neighbors of n.

If with labels=True, the iterator returns (neighbor, edge data) tuples

for each edge. If neighbor has both in and out edges, the edge data

is either:

1) concatenated as lists if multiedges==True, or

2) returned as the list [indata, outdata] if multiedges==False.

The node n will be a neighbor of itself if a selfloop exists.

Overrides: networkx.base.DiGraph.neighbors iter

nodes with selfloops(self)

Return list of all nodes having self-loops.

122

Module networkx.xbase Class XDiGraph

number of selfloops(self)

Return number of self-loops in graph.

out degree(self, nbunch=None, with labels=False)

Return the out-degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

out-degrees of all nodes.

If with labels=True, then return a dict that maps each n

in nbunch to out degree(n).

Any nodes in nbunch that are not in the graph are

(quietly) ignored.

Overrides: networkx.base.DiGraph.out degree

predecessors(self, n, with labels=False)

Return a list of predecessor nodes of node n.

If with labels=True, return a dict keyed by predecessors to

edge data for that edge.

Overrides: networkx.base.DiGraph.predecessors

selfloop edges(self)

Return all edges that are self-loops.

123

Module networkx.xbase Class XDiGraph

subgraph(self, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: either a singleton node, a string (which is treated

as a singleton node), or any non-string iterable or iterator.

For example, a list, dict, set, Graph, numeric array, or

user-defined iterable object.

Setting inplace=True will return induced subgraph in original

graph by deleting nodes not in nbunch. It overrides any setting

of create using.

WARNING: specifying inplace=True makes it easy to destroy the graph.

Unless otherwise specified, return a new graph of the same

type as self. Use (optional) create using=R to return the

resulting subgraph in R. R can be an existing graph-like

object (to be emptied) or R can be a call to a graph object,

e.g. create using=DiGraph(). See documentation for

empty graph()

Note: use subgraph(G) rather than G.subgraph() to access the more

general subgraph() function from the operators module.

Overrides: networkx.base.Graph.subgraph

successors(self, n, with labels=False)

Return a list of all successor nodes of node n.

If with labels=True, return a dict keyed by successors to

edge data for that edge.

Overrides: networkx.base.DiGraph.successors

124

Module networkx.xbase Class XGraph

to undirected(self)

Return the underlying graph of G.

The underlying graph is its undirected representation: each directed

edge is replaced with an undirected edge.

If multiedges=True, then an XDiGraph with only two directed

edges (1,2,"red") and (2,1,"blue") will be converted into an

XGraph with two undirected edges (1,2,"red") and (1,2,"blue").

Two directed edges (1,2,"red") and (2,1,"red") will result in

in two undirected edges (1,2,"red") and (1,2,"red").

If multiedges=False, then two directed edges (1,2,"red") and

(2,1,"blue") can only result in one undirected edge, and there

is no garantee which one it is.

Overrides: networkx.base.DiGraph.to undirected

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr

Inherited from DiGraph: getitem , add node, add nodes from, clear, degree iter, delete node, delete nodes from,
foo, in degree iter, is directed, out degree iter, predecessors iter, reverse, successors iter, to directed
Inherited from Graph: contains , iter , len , str , add cycle, add path, edge boundary, edges,
has node, node boundary, nodes, nodes iter, number of edges, number of nodes, order, print dna, size

31.3 Class XGraph

builtin .object

networkx.base.Graph

XGraph

A class implementing general undirected graphs, allowing

(optional) self-loops, multiple edges, arbitrary (hashable)

objects as nodes and arbitrary objects associated with

edges.

An XGraph edge is specified by a 3-tuple e=(n1,n2,x),

where n1 and n2 are (hashable) objects (nodes) and x is an

arbitrary (and not necessarily unique) object associated with that

edge.

>>> G=XGraph()

creates an empty simple and undirected graph (no self-loops or

multiple edges allowed). It is equivalent to the expression:

>>> G=XGraph(name="No Name",selfloops=False,multiedges=False)

125

Module networkx.xbase Class XGraph

>>> G=XGraph(name="empty",multiedges=True)

creates an empty graph with G.name="empty", that do not allow the

addition of self-loops but do allow for multiple edges.

