
ZSI: The Zolera Soap Infrastructure
Release 1.7.0

Rich Salz,
Christopher Blunck

February 16, 2005

rsalz@datapower.com

blunck@python.org

ABSTRACT

ZSI , the Zolera SOAP Infrastructure, is a Python package that provides an implementation of SOAP messaging, as
described inThe SOAP 1.1 Specification. In particular,ZSI parses and generates SOAP messages, and converts be-
tween native Python datatypes and SOAP syntax. It can also be used to build applications usingSOAP Messages
with Attachments. ZSI is “transport neutral”, and provides only a simple I/O and dispatch framework; a more com-
plete solution is the responsibility of the application usingZSI . As usage patterns emerge, and common application
frameworks are more understood, this may change.

ZSI requires Python 2.0 or later and PyXML version 0.6.6 or later.

TheZSI homepage is athttp://pywebsvcs.sf.net/.

COPYRIGHT

Copyright c© 2001, Zolera Systems, Inc.
All Rights Reserved.

Copyright c© 2002-2003, Rich Salz.
All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the ”Software”), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all
copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY
SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

Acknowledgments

We are grateful to the members of thesoapbuilders mailing list (seehttp://groups.yahoo.com/soapbuilders), Fred-
erick Lundh for hissoaplib package (seehttp://www.secretlabs.com/downloads/index.htm#soap), Cayce Ullman
and Brian Matthews for theirSOAP.py package (seehttp://sourceforge.net/projects/pywebsvcs).

We are particularly grateful to Brian Lloyd and the Zope Corporation (http://www.zope.com) for letting us incorporate
his ZOPE WebServices package and documentation intoZSI .

ii

CONTENTS

1 Introduction 1
1.1 How to Read this Document. 2

2 Examples 3
2.1 Server Side Examples. 3
2.2 Client Side Examples. 6

3 Exceptions 9

4 Utilities 11
4.1 Low-Level Utilities. 11

5 TheParsedSoap module — basic message handling 13

6 TheTypeCode classes — data conversions 17
6.1 TC.Any — the basis of dynamic typing. 18
6.2 Void . 20
6.3 Strings . 20
6.4 Integers. 21
6.5 Floating-point Numbers. 22
6.6 Dates and Times. 23
6.7 Boolean. 24
6.8 XML . 24
6.9 Struct . 24
6.10 Choice . 25
6.11 Arrays . 26
6.12 Apache Datatype. 26

7 TheSoapWriter module — serializing data 27

8 TheFault module — reporting errors 29

9 The resolvers module — fetching remote data 31

10 Dispatching and Invoking 33
10.1 Dispatching. 33
10.2 Theclient module — sending SOAP messages. 34

11 WSDL Support 37
11.1 WSDLReader . 37

iii

11.2 ServiceProxy. 38
11.3 Code Generation from WSDL and XML Schema. 38
11.4 WSDL objects . 41

12 ZSI Schema 49

iv

CHAPTER

ONE

Introduction

ZSI , the Zolera SOAP Infrastructure, is a Python package that provides an implementation of the SOAP specification,
as described inThe SOAP 1.1 Specification. In particular,ZSI parses and generates SOAP messages, and converts
between native Python datatypes and SOAP syntax.

ZSI requires Python 2.0 or later and PyXML version 0.6.6 or later.

TheZSI project is maintained at SourceForge, athttp://pywebsvcs.sf.net. ZSI is discussed on the Python web services
mailing list, visithttp://lists.sourceforge.net/lists/listinfo/pywebsvcs-talk to subscribe.

For those interested in a high-level tutorial coveringZSI and why Python was chosen, see the article
http://www.xml.com/pub/a/ws/2002/06/12/soap.html, written by Rich Salz for xml.com.

SOAP-based processing typically involves several steps. The following list details the steps of a common processing
model naturally supported byZSI (other models are certainly possible):

1. ZSI takes data from an input stream andparsesit, generating a DOM-based parse tree as part of creating a
ParsedSoap object. At this point the major syntactic elements of a SOAP message — theHeader , the
Body , etc. — are available.

2. The application doesheader processing. More specifically, it does local dispatch and processing based on the
elements in the SOAPHeader . The SOAPactor andmustUnderstand attributes are also handled (or at
least recognized) here.

3. ZSI nextparsestheBody , creating local Python objects from the data in the SOAP message. The parsing is
often under the control of a list of data descriptions, known astypecodes, defined by the application because it
knows what type of data it is expecting. In cases where the SOAP data is known to be completely self-describing,
the parsing can bedynamicthrough the use of theTC.Any class.

4. The application nowdispatchesto the appropriate handler in order to do its “real work.” As part of its processing
it may createoutput objects

5. The application creates aSoapWriter instance and outputs an initial set of namespace entries and header
elements.

6. Any local data to be sent back to the client isserialized. As with Body parsing, the datatypes can be described
through typecodes or determined dynamically (here, through introspection).

7. In the event of any processing exceptions, aFault object can be raised, created, and/or serialized.

Note thatZSI is “transport neutral”, and provides only a simple I/O and dispatch framework; a more complete solution
is the responsibility of the application usingZSI . As usage patterns emerge, and common application frameworks are
more understood, this may change.

Within this document,tns is used as the prefix for the application’s target namespace, and the termelementrefers to
a DOM element node.)

1

1.1 How to Read this Document

Readers only interested in developing the simplest SOAP applications, or spending the least amount of time on building
a web services infrastructure, should read chapters 2, 3, and 10. Readers who are developing complex services, and
who are familiar with XML Schema and/or WSDL, should read this manual in order. This will provide them with
enough information to implement the processing model described above. They can skip probably skip chapters 2 and
10.

This release ofZSI adds the capability to process WSDL definitions (described inThe Web Services Description
Language) and generate typecodes automatically. See chapter 11 for details.

2 Chapter 1. Introduction

CHAPTER

TWO

Examples

This chapter contains a number of examples to show off some ofZSI ’s features. It is broken down into client-side
and server-side examples, and explores different implementation optionsZSI provides.

2.1 Server Side Examples

2.1.1 Simple example

Using theZSI.cgi module, it is simple to expose Python functions as web services. Each function is invoked with
all the input parameters specified in the client’s SOAP request. Any value returned by the function will be serialized
back to the client; multiple values can be returned by returning a tuple.

The following code shows some simple services:

def hello():
return "Hello, world"

def echo(*args):
return args

def average(*args):
sum = 0
for i in args: sum += i
return sum / len(args)

from ZSI import dispatch
dispatch.AsCGI()

Each function defines a SOAP request, so if this script is installed as a CGI script, a SOAP message can be posted
to that script’s URL with any ofhello , echo , or average as the request element, and the value returned by the
function will be sent back.

The ZSI CGI dispatcher catches exceptions and sends back a SOAP fault. For example, a fault will be sent if the
hello function is given any arguments, or if theaverage function is given a non-integer.

2.1.2 More complex example

We will now show a more complete example of a robust web service. It takes as input a player name and array of
integers, and returns the average. It is presented in sections, following the steps detailed above.

3

The first section reads in a request, and parses the SOAP header.

from ZSI import *
import sys
IN, OUT = sys.stdin, sys.stdout

try:
ps = ParsedSoap(IN)

except ParseException, e:
FaultFromZSIException(e).AsSOAP(OUT)
sys.exit(1)

except Exception, e:
Faulted while processing; we assume it’s in the header.
FaultFromException(e, 1).AsSOAP(OUT)
sys.exit(1)

We are not prepared to handle any actors or mustUnderstand elements,
so we’ll arbitrarily fault back with the first one we found.
a = ps.WhatActorsArePresent()
if len(a):

FaultFromActor(a[0]).AsSOAP(OUT)
sys.exit(1)

mu = ps.WhatMustIUnderstand()
if len(mu):

uri, localname = mu[0]
FaultFromNotUnderstood(uri, localname).AsSOAP(OUT)
sys.exit(1)

This section defines the mappings between Python objects and the SOAP data being transmitted. Recall that according
to the SOAP specification, RPC input and output are modeled as a structure.

class Player:
def __init__(self, name):

pass
Player.typecode = TC.Struct(Player, [

TC.String(’Name’),
TC.Array(’Integer’, TC.Integer(), ’Scores’),
], ’GetAverage’)

class Average:
def __init__(self, average):

self.average = average
Average.typecode = TC.Struct(Average, [

TC.Integer(’average’),
], ’GetAverageResponse’)

This section parses the input, performs the application-level activity, and serializes the response.

4 Chapter 2. Examples

try:
player = ps.Parse(Player.typecode)

except EvaluateException, e:
FaultFromZSIException(e).AsSOAP(OUT)
sys.exit(1)

try:
total = 0
for value in player.Scores: total = total + value
result = Average(total / len(player.Scores))
sw = SoapWriter(OUT)
sw.serialize(result, Average.typecode)
sw.close()

except Exception, e:
FaultFromException(e, 0, sys.exc_info()[2]).AsSOAP(OUT)
sys.exit(1)

In the serialize() call above, the second parameter is optional, sinceresult is an instance of theAverage
class, and theAverage.typecode attribute is the typecode for class instances. In addition, since theSoapWriter
destructor will callclose() if necessary, sending a SOAP response can often be written like this one-liner:

SoapWriter(OUT).serialize(result)

2.1.3 A mod python example

The Apache modulemod python (seehttp://www.modpython.org) embeds Python within the Apache server. In
order to expose operations within a module via modpython, use thedispatch.AsHandler() function. The
dispatch.AsHandler() function will dispatch requests to any operation defined in the module you pass it,
which allows for multiple operations to be defined in a module. The only trick is to useimport to load the XML
encodings your service expects. This is a required workaround to avoid the pitfalls of restricted execution with respect
to XML parsing.

The following is a complete example of a simple handler. The soap operations are implemented in the MyHandler
module:

def hello():
return "Hello, world"

def echo(*args):
return args

def average(*args):
sum = 0
for i in args: sum += i
return sum / len(args)

Dispatching from within modpython is achieved by passing the aforementined MyHandler module to
dispatch.AsHandler() . The following code exposes the operations defined in MyHandler via SOAP:

2.1. Server Side Examples 5

from ZSI import dispatch
from mod_python import apache

import MyHandler
mod = __import__(’encodings.utf_8’, globals(), locals(), ’*’)
mod = __import__(’encodings.utf_16_be’, globals(), locals(), ’*’)

def handler(req):
dispatch.AsHandler(modules=(MyHandler,), request=req)
return apache.OK

2.2 Client Side Examples

2.2.1 Simple Example

ZSI provides two ways for a client to interactive with a server: theBinding class and theServiceProxy class.
The first is useful when the operations to be invoked are not defined in WSDL or when only simple Python datatypes
are used; theServiceProxy class can be used to parse WSDL definitions in order to determine how to serialize
and parse the SOAP messages.

During development, it is often useful to record “packet traces” of the SOAP messages being exchanged. Both the
Binding andServiceProxy classes provide atracefile parameter to specify an output stream (such as a file)
to capture messages. It can be particularly useful when debugging unexpected SOAP faults.

The first example provided below demonstrates how to use theBinding class to connect to a remote service and
perform an operation. It assumes that the simple server-side example shown above is installed on the webserver
running on the local host, and if the URL is/cgi-bin/simple-test :

from ZSI.client import Binding
fp = open(’debug.out’, ’a’)
b = Binding(url=’/cgi-bin/simple-test’, tracefile=fp)
fp.close()
a = b.average(range(1,11))
assert a == 5
print b.hello()

2.2.2 Complex Example

If the operation invoked returns a ComplexType, typecode information must be provided in order to tellZSI how to
deserialize the response. Here is a sample server-side implementation:

6 Chapter 2. Examples

Complex type definition
class Person:

def __init__(self, name=None, age=0):
self.name = name
self.age = age

Person.typecode = TC.Struct(Person,
[TC.String(’name’),

TC.InonNegativeInteger(’age’)],
’myApp:Person’)

my web service that returns a complex structure
def getPerson(name):

fp = open(’%s.person.pickle’, % name, ’r’)
return pickle.load(fp)

my web service that accepts a complex structure
def savePerson(person):

fp = open(’%s.person.pickle’ % person.name, ’w’)
pickle(person, fp)
fp.close()

In order forZSI to transparently deserialize the returned complex type into aPerson instance, a module defining
the class and its typecode must be appended to theZSI.Pathlist. It is also possible to explicitly tellZSI what class
and typecode to use by passing the class as a parameter to theBinding.Receive() method. The first method is
often preferred, particularly for publically-distributed libraries.

The following fragment shows both styles:

from ZSI.client import Binding
from ZSI import Path

Explicitly stating what to get back.
from MyComplexTypes import Person
a = apply(b.getPerson, ’christopher’)
person = b.Receive(Person)

Transparent deserialization
import MyComplexTypes
b = Binding(url=’/cgi-bin/complex-test’, typesmodule=MyComplexTypes)
person = b.getPerson(’christopher’)

Because the returned complex type is defined in a class registered inZSI.Path, transparent deserialization is possible.
When sending complex types to the server, it is not necessary to list the module inZSI.Path:

from ZSI.client import Binding
b = Binding(url=’/cgi-bin/complex-test’)
person = Person(’christopher’, 26)
b.savePerson(person)

2.2. Client Side Examples 7

8

CHAPTER

THREE

Exceptions

ZSI defines two exception classes.

exceptionParseException
ZSI can raise this exception while creating aParsedSoap object. It is a subtype of Python’sException
class. The string form of aParseException object consists of a line of human-readable text. If the backtrace
is available, it will be concatenated as a second line.

The following attributes are read-only:

inheader
A boolean that indicates if the error was detected in the SOAPHeader element.

str
A text string describing the error.

trace
A text string containing a backtrace to the error. This may beNone if it was not possible, such as when there
was a general DOM exception, or when thestr text is believed to be sufficient.

exceptionEvaluateException
This exception is similar toParseException , except thatZSI may raise it while converting between SOAP
and local Python objects.

The following attributes are read-only:

str
A text string describing the error.

trace
A text backtrace, as described above forParseException .

9

10

CHAPTER

FOUR

Utilities

ZSI defines some utility methods that general applications may want to use.

Version ()
Returns a three-element tuple containing the numbers representing the major, minor, and release identifying the
ZSI version. New in version 1.1.

4.1 Low-Level Utilities

ZSI also defines some low-level utilities for its own use that start with a leading underscore and must be imported
explicitly. They are documented here because they can be useful for developing new typecode classes.

valid encoding (elt)
Return true if the elementelt has a SOAP encoding that can be handled byZSI (currently Section 5 of the
SOAP 1.1 specification or an empty encoding for XML).

backtrace (elt, dom)
This function returns a text string that traces a “path” fromdom, a DOM root, toelt , an element within that
document, in XPath syntax.

Somelambda ’s are defined so that some DOM accessors will return an empty list rather thanNone. This means that
rather than writing:

if elt.childNodes:
for N in elt.childNodes:

...

One can write:

for N in _children(elt):
...

children (element)
Returns a list of all children of the specifiedelement .

attrs (element)
Returns a list of all attributes of the specifiedelement .

child elements (element)
Returns a list of all children elements of the specifiedelement .

Otherlambda ’s return SOAP-related attributes from an element, orNone if not present.

find arraytype (element)

11

The value of the SOAParrayType attribute. New in version 1.2.

find attr (element, name)
The value of the unqualifiedname attribute.

find encstyle (element)
The value of the SOAPencodingStyle attribute.

find href (element)
The value of the unqualifiedhref attribute.

find type (element)
The value of the XML Schematype attribute.

12 Chapter 4. Utilities

CHAPTER

FIVE

The ParsedSoap module — basic
message handling

This class represents an input stream that has been parsed as a SOAP message.

classParsedSoap (input[, **keywords])
Creates aParsedSoap object from the provided input source. Ifinput is not a string, then it must be an
object with aread() method that supports the standard Python “file read” semantics.

The following keyword arguments may be used:

Keyword Default Description
keepdom 0 Do not release the DOM when this object is destroyed. To ac-

cess the DOM object, use theGetDomAndReader() method. The
reader object is necessary to properly free the DOM structure using
reader.releaseNode(dom) . New in version 1.2.

readerclass None Class used to create DOM-creating XML readers; described below. New
in version 1.2.

resolver None Value for theresolver attribute; see below.
trailers 0 Allow trailing data elements to appear after theBody .

The following attributes of aParsedSoap are read-only:

body
The root of the SOAPBody element. Using theGetElementNSdict() method on this attribute can be
useful to get a dictionary to be used with theSoapWriter class.

body root
The element that contains the SOAP serialization root; that is, the element in the SOAPBody that “starts off”
the data.

data elements
A (possibly empty) list of all child elements of theBody other than the root.

header
The root of the SOAPHeader element. Using theGetElementNSdict() method on this attribute can be
useful to get a dictionary to be used with theSoapWriter class.

header elements
A (possibly empty) list of all elements in the SOAPHeader .

trailer elements
Returns a (possibly empty) list of all elements following theBody . If the trailers keyword was not used
when the object was constructed, this attribute will not be instantiated and retrieving it will raise an exception.

The following attribute may be modified:

13

resolver
If not None, this attribute can be invoked to handle absolutehref ’s in the SOAP data. It will be invoked as
follows:

resolver (uri, tc, ps, **keywords)
Theuri parameter is the URI to resolve. Thetc parameter is the typecode that needs to resolvehref ;
this may be needed to properly interpret the content of a MIME bodypart, for example. Theps parameter
is theParsedSoap object that is invoking the resolution (this allows a single resolver instance to handle
multiple SOAP parsers).

Failure to resolve the URI should result in an exception being raised. If there is no content, returnNone;
this is not the same as an empty string. If there is content, the data returned should be in a form under-
standable by the typecode.

The following methods are available:

Backtrace (elt)
Returns a human-readable “trace” from the document root to the specified element.

FindLocalHREF (href, elt)
Returns the element that has anid attribute whose value is specified by thehref fragment identifier. The
href must be a fragment reference — that is, it must start with a pound sign. This method raises an
EvaluateException exception if the element isn’t found. It is mainly for use by the parsing methods
in theTypeCode module.

GetElementNSdict (elt)
Return a dictionary for all the namespace entries active at the current element. Each dictionary key will be the
prefix and the value will be the namespace URI.