See also the XDiGraph class below.

31.3.1 Methods

init (self, **kwds)

Initialize XGraph.

Optional arguments::

name: graph name (default="No Name")

selfloops: if True selfloops are allowed (default=False)

multiedges: if True multiple edges are allowed (default=False)

Overrides: networkx.base.Graph. init

add cycle(self, nlist)

Add the cycle of nodes in nlist to graph

Overrides: networkx.base.Graph.add cycle

126

Module networkx.xbase Class XGraph

add edge(self, n1, n2=None, x=None)

Add a single edge to the graph.

Can be called as G.add edge(n1,n2,x)

or as G.add edge(e), where e=(n1,n2,x).

n1,n2 are (hashable) node objects, and are added silently to

the Graph if not already present.

x is an arbitrary (not necessarily hashable) object associated

with this edge. It can be used to associate one or more:

labels, data records, weights or any arbirary objects to

edges.

For example, if the graph G was created with

>>> G=XGraph()

then G.add edge(1,2,"blue") will add the edge (1,2,"blue").

If G.multiedges=False, then a subsequent G.add edge(1,2,"red")

will change the above edge (1,2,"blue") into the edge (1,2,"red").

If G.multiedges=True, then two successive calls to

G.add edge(1,2,"red") will result in 2 edges of the form

(1,2,"red") that can not be distinguished from one another.

G.add edge(1,2,"green") will add both edges (1,2,X) and (2,1,X).

If self.selfloops=False, then calling add edge(n1,n1,x) will have no

effect on the Graph.

Objects associated to an edge can be retrieved using edges(),

edge iter(), or get edge().

Overrides: networkx.base.Graph.add edge

add edges from(self, ebunch)

Add multiple edges to the graph.

ebunch: Container of edges. Each edge must be a 3-tuple

(n1,n2,x) or a 2-tuple (n1,n2). See add edge documentation.

The container must be iterable or an iterator. It is iterated

over once.

Overrides: networkx.base.Graph.add edges from

127

Module networkx.xbase Class XGraph

add path(self, nlist)

Add the path through the nodes in nlist to graph

Overrides: networkx.base.Graph.add path

allow multiedges(self)

Henceforth allow addition of multiedges (more than one

edge between two nodes).

Warning: This causes all edge data to be converted to lists.

allow selfloops(self)

Henceforth allow addition of self-loops

(edges from a node to itself).

This doesn’t change the graph structure, only what you can do to it.

ban multiedges(self)

Remove multiedges retaining the data from the first edge.

Henceforth do not allow multiedges.

ban selfloops(self)

Remove self-loops from the graph and henceforth do not allow

their creation.

copy(self)

Return a (shallow) copy of the graph.

Return a new XGraph with same name and same attributes for

selfloop and multiededges. Each node and each edge in original

graph are added to the copy.

Overrides: networkx.base.Graph.copy

128

Module networkx.xbase Class XGraph

degree(self, nbunch=None, with labels=False)

Return degree of single node or of nbunch of nodes.

If nbunch is omitted or nbunch=None, then return

degrees of all nodes.

The degree of a node is the number of edges attached to that

node.

Can be called in three ways:

G.degree(n): return the degree of node n

G.degree(nbunch): return a list of values,

one for each n in nbunch

(nbunch is any iterable container of nodes.)

G.degree(): same as nbunch = all nodes in graph.

Always return a list.

If with labels==True, then return a dict that maps each n

in nbunch to degree(n).

Any nodes in nbunch that are not in the graph are

(quietly) ignored.

Overrides: networkx.base.Graph.degree

degree iter(self, nbunch=None, with labels=False)

This is the degree() method returned in interator form.

If with labels=True, iterator yields 2-tuples of form (n,degree(n))

(like iteritems() on a dict.)

Overrides: networkx.base.Graph.degree iter

delete edge(self, n1, n2=None, x=None)

Delete the edge (n1,n2,x) from the graph.

Can be called either as G.delete edge(n1,n2,x)

or as G.delete edge(e), where e=(n1,n2,x).

If x is unspecified, i.e. if called with an edge e=(n1,n2),

or as G.delete edge(n1,n2), then delete all edges between n1 and n2.

If the edge does not exist, do nothing.

Overrides: networkx.base.Graph.delete edge

129

Module networkx.xbase Class XGraph

delete edges from(self, ebunch)

Delete edges in ebunch from the graph.

ebunch: Container of edges. Each edge must be a 3-tuple

(n1,n2,x) or a 2-tuple (n1,n2). In the latter case all edges

between n1 and n2 will be deleted. See delete edge above.

The container must be iterable or an iterator, and

is iterated over once. Edges that are not in the graph are ignored.

Overrides: networkx.base.Graph.delete edges from

delete multiedges(self)

Remove multiedges retaining the data from the first edge

delete node(self, n)

Delete node n from graph.

Attempting to delete a non-existent node will raise an exception.

Overrides: networkx.base.Graph.delete node

delete nodes from(self, nbunch)

Remove nodes in nbunch from graph.

nbunch: an iterable or iterator containing valid(hashable) node names.

Attempting to delete a non-existent node will raise an exception.

This could result in a partial deletion of those nodes both in

nbunch and in the graph.

Overrides: networkx.base.Graph.delete nodes from

delete selfloops(self)

Remove self-loops from the graph (edges from a node to itself).

130

Module networkx.xbase Class XGraph

edges(self, nbunch=None, with labels=False)

Return a list of all edges that originate at a node in nbunch,

or a list of all edges if nbunch=None.

See add node for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.

with labels=True option is not supported because in that case

you should probably use neighbors().

Overrides: networkx.base.Graph.edges

edges iter(self, nbunch=None, with labels=False)

Return iterator that iterates once over each edge adjacent

to nodes in nbunch, or over all nodes in graph if nbunch=None.

See add node for definition of nbunch.

Nodes in nbunch that are not in the graph will be (quietly) ignored.

with labels=True option is not supported (in that case

you should probably use neighbors()).

Overrides: networkx.base.Graph.edges iter

get edge(self, n1, n2)

Return the objects associated with each edge between n1 and n2.

If multiedges=False, a single object is returned.

If multiedges=True, a list of objects is returned.

If no edge exists, raise an exception.

has edge(self, n1, n2=None, x=None)

Return True if graph contains edge (n1,n2,x).

Can be called as G.has edge(n1,n2,x)

or as G.has edge(e), where e=(n1,n2,x).

If x is unspecified, i.e. if called with an edge of the form

e=(n1,n2), then return True if there exists ANY edge between

n1 and n2 (equivalent to has neighbor(n1,n2))

Overrides: networkx.base.Graph.has edge

131

Module networkx.xbase Class XGraph

has neighbor(self, n1, n2)

Return True if node n1 has neighbor n2.

Note that this returns True if there exists ANY edge (n1,n2,x)

for some x.

Overrides: networkx.base.Graph.has neighbor

neighbors(self, n, with labels=False)

Return a list of nodes connected to node n.

If with labels=True, return a dict keyed by neighbors to

edge data for that edge.

Overrides: networkx.base.Graph.neighbors

neighbors iter(self, n, with labels=False)

Return an iterator for neighbors of n.

Overrides: networkx.base.Graph.neighbors iter

nodes with selfloops(self)

Return list of all nodes having self-loops.

number of edges(self)

Return number of edges

Overrides: networkx.base.Graph.number of edges

number of selfloops(self)

Return number of self-loops in graph.

selfloop edges(self)

Return all edges that are self-loops.

size(self)

Return the size of a graph = number of edges.