GetMyHeaderElements ([actorlist=None])
Returns a list of all elements in theHeader that are intended forthis SOAP processor. This includes all
elements that either have no SOAPactor attribute, or whose value is either the special “next actor” value or
in theactorlist list of URI’s.

GetDomAndReader ()
Returns a tuple containing the dom and reader objects,(dom, reader) . Unless keepdom is true, the dom
and reader objects will go out of scope when the ParsedSoap instance is deleted. If keepdom is true, the reader
object is needed to properly clean up the dom tree withreader.releaseNode(dom) .

IsAFault ()
Returns true if the message is a SOAP fault.

Parse (how)
Parses the SOAPBody according to thehow parameter, and returns a Python object. Ifhow is not a
TC.TypeCode object, then it should be a Python class object that has atypecode attribute.

ResolveHREF (uri, tc[, **keywords])
This method is invoked to resolve an absolute URI. If the typecodetc has aresolver attribute, it will use
it to resolve the URI specified in theuri parameter, otherwise it will use its ownresolver , or raise an
EvaluateException exception.

Any keyword parameters will be passed to the chosen resolver. If no content is available, it will returnNone.
If unable to resolve the URI it will raise anEvaluateException exception. Otherwise, the resolver should
return data in a form acceptable to the specified typecode,tc . (This will almost always be a file-like object
holding opaque data; for XML, it may be a DOM tree.)

WhatActorsArePresent ()
Returns a list of the values of all the SOAPactor attributes found in child elements of the SOAPHeader .

WhatMustIUnderstand ()
Returns a list of ‘(uri, localname) ’ tuples for all elements in the SOAPHeader that have the SOAP
mustUnderstand attribute set to a non-zero value.

14 Chapter 5. The ParsedSoap module — basic message handling

ZSI supports multiple DOM implementations. Thereaderclass parameter specifies which one to use. The
default is to use the DOM provided with the PyXML package developed by the Python XML SIG, provided through
thePyExpat.Reader class in thexml.dom.ext.reader module.

The specified reader class must support the following methods:

fromString (string)
Return a DOM object from a string.

fromStream (stream)
Return a DOM object from a file-like stream.

releaseNode (dom)
Free the specified DOM object.

The DOM object must support the standard Python mapping of the DOM Level 2 specification. While only a small
subset of specification is used, the particular methods and attributes used byZSI are available only by inspecting the
source.

To use thecDomlette DOM provided by the 4Suite package, use theNonvalidatingReader class in the
Ft.Xml.Domlette module. Due to name changes in the 1.0 version of 4Suite, a simple adapter class is required to
use this DOM implementation.

from 4Suite.Xml.Domlette import NonvalidatingReaderBase

class 4SuiteAdapterReader(NonvalidatingReaderBase):

def fromString(self, str):
return self.parseString(str)

def fromStream(self, stream):
return self.parseStream(stream)

def releaseNode(self, node):
pass

15

16

CHAPTER

SIX

The TypeCode classes — data
conversions

TheTypeCode module defines classes used for converting data between SOAP data and local Python objects. Python
numeric and string types, and sequences and dictionaries, are supported byZSI . The TC.TypeCode class is the
parent class of all datatypes understood byZSI .

All typecodes classes have the prefixTC. , to avoid name clashes.

ZSI provides fine-grain control over the names used when parsing and serializing XML into local Python objects,
through the use of three attributes: thepname, theaname, and theoname (in approximate order of importance).
They specify the name expected on the XML element being parsed, the name to use for the analogous attribute in the
local Python object, and the name to use for the output element when serializing.

Thepname is the parameter name. It specifies the incoming XML element name and the default values for the Python
attribute and serialized names. All typecodes take name argument, known asname, for thepname. This name can
be specified as either a list or a string. When specified as a list, it must have two elements which are interpreted as a
“(namespace-URI, localname)” pair. If specified this way, both the namespace and the local element name must match
for the parse to succeed. For the Python attribute, and when generating output, only the “localname” is used. (Because
the output name is not namespace-qualified, it may be necessary to set the default namespace, such as through the
nsdict parameter of theSoapWriter class. When the name is specified as a string, it can be either a simple XML
name (such as “foo”), or a colon-separated XML qualified name (such as “tns:foo”). If a qualified name is used, the
namespace prefix is ignore on input and for the Python attribute, but the full qualified name is used for output; this
requiresthe namespace prefix to be specified.

Theaname is the attribute name. This parameter overrides any value implied by thepname. Typecodes nested in a
theTC.Struct or TC.Choice can use this parameter to specify the tag, dictionary key, or instance attribute to set.

The final name,oname, specifies the name to use for the XML element when serializing. This is most useful when
using the same typecode for both parsing and serializing operations. It can be any string, and is output directly; a
name like “tns:foo” implies that thensdict parameter to theSoapWriter construct should have an entry for “tns,”
otherwise the resulting output will not be well-formed XML.

classTypeCode (name, **keywords)
The name parameter is the name of the object; this is only required when a typecode appears within a
TC.Struct as it defines the attribute name used to hold the data, or within aTC.Choice as it determines the
data type. (Since SOAP RPC models transfer as structures, this essentially means that a thename parameter
can never beNone.)

The following keyword arguments may be used:

17

Keyword Default Description
aname See name discussion above.
default n/a Value if the element is not specified.
optional 0 The element is optional; see below.
oname See name discussion above.
repeatable 0 If multiple instances of this occur in aTC.Struct , collect the values into

a list. New in version 1.2.
typed 1 Output type information (in thexsi:type attribute) when serializing. By

special dispensation, typecodes within aTC.Struct object inherit this
from the container.

unique 0 If true, the object is unique and will never be “aliased” with another object,
so theid attribute need not be output.

Optional elements are those which do not have to be an incoming message, or which have the XML Schema
nil attribute set. When parsing the message as part of aStruct , then the Python instance attribute will not
be set, or the element will not appear as a dictionary key. When being parsed as a simple type, the valueNone
is returned. When serializing an optional element, a non-existent attribute, or a value ofNone is taken to mean
not present, and the element is skipped.

typechecks
This is a class attribute. If true (the default) then all typecode constructors do more rigorous type-checking on
their parameters.

The following methods are useful for defining new typecode classes; see the section on dynamic typing for more
details. In all of the following, theps parameter is aParsedSoap object.

checkname (elt, ps)
Checks if the name and type of the elementelt are correct and raises aEvaluateException if not. Returns
the element’s type as a ‘(uri, localname) ’ tuple if so.

checktype (elt, ps)
Like checkname() except that the element name is ignored. This method is actually invoked by
checkname() to do the second half of its processing, but is useful to invoke directly, such as when resolving
multi-reference data.

nilled (elt, ps)
If the elementelt has data, this returns0. If it has no data, and the typecode is not optional, an
EvaluateException is raised; if it is optional, a1 is returned.

simple value (elt, ps)
Returns the text content of the elementelt . If no value is present, or the element has non-text children, an
EvaluateException is raised.

6.1 TC.Any — the basis of dynamic typing

SOAP provides a flexible set of serialization rules, ranging from completely self-describing to completely opaque,
requiring an external schema. For example, the following are all possible ways of encoding an integer elementi with
a value of12 :

<tns:i xsi:type="SOAP-ENC:integer">12</tns:i>
<tns:i xsi:type="xsi:nonNegativeInteger">12</tns:i>
<SOAP-ENC:integer>12</SOAP-ENC:integer>
<tns:i>12</tns:i>

The first three lines are examples oftypedelements. IfZSI is asked to parse any of the above examples, and aTC.Any

18 Chapter 6. The TypeCode classes — data conversions

typecode is given, it will properly create a Python integer for the first three, and raise aParseException for the
fourth.

Compound data, such as astruct , may also be self-describing:

<tns:foo xsi:type="tns:mytype">
<tns:i xsi:type="SOAP-ENC:integer">12</tns:i>
<tns:name xsi:type="SOAP-ENC:string">Hello world</tns:name>

</tns:foo>

If this is parsed with aTC.Any typecode, either a Python dictionary or a sequence will be created:

{ ’name’: u’Hello world’, ’i’: 12 }

[12, u’Hello world’]

Note that one preserves order, while the other preserves the element names.

classAny(name[, **keywords])
Used for parsing incoming SOAP data (that is typed), and serializing outgoing Python data.

The following keyword arguments may be used:

Keyword Default Description
aslist 0 If true, then the data is (recursively) treated as a list of values. The de-

fault is a Python dictionary, which preserves parameter names but loses the
ordering. New in version 1.1.

In addition, if the Python object being serialized with anAny has atypecode attribute, then theserialize
method of the typecode will be invoked to do the serialization. This allows objects to override the default
dynamic serialization.

Referring back to the compound XML data above, it is possible to create a new typecode capable of parsing elements
of typemytype . This class would know that thei element is an integer, so that the explicit typing becomes optional,
rather than required.