Overrides: networkx.base.Graph.size

132

Module networkx.xbase Class XGraph

subgraph(self, nbunch, inplace=False, create using=None)

Return the subgraph induced on nodes in nbunch.

nbunch: either a singleton node, a string (which is treated

as a singleton node), or any non-string iterable or iterator.

For example, a list, dict, set, Graph, numeric array, or

user-defined iterable object.

Setting inplace=True will return induced subgraph in original

graph by deleting nodes not in nbunch. It overrides any setting

of create using.

WARNING: specifying inplace=True makes it easy to destroy the graph.

Unless otherwise specified, return a new graph of the same

type as self. Use (optional) create using=R to return the

resulting subgraph in R. R can be an existing graph-like

object (to be emptied) or R can be a call to a graph object,

e.g. create using=DiGraph(). See documentation for

empty graph()

Note: use subgraph(G) rather than G.subgraph() to access the more

general subgraph() function from the operators module.

Overrides: networkx.base.Graph.subgraph

to directed(self)

Return a directed representation of the XGraph G.

A new XDigraph is returned with the same name, same nodes and

with each edge (u,v,x) replaced by two directed edges

(u,v,x) and (v,u,x).

Overrides: networkx.base.Graph.to directed

Inherited from object: delattr , getattribute , hash , new , reduce , reduce ex , repr ,
setattr

Inherited from Graph: contains , getitem , iter , len , str , add node, add nodes from, clear,
edge boundary, has node, is directed, node boundary, nodes, nodes iter, number of nodes, order, print dna,
to undirected

133

Index

networkx (package), 2–4
networkx.base (module), 5–26

degree (function), 9
degree histogram (function), 9
density (function), 9
DiGraph (class), 10–18

getitem (method), 12
init (method), 12

add edge (method), 12
add edges from (method), 12
add node (method), 13
add nodes from (method), 13
clear (method), 13
copy (method), 13
degree (method), 14
degree iter (method), 14
delete edge (method), 14
delete edges from (method), 15
delete node (method), 15
delete nodes from (method), 15
edges iter (method), 15
foo (method), 16
in degree (method), 16
in degree iter (method), 16
is directed (method), 16
neighbors (method), 16
neighbors iter (method), 16
out degree (method), 17
out degree iter (method), 17
predecessors (method), 17
predecessors iter (method), 17
reverse (method), 17
successors (method), 17
successors iter (method), 17
to directed (method), 17
to undirected (method), 17

edges (function), 9
edges iter (function), 9
Graph (class), 18–26

contains (method), 18
getitem (method), 18
init (method), 18
iter (method), 19
len (method), 19
str (method), 19

add cycle (method), 19
add edge (method), 19

add edges from (method), 19
add node (method), 20
add nodes from (method), 20
add path (method), 20
clear (method), 21
copy (method), 21
degree (method), 21
degree iter (method), 21
delete edge (method), 22
delete edges from (method), 22
delete node (method), 22
delete nodes from (method), 22
edge boundary (method), 23
edges (method), 23
edges iter (method), 23
has edge (method), 23
has neighbor (method), 24
has node (method), 24
is directed (method), 24
neighbors (method), 24
neighbors iter (method), 24
node boundary (method), 24
nodes (method), 24
nodes iter (method), 24
number of edges (method), 25
number of nodes (method), 25
order (method), 25
print dna (method), 25
size (method), 25
subgraph (method), 25
to directed (method), 25
to undirected (method), 26

neighbors (function), 9
NetworkXError (class), 26
NetworkXException (class), 26
nodes (function), 10
nodes iter (function), 10
number of edges (function), 10
number of nodes (function), 10

networkx.centrality (module), 27–28
betweenness centrality (function), 27
closeness centrality (function), 27
degree centrality (function), 27
edge betweenness (function), 27

networkx.cliques (module), 29–32
cliques containing node (function), 29
find cliques (function), 29