The rest of this section describes how to add new types to theZSI typecode engine.

classNEWTYPECODE(TypeCode) (...)
The new typecode should be derived from theTC.TypeCode class, andTypeCode. init () must be
invoked in the new class’s constructor.

parselist
This is a class attribute, used when parsing incoming SOAP data. It should be a sequence of ‘(uri,
localname) ’ tuples to identify the datatype. Ifuri is None, it is taken to mean either the XML Schema
namespace or the SOAP encoding namespace; this should only be used if adding support for additional primitive
types. If this list is empty, then the type of the incoming SOAP data is assumed to be correct; an empty list also
means that incoming typed data cannot by dynamically parsed.

errorlist
This is a class attribute, used when reporting a parsing error. It is a text string naming the datatype that was
expected. If not defined,ZSI will create this attribute from theparselist attribute when it is needed.

seriallist
This is a class attribute, used when serializing Python objects dynamically. It specifies what types of object
instances (or Python types) this typecode can serialize. It should be a sequence, where each element is a Python
class object, a string naming the class, or a type object from Python’stypes module (if the new typecode is
serializing a built-in Python type).

parse (elt, ps)

6.1. TC.Any — the basis of dynamic typing 19

ZSI invokes this method to parse theelt element and return its Python value. Theps parameter is the
ParsedSoap object, and can be used for dereferencinghref ’s, callingBacktrace() to report errors, etc.

serialize (sw, pyobj[, **keywords])
ZSI invokes this method to output a Python object to a SOAP stream. Thesw parameter will be aSoapWriter
object, and thepyobj parameter is the Python object to serialize.

The following keyword arguments may be used:

Keyword Default Description
attrtext None Text (with leading space) to output as an attribute; this is normally used by

theTC.Array class to pass down indexing information.
name None Name to use for serialization; defaults to the name specified in the typecode,

or a generated name.
typed per-typecode Whether or not to output type information; the default is to use the value in

the typecode.

Once the new typecode class has been defined, it should be registered withZSI ’s dynamic type system by invoking
the following function:

RegisterType (class[, clobber=0[, **keywords]])
By default, it is an error to replace an existing type registration, and an exception will be raised. Theclobber
parameter may be given to allow replacement. A single instance of theclass object will be created, and the
keyword parameters are passed to the constructor.

If the class is not registered, then instances of the class cannot be processed as dynamic types. This may be acceptable
in some environments.

6.2 Void

A SOAP void is a PythonNone.

classVoid (name[, **keywords])
A Void is an item without a value. It is of marginal utility, mainly useful for interoperability tests, and as an
optional item within aStruct .

6.3 Strings

SOAP Strings are Python strings. If the value to be serialized is a Python sequence, then anhref is generated,
with the first element of the sequence used as the URI. This can be used, for example, when generating SOAP with
attachments.

classString (name[, **keywords])
The parent type of all SOAP strings.

The following keyword arguments may be used:

Keyword Default Description
resolver None A function that can resolve an absolute URI and return its content as a

string, as described in theParsedSoap description.
strip 1 If true, leading and trailing whitespace are stripped from the content.
textprotect 1 If true, less-than and ampersand characters are replaced with< and

& , respectively. New in version 1.1.

classEnumeration (value list, name[, **keywords])
Like TC.String , but the value must be a member of thevalue list sequence of text strings

20 Chapter 6. The TypeCode classes — data conversions

In addition toTC.String , the basic string, several subtypes are provided that transparently handle common encod-
ings. These classes create a temporary string object and pass that to theserialize() method. When doing RPC
encoding, and checking for non-unique strings, theTC.String class must have the original Python string, as well
as the new output. This is done by adding a parameter to theserialize() method:

Keyword Default Description
orig None If deriving a new typecode from the string class, and the derivation creates a

temporary Python string (such as byBase64String), than this parameter
is the original string being serialized.

classBase64String (name[, **keywords])
The value is encoded in Base-64.

classHexBinaryString (name[, **keywords])
Each byte is encoded as its printable version.

classURI(name[, **keywords])
The value is URL quoted (e.g.,%20for the space character).

It is often the case that a parameter will be typed as a string for transport purposes, but will in fact have special syntax
and processing requirements. For example, a string could be used for an XPath expression, but it is more convenient
for the Python value to actually be the compiled expression. Here is how to do that:

import xml.xpath.pyxpath
import xml.xpath.pyxpath.Compile as _xpath_compile

class XPathString(TC.String):
def __init__(self, name, **kw):

TC.String.__init__(self, name, **kw)

def parse(self, elt, ps):
val = TC.String.parse(self, elt, ps)
try:

val = _xpath_compile(val)
except:

raise EvaluateException("Invalid XPath expression",
ps.Backtrace(elt))

return val

In particular, it is common to send XML as a string, using entity encoding to protect the ampersand and less-than
characters.

classXMLString (name[, **keywords])
Parses the data as a string, but returns an XML DOM object. For serialization, takes an XML DOM (or element
node), and outputs it as a string.

The following keyword arguments may be used:

Keyword Default Description
readerclass None Class used to create DOM-creating XML readers; described in the

ParsedSoap chapter.

6.4 Integers

SOAP integers are Python integers.

6.4. Integers 21

classInteger (name[, **keywords])
The parent type of all integers. This class handles any of the several types (and ranges) of SOAP integers.

The following keyword arguments may be used:

Keyword Default Description
format %d Format string for serializing. New in version 1.2.

classIEnumeration (value list, name[, **keywords])
Like TC.Integer , but the value must be a member of thevalue list sequence.

A number of sub-classes are defined to handle smaller-ranged numbers.

classIbyte (name[, **keywords])
A signed eight-bit value.

classIunsignedByte (name[, **keywords])
An unsigned eight-bit value.

classIshort (name[, **keywords])
A signed 16-bit value.

classIunsignedShort (name[, **keywords])
An unsigned 16-bit value.

classIint (name[, **keywords])
A signed 32-bit value.

classIunsignedInt (name[, **keywords])
An unsigned 32-bit value.

classIlong (name[, **keywords])
An signed 64-bit value.

classIunsignedLong (name[, **keywords])
An unsigned 64-bit value.

classIpositiveInteger (name[, **keywords])
A value greater than zero.

classInegativeInteger (name[, **keywords])
A value less than zero.

classInonPositiveInteger (name[, **keywords])
A value less than or equal to zero.

classInonNegativeInteger (name[, **keywords])
A value greater than or equal to zero.

6.5 Floating-point Numbers

SOAP floating point numbers are Python floats.

classDecimal (name[, **keywords])
The parent type of all floating point numbers. This class handles any of the several types (and ranges) of SOAP
floating point numbers.

The following keyword arguments may be used:

Keyword Default Description
format %f Format string for serializing. New in version 1.2.

classFPEnumeration (value list, name[, **keywords])

22 Chapter 6. The TypeCode classes — data conversions

Like TC.Decimal , but the value must be a member of thevalue list sequence. Be careful of round-off
errors if using this class.

Two sub-classes are defined to handle smaller-ranged numbers.

classFPfloat (name[, **keywords])
An IEEE single-precision 32-bit floating point value.

classFPdouble (name[, **keywords])
An IEEE double-precision 64-bit floating point value.

6.6 Dates and Times

SOAP dates and times are Python time tuples in UTC (GMT), as documented in the Pythontime module. Time is
tricky, and processing anything other than a simple absolute time can be difficult. (Even then, timezones lie in wait to
trip up the unwary.) A few caveats are in order:

1. Some date and time formats will be parsed into tuples that are not valid time values. For example, 75 minutes is
a valid duration, although not a legal value for the minutes element of a time tuple.

2. Fractional parts of a second may be lost when parsing, and may have extra trailing zero’s when serializing.

3. Badly-formed time tuples may result in non-sensical values being serialized; the first six values are taken directly
as year, month, day, hour, minute, second in UTC.

4. Although the classesDuration andGregorian are defined, they are for internal use only and should not be
included in anyTypeCode you define. Instead, use the classes beginning with a lower case g in your typecodes.

In addition, badly-formed values may result in non-sensical serializations.

When serializing, an integral or floating point number is taken as the number of seconds since the epoch, in UTC.

classDuration (name[, **keywords])
A relative time period. Negative durations have all values less than zero; this makes it easy to add a duration to
a Python time tuple.

classGregorian (name[, **keywords])
An absolute time period. This class should not be instantiated directly; use one of thegXXXclasses instead.

classgDateTime (name[, **keywords])
A date and time.

classgDate (name[, **keywords])
A date.

classgYearMonth (name[, **keywords])
A year and month.

classgYear (name[, **keywords])
A year.

classgMonthDay (name[, **keywords])
A month and day.

classgDay(name[, **keywords])
A day.

classgTime (name[, **keywords])
A time.

6.6. Dates and Times 23

6.7 Boolean

SOAP Booleans are Python integers.

classBoolean (name[, **keywords])
When marshaling zero or the word “false” is returned as0 and any non-zero value or the word “true” is returned
as1. When serializing, the number0 or 1 will be generated.

6.8 XML

XML is a Python DOM element node. If the value to be serialized is a Python string, then anhref is generated, with
the value used as the URI. This can be used, for example, when generating SOAP with attachments. Otherwise, the
XML is typically put inside a wrapper element that sets the proper SOAP encoding style.