134

INDEX INDEX

graph clique number (function), 30
graph number of cliques (function), 30
make clique bipartite (function), 30
make max clique graph (function), 31
node clique number (function), 31
number of cliques (function), 31
project down (function), 31
project up (function), 32

networkx.cluster (module), 33–34
average clustering (function), 33
clustering (function), 33
transitivity (function), 33
triangles (function), 33

networkx.cores (module), 35
find cores (function), 35

networkx.drawing (package), 36
networkx.drawing.layout (module), 37–38

circular layout (function), 37
graph low ev pi (function), 37
random layout (function), 37
shell layout (function), 37
spectral layout (function), 37
spring layout (function), 37

networkx.drawing.nx pydot (module), 39–40
networkx from pydot (function), 39
pydot from networkx (function), 39
pydot layout (function), 39
read dot (function), 39
write dot (function), 39

networkx.drawing.nx pylab (module), 41–43
draw (function), 41
draw circular (function), 41
draw nx (function), 41
draw nxpydot (function), 41
draw nxpydot nolabels (function), 41
draw pydot (function), 42
draw pydot subgraph (function), 42
draw random (function), 42
draw shell (function), 42
draw spectral (function), 42
draw spring (function), 42
drawg (function), 42
mpl network (function), 42

networkx.drawing.nx vtk (module), 44
draw nxvtk (function), 44

networkx.generators (package), 45
networkx.generators.atlas (module), 46

graph atlas g (function), 46

networkx.generators.classic (module), 47–51
balanced tree (function), 47
barbell graph (function), 47
circular ladder graph (function), 47
complete bipartite graph (function), 48
complete graph (function), 48
cycle graph (function), 48
dorogovtsev goltsev mendes graph (function), 48
empty graph (function), 48
grid 2d graph (function), 49
grid graph (function), 49
hypercube graph (function), 50
ladder graph (function), 50
lollipop graph (function), 50
null graph (function), 50
path graph (function), 50
periodic grid 2d graph (function), 50
star graph (function), 51
trivial graph (function), 51
wheel graph (function), 51

networkx.generators.degree seq (module), 52–55
configuration model (function), 52
create degree sequence (function), 52
degree sequence tree (function), 53
havel hakimi graph (function), 53
is valid degree sequence (function), 54

networkx.generators.geometric (module), 56
random geometric graph (function), 56

networkx.generators.random graphs (module), 57–62
barabasi albert graph (function), 57
binomial graph (function), 57
erdos renyi graph (function), 57
newman watts strogatz graph (function), 58
powerlaw cluster graph (function), 58
random lobster (function), 59
random powerlaw tree (function), 59
random powerlaw tree sequence (function), 60
random regular graph (function), 60
random shell graph (function), 61
watts strogatz graph (function), 62

networkx.generators.small (module), 63–67
bull graph (function), 63
chvatal graph (function), 63
cubical graph (function), 63
desargues graph (function), 63
diamond graph (function), 63
dodecahedral graph (function), 63
frucht graph (function), 63

135

INDEX INDEX

heawood graph (function), 63
house graph (function), 63
house x graph (function), 63
icosahedral graph (function), 64
krackhardt kite graph (function), 64
LCF graph (function), 64
make small graph (function), 65
moebius kantor graph (function), 66
octahedral graph (function), 66
pappus graph (function), 66
petersen graph (function), 66
sedgewick maze graph (function), 66
tetrahedral graph (function), 67
truncated cube graph (function), 67
truncated tetrahedron graph (function), 67
tutte graph (function), 67

networkx.hybrid (module), 68
is kl connected (function), 68
kl connected subgraph (function), 68

networkx.io (module), 69–71
read adjlist (function), 69
read edgelist (function), 69
read gpickle (function), 69
read multiline adjlist (function), 69
write adjlist (function), 70
write edgelist (function), 70
write gpickle (function), 70
write multiline adjlist (function), 70

networkx.isomorph (module), 72
fast graph could be isomorphic (function), 72
faster graph could be isomorphic (function), 72
graph could be isomorphic (function), 72

networkx.operators (module), 73–76
cartesian product (function), 73
complement (function), 73
compose (function), 73
convert node labels to integers (function), 73
convert to directed (function), 74
convert to undirected (function), 74
create empty copy (function), 74
disjoint union (function), 74
subgraph (function), 75
union (function), 75