For efficiency, incoming XML is returend as a “pointer” into the DOM tree maintained within theParsedSoap
object. If that object is going to go out of scope, the data will be destroyed and any XML objects will become empty
elements. The class instance variablecopyit , if non-zero indicates that a deep copy of the XML subtree will be
made and returned as the value. Note that it is generally more efficient to keep theParsedSoap object alive until
the XML data is no longerneeded.

classXML(name[, **keywords])
This typecode represents a portion of an XML document embedded in a SOAP message. The value is the
element node.

The following keyword arguments may be used:

Keyword Default Description
copyit TC.XML.copyit Return a copy of the parsed data.
comments 0 Preserve comments in output.
inline 0 The XML sub-tree is single-reference, so can be output in-place.
resolver None A function that can resolve an absolute URI and return its content as an

element node, as described in theParsedSoap description.
wrapped 1 If zero, the XML is output directly, and not within a SOAP wrapper element.

New in version 1.2.

When serializing, it may be necessary to specify which namespace prefixes are “active” in the XML. This is done by
using theunsuppressedPrefixes parameter when calling theserialize() method. (This will only work
when XML is the top-level item being serialized, such as when using typecodes and document-style interfaces.)

Keyword Default Description
unsuppressedPrefixes [] An array of strings identifying the namespace prefixes that should be output.

6.9 Struct

SOAP structs are either Python dictionaries or instances of application-specified classes.

classStruct (pyclass, typecodeseq, name[, **keywords])
This class defines a compound data structure. Ifpyclass is None, then the data will be marshaled into
a Python dictionary, and each item in thetypecode seq sequence specifies a (possible) dictionary entry.
Otherwise,pyclass must be a Python class object whose constructor takes a single parameter, which will be
the value of thename parameter given in theTC.Struct constructor. (This allows a singlepyclass to be
used for different typecodes.) The data is then marshaled into the object, and each item in thetypecode seq
sequence specifies an attribute of the instance to set.

24 Chapter 6. The TypeCode classes — data conversions

Note that each typecode intypecode seq must have a name.

The following keyword arguments may be used:

Keyword Default Description
hasextras 0 Ignore any extra elements that appear in the in the structure. Ifinorder

is true, extras can only appear at the end.
inorder 0 Items within the structure must appear in the order specified in theTCseq

sequence.
inline 0 The structure is single-reference, so ZSI does not have to usehref/id

encodings.
mutable 0 If an object is going to be serialized multiple times, and its state may be

modified between serializations, then this keyword should be used, other-
wise a single instance will be serialized, with multiple references to it. This
argument implies theinline argument. New in version 1.2.

type None A ‘ (uri, localname) ’ tuple that defines the type of the structure.
If present, and if the input data has axsi:type attribute, then the
namespace-qualified value of that attribute must match the value specified
by this parameter. By default, type-checking is not done for structures;
matching child element names is usually sufficient and senders rarely pro-
vide type information.

If the typed keyword is used, then its value is assigned to all typecodes in thetypecode seq parameter. If
any of the typecodes intypecode seq are repeatable, then theinorder keyword should not be used and
thehasextras parametermustbe used.

For example, the following C structure:

struct foo {
int i;
char* text;

};

could be declared as follows:

class foo:
def __init__(self, name):

self.name = name
def __str__(self):

return str((self.name, self.i, self.text))

foo.typecode = TC.Struct(foo,
(TC.Integer(’i’), TC.String(’text’)),
’foo’)

6.10 Choice

A choice is a Python two-element ‘(name, value) ’ tuple, representing a union of different types. The first item is
a string identifying the type, and the second is the actual data.

classChoice (typecodeseq, name[, **keywords])
When parsing, ZSI will look at the element name in the SOAP message, and determine which of the choices to
create.

When serializing Python objects to SOAP messages,ZSI must be explicitly told which of the choices define the
data. This is done by passing a two-element tuple. The first item is a string identifying the name of a typecode
from thetypecode seq list of typecodes. The second is the object to be serialized.

6.10. Choice 25

6.11 Arrays

SOAP arrays are Python lists; multi-dimensional arrays are lists of lists and are indistinguishable from a SOAP array
of arrays. Arrays may besparse, in which case each element in the array is a tuple of ‘(subscript, data) ’ pairs.
If an array is not sparse, a specifiedfill element will be used for the missing values.

Currently only singly-dimensioned arrays are supported.

classArray (atype, ofwhat, name[, **keywords])
Theatype parameter is a text string representing the SOAP array type. theofwhat parameter is a typecode
describing the array elements.

The following keyword arguments may be used:

Keyword Default Description
childnames None Default name to use for the child elements.
dimensions 1 The number of dimensions in the array.
fill None The value to use when an array element is omitted.
mutable 0 Same asTC.Struct New in version 1.2.
nooffset 0 Do not use the SOAPoffset attribute so skip leading elements with the

same value asfill .
sparse 0 The array is sparse.
size None An integer or list of integers that specifies the maximum array dimensions.
undeclared 0 The SOAP ‘arrayType ’ attribute need not appear.

6.12 Apache Datatype

The Apache SOAP project, urlhttp://xml.apache.org/soap/index.html, has defined a popular SOAP datatype in the
http://xml.apache.org/xml-soap namespace, aMap.

TheMap type is encoded as a list ofitem elements. Eachitem has akey andvalue child element; these children
must have SOAP type information. An Apache Map is either a Python dictionary or a list of two-element tuples.

classApache.Map (name[, **keywords])
An Apache map. Note that the class name is dotted.

The following keyword arguments may be used:

Keyword Default Description
aslist 0 Use a list of tuples rather than a dictionary.

26 Chapter 6. The TypeCode classes — data conversions

CHAPTER

SEVEN

The SoapWriter module — serializing
data

The SoapWriter class is used to output SOAP messages. Note that its output is encoded as UTF-8; when transporting
SOAP over HTTP it is therefore important to set thecharset attribute of theContent-Type header.

TheSoapWriter class reserves some namespace prefixes:

Prefix URI
SOAP-ENV http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENC http://schemas.xmlsoap.org/soap/encoding/
ZSI http://www.zolera.com/schemas/ZSI/
xsd http://www.w3.org/2001/XMLSchema
xsi http://www.w3.org/2001/XMLSchema-instance

classSoapWriter (out[, **keywords])
Theout parameter is an object that has awrite() method for generating the output.

The following keyword arguments may be used:

Keyword Default Description
encoding SOAP-ENCvalue If not None, then use the specified value as the value for the SOAP

encodingStyle attribute. New in version 1.2.
envelope 1 Write the SOAP envelope elements. New in version 1.2.
nsdict {} Dictionary of namespaces to declare in the SOAPBody . Note that earlier

versions of ZSI put the declarations on the SOAPEnvelope ; they have
been moved to theBody for greater interoperability.

header None A sequence of elements to output in the SOAPHeader . It may also be a
text string, in which case it is output as-is, and should therefore be XML
text.

Creating aSoapWriter object with aStringIO object for theout parameter andenvelope set to false results
in an object that can be used for serializing objects into a string.

serialize (pyobj[, typecode[, root=None[, **keywords]]])
This method serializes thepyobj Python object as directed by thetypecode typecode object. Iftypecode
is omitted, thenpyobj should be a Python object instance of a class that has atypecode attribute. It returns
self , so that serializations can be chained together, or so that theclose() method can be invoked. Theroot
parameter may be used to explicitly indicate the root (main element) of a SOAP encoding, or indicate that the
item is not the root. If specified, it should have the numeric value of zero or one. Any other keyword parameters
are passed to the typecode’sserialize method.

close ([trailer=None[, nsdict=None]])
Close off the SOAP message, finishing all the pending serializations. Iftrailer is a string or list of elements,

27

it is output after the close-tag for theBody . Theclose() method of the originally provided out object is NOT
called. (If it were, and the originalout object were aStringIO object, there would be no way to collect the
data.) This method will be invoked automatically if the object is deleted.

The following methods are primarily useful for those writing new typecodes.

AddCallback (func, arg)
Used by typecodes when serializing, allows them to add output after the SOAPBody is written but before
the SOAPEnvelope is closed. The functionfunc() will be called with theSoapWriter object and the
specifiedarg argument, which may be a tuple.

Forget (obj)
Forget thatobj has been seen before. This is useful when repeatedly serializing a mutable object.

Known(obj)
If obj has been seen before (based on its Pythonid), return1. Otherwise, rememberobj and return0.

ReservedNS (prefix, uri)
Returns true if the specified namespaceprefix anduri collide with those used by the implementation.

write (arg)
This is a convenience method that callsself.out.write() on arg , with the addition that ifarg is a
sequence, it iterates over the sequence, writing each item (that isn’tNone) in turn.

writeNSDict (nsdict)
Outputsnsdict as a namespace dictionary. It is assumed that an XML start-element is pending on the output
stream.

28 Chapter 7. The SoapWriter module — serializing data

CHAPTER

EIGHT

The Fault module — reporting errors

SOAP defines afault message as the way for a recipient to indicate it was unable to process a message. TheZSI
Fault class encapsulates this.

classFault (code, string[, **keywords])
Thecode parameter is a text string identifying the SOAP fault code, a namespace-qualified name. The class
attributeFault.Client can be used to indicate a problem with an incoming message,Fault.Server can
be used to indicate a problem occurred while processing the request, orFault.MU can be used to indicate a
problem with the SOAPmustUnderstand attribute. Thestring parameter is a human-readable text string
describing the fault.