networkx.paths (module), 77–80
center (function), 77
diameter (function), 77
dijkstra (function), 77
dijkstra path (function), 77

dijkstra path length (function), 78
eccentricity (function), 78
is directed acyclic graph (function), 78
periphery (function), 78
radius (function), 78
shortest path (function), 79
shortest path length (function), 79
topological sort (function), 79
topological sort recursive (function), 79

networkx.queues (module), 81–84
BFS (class), 81–82

init (method), 81
update (method), 81

DFS (class), 82
init (method), 82

update (method), 82
FIFO (class), 82–83

init (method), 82
pop (method), 82

LIFO (class), 83
init (method), 83

Priority (class), 83
init (method), 83
len (method), 83

append (method), 83
extend (method), 83
pop (method), 83
smallest (method), 83

Random (class), 83–84
init (method), 84

pop (method), 84
RFS (class), 84

init (method), 84
update (method), 84

networkx.release (module), 85
networkx.search (module), 86–88

bfs length (function), 86
bfs path (function), 86
connected component subgraphs (function), 87
connected components (function), 87
dfs forest (function), 87
dfs postorder (function), 87
dfs predecessor (function), 87
dfs preorder (function), 87
dfs successor (function), 87
is connected (function), 87
node connected component (function), 88
number connected components (function), 88

136

INDEX INDEX

networkx.search class (module), 89–96
Forest (class), 89–90

init (method), 90
end tree (method), 90
lastseen edge (method), 90
start tree (method), 90

Length (class), 90–91
init (method), 90

lastseen edge (method), 90
Postorder (class), 91

init (method), 91
end tree (method), 91
lastseen vertex (method), 91
start tree (method), 91

Predecessor (class), 91–92
init (method), 92

firstseen vertex (method), 92
lastseen edge (method), 92
path (method), 92

Preorder (class), 92–93
init (method), 93

end tree (method), 93
firstseen vertex (method), 93
start tree (method), 93

Search (class), 93–95
init (method), 94

end tree (method), 94
firstseen edge (method), 94
firstseen vertex (method), 94
lastseen edge (method), 94
lastseen vertex (method), 94
search (method), 94
start tree (method), 95

Successor (class), 95–96
init (method), 95

firstseen vertex (method), 95
lastseen edge (method), 95

networkx.spectrum (module), 97
adj matrix (function), 97
generalized laplacian (function), 97
laplacian (function), 97

networkx.threshold (module), 98–104
betweenness sequence (function), 98
cluster sequence (function), 98
creation sequence (function), 98
creation sequence to weights (function), 98
degree correlation (function), 99
degree sequence (function), 99

density (function), 99
eigenvalues (function), 99
find alternating 4 cycle (function), 99
find creation sequence (function), 99
find threshold graph (function), 100
is threshold graph (function), 100
is threshold sequence (function), 100
left d threshold sequence (function), 100
make compact (function), 100
random threshold sequence (function), 100
right d threshold sequence (function), 101
shortest path (function), 101
shortest path length (function), 101
swap d (function), 102
threshold graph (function), 102
triangle sequence (function), 102
triangles (function), 102
uncompact (function), 103
weights to creation sequence (function), 103

networkx.utils (module), 105–106
discrete sequence (function), 105
gsl pareto sequence (function), 105
gsl poisson sequence (function), 105
gsl powerlaw sequence (function), 105
gsl uniform sequence (function), 105
is list of ints (function), 105
is singleton (function), 105
is string like (function), 105
iterable (function), 105
pareto sequence (function), 105
powerlaw sequence (function), 105
scipy discrete sequence (function), 106
scipy pareto sequence (function), 106
scipy poisson sequence (function), 106
scipy powerlaw sequence (function), 106
scipy uniform sequence (function), 106
uniform sequence (function), 106

networkx.xbase (module), 107–130
XDiGraph (class), 112–122

init (method), 114
add edge (method), 114
add edges from (method), 115
allow multiedges (method), 116
allow selfloops (method), 116
ban multiedges (method), 116
ban selfloops (method), 116
copy (method), 116
degree (method), 116