The following keyword arguments may be used:

Keyword Default Description
actor None A string identifying theactor attribute that caused the problem (usually

because it is unknown).
detail None A sequence of elements to output in thedetail element; it may also be

a text string, in which case it is output as-is, and should therefore be XML
text.

headerdetail None Data, treated the same as thedetail keyword, to be output in the SOAP
header. See the following paragraph.

If the fault occurred in the SOAPHeader , the specification requires that the detail be sent back as an element
within the SOAPHeader element. Unfortunately, the SOAP specification does not describe how to encode
this;ZSI defines and uses aZSI:detail element, which is analogous to the SOAPdetail element.

The following attributes are read-only:

actor
A text string holding the value of the SOAPfaultactor element.

code
A text string holding the value of the SOAPfaultcode element.

detail
A text string or sequence of elements containing holding the value of the SOAPdetail element, when avail-
able.

headerdetail
A text string or sequence of elements containing holding the value of theZSI header detail element, when
available.

string
A text string holding the value of the SOAPfaultstring element.

AsSOAP([output=None[, **kw]])
This method serializes theFault object into a SOAP message. If theoutput parameter is not specified, the

29

message is returned as a string. Any other keyword arguments are passed to theSoapWriter constructor.
OtherwiseAsSOAP() will call output.write() as needed to output the message. New in version 1.1; the
old AsSoap method is still available.

If other data is going to be sent with the fault, the following two methods can be used. Because some data might need
to be output in the SOAPHeader , serializing a fault is a two-step process.

DataForSOAPHeader ()
This method returns a text string that can be included as theheader parameter for constructing aSoapWriter
object.

serialize (sw)
This method outputs the fault object onto thesw object, which must support awrite() method.

Some convenience functions are available to create aFault from common conditions.

FaultFromActor (uri[, actor=None])
This function could be used when an application receives a message that has a SOAPHeader element directed
to an actor that cannot be processed. Theuri parameter identifies the actor. Theactor parameter can be used
to specify a URI that identifies the application, if it is not the ultimate recipient of the SOAP message.

FaultFromException (ex, inheader[, tb=None[, actor=None]])
This function creates aFault from a general Python exception. A SOAP “server” fault is created. Theex
parameter should be the Python exception. Theinheader parameter should be true if the error was found on
a SOAPHeader element. The optionaltb parameter may be a Pythontraceback object, as returned by
‘sys.exc info()[2] ’. The actor parameter can be used to specify a URI that identifies the application,
if it is not the ultimate recipient of the SOAP message.

FaultFromFaultMessage (ps)
This function creates aFault from a ParsedSoap object. It should only be used if theIsAFault()
method returned true.

FaultFromNotUnderstood (uri, localname,[, actor=None])
This function could be used when an application receives a message with the SOAPmustUnderstand at-
tribute that it does not understand. Theuri andlocalname parameters should identify the unknown element.
The actor parameter can be used to specify a URI that identifies the application, if it is not the ultimate
recipient of the SOAP message.

FaultFromZSIException (ex[, actor=None])
This function creates aFault object from aZSI exception,ParseException or EvaluateException .
A SOAP “client” fault is created. Theactor parameter can be used to specify a URI that identifies the
application, if it is not the ultimate recipient of the SOAP message.

30 Chapter 8. The Fault module — reporting errors

CHAPTER

NINE

The resolvers module — fetching
remote data

The resolvers module provides some functions and classes that can be used as theresolver attribute for
TC.String or TC.XML typecodes. They process an absolute URL, as described above, and return the content.
Because theresolvers module can import a number of other large modules, it must be imported directly, as in
‘ from ZSI import resolvers ’.

These first two functions pass the URI directly to theurlopen function in theurllib module. Therefore, if used
directly as resolvers, a client could direct the SOAP application to fetch any file on the network or local disk. Needless
to say, this could pose a security risks.

Opaque(uri, tc, ps[, **keywords])
This function returns the data contained at the specifieduri as a Python string. Base-64 decoding will be done
if necessary. Thetc andps parameters are ignored; thekeywords are passed to theurlopen method.

XML(uri, tc, ps[, **keywords])
This function returns a list of the child element nodes of the XML document at the specifieduri . Thetc and
ps parameters are ignored; thekeywords are passed to theurlopen method.

TheNetworkResolver class provides a simple-minded way to limit the URI’s that will be resolved.

classNetworkResolver ([prefixes=None])
Theprefixes parameter is a list of strings defining the allowed prefixes of any URI’s. If asked to fetch the
content for a URI that does start with one of the prefixes, it will raise an exception.

In addition toOpaque andXMLmethods, this class provides aResolve method that examines the typecode
to determine what type of data is desired.

If the SOAP application is given a multi-part MIME document, theMIMEResolver class can be used to process
SOAP with Attachments.

The MIMEResolver class will read the entire multipart MIME document, noting anyContent-ID or
Content-Location headers that appear on the headers of any of the message parts, and use them to resolve
anyhref attributes that appear in the SOAP message.

classMIMEResolver (ct, f[, **keywords])
Thect parameter is a string that contains the value of the MIMEContent-Type header. Thef parameter is
the input stream, which should be positioned just after the message headers.

The following keyword arguments may be used:

31

Keyword Default Description
seekable 0 Whether or not the input stream is seekable; passed to the constructor for

the internalmultifile object. Changed in version 2.0: default had been
1.

next None A resolver object that will be asked to resolve the URI if it is not found in
the MIME document. New in version 1.1.

uribase None The base URI to be used when resolving relative URI’s; this will typically
be the value of theContent-Location header, if present. New in
version 1.1.

In addition to to theOpaque, Resolve , andXMLmethods as described above, the following method is available:

GetSOAPPart ()
This method returns a stream containing the SOAP message text.

The following attributes are read-only:

parts
An array of tuples, one for each MIME bodypart found. Each tuple has two elements, a
mimetools.Message object which contains the headers for the bodypart, and aStringIO object con-
taining the data.

id dict
A dictionary whose keys are the values of anyContent-ID headers, and whose value is the appropriate
parts tuple.

loc dict
A dictionary whose keys are the values of anyContent-Location headers, and whose value is the appro-
priateparts tuple.

32 Chapter 9. The resolvers module — fetching remote data

CHAPTER

TEN

Dispatching and Invoking

New in version 1.1.

ZSI is focused on parsing and generating SOAP messages, and provides limited facilities for dispatching to the appro-
priate message handler. This is becauseZSI works within many client and server environments, and the dispatching
styles for these different environments can be very different.

Nevertheless,ZSI includes some dispatch and invocation functions. To use them, they must be explicitly imported, as
shown in the example at the start of this document.

The implementation (and names) of the these classes reflects the orientation of using SOAP for remote procedure calls
(RPC).

Both client and server share a class that defines the mechanism a client uses to authenticate itself.

classAUTH()
This class defines constants used to identify how the client authenticated:none if no authentication was pro-
vided; httpbasic if HTTP basic authentication was used, orzsibasic if ZSI basic authentication (see
below)) was used.

TheZSI schema (see the last chapter of this manual) defines a SOAP header element,BasicAuth , that contains a
name and password. This is similar to the HTTP basic authentication header, except that it can be used independently
from an HTTP transport.

10.1 Dispatching

The ZSI.dispatch module allows you to expose Python functions as a web service. The module provides the
infrastructure to parse the request, dispatch to the appropriate handler, and then serialize any return value back to the
client. The value returned by the function will be serialized back to the client. To return multiple values, return a list.

If an exception occurs, a SOAP fault will be sent back to the client.

Three dispatch mechanisms are provided: one supports standard CGI scripts, one runs a dedicated server based on the
BaseHTTPServer module, and the third uses the JonPY package,http://jonpy.sourceforge.net, to support FastCGI.

AsCGI([module list])
This method parses the CGI input and invokes a function that has the same name as the top-level SOAP request
element. The optionalmodule list parameter can specify a list of modules (already imported) to search for
functions. If no modules are specified, only themain module will be searched.

AsServer ([**keywords])
This creates aHTTPServer object with a request handler that only supports the “POST” method. Dispatch is
based solely on the name of the root element in the incoming SOAP request; the request URL is ignored.

The following keyword arguments may be used:

33

Keyword Default Description
docstyle 0 If true, then all methods are invoked with a single argument, the unparsed

body of the SOAP message.
modules (main ,) List of modules containing functions that can be invoked.
nsdict {} Namespace dictionary to send in the SOAPEnvelope
port 80 Port to listen on.

AsJonPy (request=req[, **keywords])
This method is used within a JonPY handler to do dispatch.

The following keyword arguments may be used:

Keyword Default Description
request (main ,) List of modules containing functions that can be invoked.

The following code shows a sample use:

import jon.fcgi
from ZSI import dispatch
import MyHandler

class Handler(cgi.Handler):
def process(self, req):

dispatch.AsJonPy(modules=(MyHandler,), request=req)

jon.fcgi.Server({jon.fcgi.FCGI_RESPONDER: Handler}).run()

GetClientBinding ()
More sophisticated scripts may want to use access the client binding object, which encapsulates all information
about the client invoking the script. This function returnsNone or the binding information, an object of type
ClientBinding , described below.

classClientBinding (...)
This object contains information about the client. It is created internally byZSI .

GetAuth ()
This returns a tuple containing information about the client identity. The first element will be one of the constants
from theAUTHclass described above. For HTTP orZSI basic authentication, the next two elements will be the
name and password provided by the client.

GetNS()
Returns the namespace URI that the client is using, or an empty string. This can be useful for versioning.

GetRequest ()
Returns theParsedSoap object of the incoming request.

The following attribute is read-only:

environ
A dictionary of the environment variables. This is most useful whenAsCGI() is used.

10.2 The client module — sending SOAP messages

ZSI includes a module to connect to a SOAP server over HTTP, send requests, and parse the response. It is built
on the standard Pythonhttplib module. It must be explicitly imported, as in ‘from ZSI.client import
AUTH,Binding ’.

classBinding ([**keywords])

34 Chapter 10. Dispatching and Invoking

This class encapsulates a connection to a server, known as abinding. A single binding may be used for multiple
RPC calls. Between calls, modifiers may be used to change the URL being posted to, etc.

The following keyword arguments may be used:

Keyword Default Description
auth (AUTH.none,) A tuple with authentication information; the first value should be one of the

constants from theAUTHclass.
host ’localhost’ Host to connect to.
ns n/a Default namespace for the request.
nsdict {} Namespace dictionary to send in the SOAPEnvelope
port 80 or 443 Port to connect on.
soapaction http://www.zolera.com Value for theSOAPAction HTTP header.
readerclass None Class used to create DOM-creating XML readers; see the description in the

ParsedSoap class. New in version 1.2.
ssl 0 Use SSL if non-zero.
tracefile None An object with awrite method, where packet traces will be recorded.
url n/a URL to post to.

If using SSL, thecert file andkey file keyword parameters may also be used. For details see the
documentation for thehttplib module.

Once aBinding object has been created, the following modifiers are available. All of them return the binding object,
so that multiple modifiers can be chained together.

AddHeader (header, value)
Output the specifiedheader andvalue with the HTTP headers.

SetAuth (style, name, password)
Thestyle should be one of the constants from theAUTHclass described above. The remaining parameters will
vary depending on thestyle . Currently only basic authentication data of name and password are supported.

SetNS (uri)
Set the default namespace for the request to the specifieduri .

SetURL(url)
Set the URL where the post is made tourl .

ResetHeaders ()
Remove any headers that were added byAddHeader() .

The following attribute may also be modified:

trace
If this attribute is notNone, it should be an object with awrite method, where packet traces will be recorded.

Once the necessary parameters have been specified (at a minimum, the URL must have been given in the constructor
are throughSetURL), invocations can be made.

RPC(url, opname, pyobj, replytype=None[, **keywords])
This is the highest-level invocation method. It callsSend() to sendpyobj to the specifiedurl to perform
theopname operation, and callsReceive() expecting to get a reply of the specifiedreplytype .

This method will raise aTypeError if the response does not appear to be a SOAP message, or if is valid
SOAP but contains a fault.

Send(url, opname, pyboj[, **keywords])
This sends the specifiedpyobj to the specifiedurl , invoking theopname method. Theurl can beNone if
it was specified in theBinding constructor or ifSetURL has been called. See below for a shortcut version of
this method.

The following keyword arguments may be used:

10.2. The client module — sending SOAP messages 35

Keyword Default Description
auth header None String (containing presumably serialized XML) to output as an authentica-

tion header.
SOAPEnvelope nsdict {} Namespace dictionary to send in the SOAPEnvelope
requestclass n/a Pythonclass object with atypecode attribute specifying how to seri-

alize the data.
requesttypecode n/a Typecode specifying how to serialize the data.
soapaction Obtained from theBinding Value for theSOAPAction HTTP header.

Methods are available to determine the type of response that came back:

IsSOAP()
Returns true if the message appears to be a SOAP message. (Some servers return an HTML page under certain
error conditions.)

IsAFault ()
Returns true if the message is a SOAP fault.

Having determined the type of the message (or, more likely, assuming it was good and catching an exception if not),
the following methods are available to actually parse the data. They will continue to return the same value until another
message is sent.

ReceiveRaw ()
Returns the unparsed message body.

ReceiveSoap ()
Returns aParsedSOAP object containing the parsed message. Raises aTypeError if the message wasn’t
SOAP.

ReceiveFault ()
Returns aFault object containing the SOAP fault message. Raises aTypeError if the message did not
contain a fault.

Receive (replytype=None)
Parses a SOAP message. Thereplytype specifies how to parse the data. If it sNone, dynamic parsing
will be used, usually resulting in a Python list. Ifreplytype is a Python class, then the class’stypecode
attribute will be used, otherwisereplytype is taken to be the typecode to use for parsing the data.

Once a reply has been parsed (or its type examined), the following read-only attributes are available. Their values will
remain unchanged until another reply is parsed.

reply code
The HTTP reply code, a number.

reply headers
The HTTP headers, as amimetools object.

reply msg
A text string containing the HTTP reply text.

Finally, if an attribute is fetched other than one of those described above, it is taken to be theopname of a remote
procedure, and a callable object is returned. This object dynamically parses its arguments, receives the reply, and
parses that.

opname(args...)
Using this shortcut requires that theSetURL() was invoked first. This method is then equivalent to:
‘RPC(None, opname, tuple(args), TC.Any()) ’

36 Chapter 10. Dispatching and Invoking

CHAPTER

ELEVEN

WSDL Support

TheZSI andZSI.wstools modules provide client tools for using WSDL 1.1 (seeWSDL 1.1 specification).

ZSI provides two ways of accessing a WSDL service. The first provides an easy-to-use interface, but requires setting
all type codes manually. It is easier to use with simple services than with those specifying many complex types. The
second method requires the use of a more complex interface, but automatically generates type codes and classes that
correspond to XML Schema types, as well as client stub code. Both use aWSDLinstance internally to send and receive
messages (see section 11.4 for more information on theWSDLclass).

The first way of accessing a service is through theServiceProxy class. Once the proxy has been created, each
remote operation is exposed as a method on the object. The user must handle the generation of type codes. Note that
while ServiceProxy is part ofZSI , it must be explicitly imported.

The second method uses wsdl2py. Handling XML Schema (seeXML Schema specification) is one of the more difficult
aspects of using WSDL. The classWriteServiceModule , which wsdl2py uses, helps to hides these details. It
generates a module with stub code for the client interface, and a module that encapsulates the handling of XML
Schema, automatically generating type codes.

11.1 WSDLReader

The WSDLReader class inZSI.wstools.WSDLTools provides methods for loading WSDL service descrip-
tions from URLs, XML files or XML string data, and creating aWSDLobject. It is used byServiceProxy and
WriteServiceModule .

WSDLinstances represent WSDL service descriptions and provide a low-level object model for building and working
with those descriptions.

The WSDL reader is implemented as a separate class to make it easy to create custom readers that implement caching
policies or other optimizations.

classWSDLReader()
The following methods are available:

loadFromStream (file)
Return aWSDLinstance representing the service description contained infile. Thefile argument must be a
file-like object.

loadFromString (data)
Returns aWSDLinstance loaded from the XML stringdata.

loadFromFile (filename)
Returns aWSDLinstance loaded from the file named byfilename.

loadFromURL (url)
Returns aWSDLinstance loaded from the givenurl.

37

11.2 ServiceProxy

The ServiceProxy class provides calls to web services. A WSDL description must be available for the service.
ServiceProxy usesWSDLReader internally to load aWSDLinstance.

The user may build up a type codes module for use byServiceProxy .

classServiceProxy (wsdl,[, service[, port]])
Thewsdlargument may be either the URL of the service description or an existingWSDLinstance. The optional
serviceandport name the service and port within the WSDL description that should be used. If not specified,
the first defined service and port will be used.

The following keyword arguments may be used:

Keyword Default Description
nsdict {} Namespace dictionary to send in the SOAPEnvelope
tracefile None An object with awrite method, where packet traces will be recorded.

A ServiceProxy instance, once instantiated, exposes callable methods that reflect the methods of the remote
web service it represents. These methods may be called like normal methods, using *either* positional or
keyword arguments (but not both).

The methods can be called with either positional or keyword arguments; the argument types must be compatible
with the types specified in the WSDL description.

When a method of aServiceProxy is called with positional arguments, the arguments are mapped to the
SOAP request based on the parameter order defined in the WSDL description. If keyword arguments are passed,
the arguments will be mapped based on their names.

11.2.1 Example

The following example, using ServiceProxy, shows a simple language translation service that makes use of the complex
type structures defined in the module BabelTypes:

from ZSI import ServiceProxy
import BabelTypes

service = ServiceProxy(’http://www.xmethods.net/sd/BabelFishService.wsdl’,
typesmodule=BabelTypes)

value = service.BabelFish(’en_de’, ’This is a test!’)

The return value from a proxy method depends on the SOAP signature. If the remote service returns a single value,
that value will be returned. If the remote service returns multiple “out” parameters, the return value of the proxy
method will be a dictionary containing the out parameters indexed by name. BecauseServiceProxy makes use of
the ZSI serialization / deserialization engine, complex return types are supported. This means that an aggregation of
primitives can be returned from or passed to a service invocation according to any predefined hierarchical structure.