137

INDEX INDEX

delete edge (method), 117
delete edges from (method), 117
delete multiedges (method), 117
delete selfloops (method), 117
edges iter (method), 117
get edge (method), 118
has edge (method), 118
has neighbor (method), 118
has predecessor (method), 118
has successor (method), 118
in degree (method), 119
neighbors (method), 119
neighbors iter (method), 119
nodes with selfloops (method), 119
number of selfloops (method), 119
out degree (method), 120
predecessors (method), 120
selfloop edges (method), 120
subgraph (method), 120
successors (method), 121
to undirected (method), 121

XGraph (class), 122–130
init (method), 123

add cycle (method), 123
add edge (method), 123
add edges from (method), 124
add path (method), 124
allow multiedges (method), 125
allow selfloops (method), 125
ban multiedges (method), 125
ban selfloops (method), 125
copy (method), 125
degree (method), 125
degree iter (method), 126
delete edge (method), 126
delete edges from (method), 126
delete multiedges (method), 127
delete node (method), 127
delete nodes from (method), 127
delete selfloops (method), 127
edges (method), 127
edges iter (method), 128
get edge (method), 128
has edge (method), 128
has neighbor (method), 128
neighbors (method), 129
neighbors iter (method), 129
nodes with selfloops (method), 129

number of edges (method), 129
number of selfloops (method), 129
selfloop edges (method), 129
size (method), 129
subgraph (method), 129
to directed (method), 130

138

	Contents
	Package networkx
	Modules
	Variables

	Module networkx.base
	Functions
	Variables
	Class DiGraph
	Methods

	Class Graph
	Methods

	Class NetworkXError
	Methods

	Class NetworkXException
	Methods

	Module networkx.centrality
	Functions
	Variables

	Module networkx.cliques
	Functions
	Variables

	Module networkx.cluster
	Functions
	Variables

	Module networkx.cores
	Functions
	Variables

	Package networkx.drawing
	Modules

	Module networkx.drawing.layout
	Functions
	Variables

	Module networkx.drawing.nx_pydot
	Functions
	Variables

	Module networkx.drawing.nx_pylab
	Functions
	Variables

	Module networkx.drawing.nx_vtk
	Functions
	Variables

	Package networkx.generators
	Modules

	Module networkx.generators.atlas
	Functions
	Variables

	Module networkx.generators.classic
	Functions
	Variables

	Module networkx.generators.degree_seq
	Functions
	Variables

	Module networkx.generators.geometric
	Functions
	Variables

	Module networkx.generators.random_graphs
	Functions
	Variables

	Module networkx.generators.small
	Functions
	Variables

	Module networkx.hybrid
	Functions
	Variables

	Module networkx.io
	Functions
	Variables

	Module networkx.isomorph
	Functions
	Variables

	Module networkx.operators
	Functions
	Variables

	Module networkx.paths
	Functions
	Variables

	Module networkx.queues
	Variables
	Class BFS
	Methods

	Class DFS
	Methods

	Class FIFO
	Methods

	Class LIFO
	Methods

	Class Priority
	Methods

	Class Random
	Methods

	Class RFS
	Methods

	Module networkx.release
	Variables

	Module networkx.search
	Functions
	Variables

	Module networkx.search_class
	Variables
	Class Forest
	Methods

	Class Length
	Methods

	Class Postorder
	Methods

	Class Predecessor
	Methods

	Class Preorder
	Methods

	Class Search
	Methods

	Class Successor
	Methods

	Module networkx.spectrum
	Functions
	Variables

	Module networkx.threshold
	Functions
	Variables

	Module networkx.utils
	Functions
	Variables

	Module networkx.xbase
	Variables
	Class XDiGraph
	Methods

	Class XGraph
	Methods

	Index