11.3 Code Generation from WSDL and XML Schema

This section covers wsdl2py, the second way ZSI provides to access WSDL services. Given the path to a WSDL
service, two files are generated, a ’service’ file and a ’types’ file, that one can then use to access the service. For
example, to generate code to access the TerraServer database, the script can be called as follows:

wsdl2py http://terraservice.net/TerraService.asmx?WSDL

38 Chapter 11. WSDL Support

To generate the ’service’ file, wsdl2py uses theWriteServiceModule class in ZSI.wsdl2python .
WriteServiceModule transforms the definitions in a WSDL instance to remote proxy interfaces in the ’service’
file. To generate the ’types’ file, wsdl2py transforms the XML Schema instances in the WSDL types section to type
codes that describe the data.

The WSDL(see section 11.4) class andZSI.wstools.XMLSchema module provide API’s into the definitions,
which ModuleWriter and its underlying generator classes use to interpret WSDL and XML Schema into class
definitions.

The ’service’ file contains locator, portType, and message classes. A locator instance is used to get an instance of a
portType class, which is a remote proxy object. Message instances are sent and received through the methods of the
portType instance.

The ’types’ file contains class representations of the definitions and declarations defined by all schema instances
imported by the WSDL definition. XML Schema attributes, wildcards, and derived types are not fully handled.

11.3.1 WriteServiceModule Class Description

classWriteServiceModule (wsdl,[importlib, [typewriter]])
This class generates a module containing client stub code, and a module encapsulating the use of XML Schema
instances, given aWSDLinstance generated byWSDLReader. It handles import, namespace, and schema
complexities, and class definition order.

WriteServiceModule delegates toServiceDescription the interpretation of the service definition,
and toSchemaDescription the interpretation of the schema definition. (These two classes are only intended
to be called byWriteServiceModule , but are described here to indicate what is going on behind the scenes.)

The following method is available:

write ()
Generates the client code.

classServiceDescription ()
Interprets the service definition, and creates the client interface and port descriptions code. It delegates to
MessageWriter , which generates a message’s class definition, and toPartWriter , which generates a
message part’s description.

classSchemaDescription ()
Interprets the schema definition, generating typecode module code for all global definitions and declarations in
a schema instance. It delegates toTypeWriter , which generates a type’s description/typecode.

The following excerpt is from wsdl2py, and illustrates howWriteServiceModule is used. The input is a path
name of a WSDL file or URL.

...
reader = WSDLTools.WSDLReader()
if args_d[’fromfile’]:

wsdl = reader.loadFromFile(args_d[’wsdl’])
elif args_d[’fromurl’]:

wsdl = reader.loadFromURL(args_d[’wsdl’])
wsm = ZSI.wsdl2python.WriteServiceModule(wsdl)
wsm.write()
...

11.3. Code Generation from WSDL and XML Schema 39

11.3.2 Example Use of Generated Code

The following shows how to call a proxy method for ConvertPlaceToLonLatPt, a method provided by a service named
TerraService. It assumes that wsdl2py has already been called. In this case, the ’services’ and ’types’ files generated
would be named TerraServiceservices.py and TerraServiceservices types.py, respectively.

from TerraService_services import *

import sys

def main():
loc = TerraServiceLocator()

prints messages sent and received if tracefile is set
kw = { ’tracefile’ : sys.stdout }
portType = loc.getTerraServiceSoap(**kw)

ns1 is an alias for a namespace
Place_Def is defined in TerraService_services_types,
which TerraService_services imports

place = ns1.Place_Def()
place._City = ’Oak Harbor’
place._State = ’Washington’
place._Country = ’United States’

request = ConvertPlaceToLonLatPtSoapInWrapper()
request._place = place

response = portType.ConvertPlaceToLonLatPt(request)
print "Latitude = %s" % response._ConvertPlaceToLonLatPtResult._Lat
print "Longitude = %s" % response._ConvertPlaceToLonLatPtResult._Lon

...

One needs to look at the associated WSDL file to see how to use the classes and methods in the generated code. In
this example,TerraServiceLocator is a class with the name of the WSDL service, plus ’Locator’. It contains
the information necessary to contact the service, usinggetTerraServiceSoap(**kw) .

That method’s name is generated by ’get’ plus the name of the WSDL portType for the service. It returns a class which
encapsulates the information in the portType, and contains the proxies for the methods associated with it.

ConvertPlaceToLonLatPtSoapInWrapper() ’s name is generated using the name of the WSDL input mes-
sage for the ConvertPlaceToLonLatPt WSDL operation, plus ’Wrapper’. The actual call to the service is a method of
the class encapsulating the portType, with the same name as the WSDL operation.

The name of the response field is ’’ plus the name of the WSDL element (or one contained by the element) returned
by the call. Parameters that are input and output are subfields of the request object and the response field, respectively.
Their names can be determined by looking at the part sub-element of a message.

If the user wishes to set authorization headers in a request, using the previous example, it would be accomplished like
this:

40 Chapter 11. WSDL Support

def main():

loc = TerraServiceLocator()

kw = { ’tracefile’ : sys.stdout, ’auth’ : (soap.ZSI.AUTH.httpbasic, ’logname’, ’password’) }

portType = loc.getTerraServiceSoap(**kw)
...

11.4 WSDL objects

The following classes described encapsulate the upper-level objects in a WSDL file. Note that most users will not
need to use these, given the availability ofWriteServiceModule andServiceProxy , which are built on top of
these objects.

There are quite many classes defined here to implement the WSDL object model. Instances of those classes are gener-
ally accessed and created through container objects rather than instantiated directly. Most of them simply implement
a straightforward representation of the WSDL elements they represent. The interfaces of these objects are described
in the next section.

An exception is defined for errors that occur while creating WSDL objects.

exceptionWSDLError
This exception is raised when errors occur in the parsing or building of WSDL objects, usually indicating invalid
structure or usage. It is a subtype of Python’sException class.

classWSDL()
WSDLinstances implement the WSDL object model. They are created by loading an XML source into a
WSDLReaderobject.

A WSDLobject provides access to all of the structures that make up a web service description. The various
“collections” in the WSDL object model (services, bindings, portTypes, etc.) are implemented asCollection
objects that behave like ordered mappings.

The following attributes are read-only:

name
The name of the service description (associated with thedefinitionselement), orNone if not specified.

targetNamespace
The target namespace associated with the service description, orNone if not specified.

documentation
The documentation associated with thedefinitionselement of the service description, or the empty string
if not specified.

location
The URL from which the service description was loaded, orNone if the description was not loaded from
a URL.

services
A collection that containsService objects that represent the services that appear in the service descrip-
tion. The items of this collection may be indexed by name or ordinal.

messages
A collection that containsMessage objects that represent the messages that appear in the service descrip-
tion. The items of this collection may be indexed by name or ordinal.

11.4. WSDL objects 41

portTypes
A collection that containsPortType objects that represent the portTypes that appear in the service de-
scription. The items of this collection may be indexed by name or ordinal.

bindings
A collection that containsBinding objects that represent the bindings that appear in the service descrip-
tion. The items of this collection may be indexed by name or ordinal.

imports
A collection that containsImportElement objects that represent the import elements that appear in the
service description. The items of this collection may be indexed by ordinal or the target namespace URI
of the import element.

types
A Types instance that containsXMLSchemaobjects that represent the schemas defined or imported by
the WSDL description. TheTypes object may be indexed by ordinal or by targetNamespace to lookup
schema objects.

extensions
A sequence of objects that represent WSDLextension elements. These objects may be instances of
classes that represent WSDL-defined extensions (SoapBinding , SoapBodyBinding , etc.), or DOM
Element objects for unknown extensions.

classService ()
A Service object represents a WSDL<service> element.

The following attributes are read-only:

name
The name of the service.

documentation
The documentation associated with the element, or an empty string.

ports
A collection that containsPort objects that represent the ports defined by the service. The items of this
collection may be indexed by name or ordinal.

extensions
A sequence of any contained WSDL extensions.

The following method is available:

getWSDL()
Return the parentWSDLinstance of the object.

classPort ()
A Port object represents a WSDL<port> element.

The following attributes are read-only:

name
The name of the port.

documentation
The documentation associated with the element, or an empty string.

binding
The name of the binding associated with the port.

extensions
A sequence of any contained WSDL extensions.

The following methods are available:

getAddressBinding ()
A convenience method that returns the address binding extension for the port, either a

42 Chapter 11. WSDL Support

SoapAddressBinding or HttpAddressBinding . RaisesWSDLError if no address binding is
found.

getService ()
Return the parentService instance of the object.

getBinding ()
Return theBinding instance associated with the port.

getPortType ()
Return thePortType instance associated with the port.

classPortType ()
A PortType object represents a WSDL<portType> element.

The following attributes are read-only:

name
The name of the portType.

documentation
The documentation associated with the element, or an empty string.

operations
A collection that containsOperation objects that represent the operations in the portType. The items of
this collection may be indexed by name or ordinal.

The following method is available:

getWSDL()
Return the parentWSDLinstance of the object.

classOperation ()
A Operation object represents a WSDL<operation> element within aportType element.

The following attributes are read-only:

name
The name of the operation.

documentation
The documentation associated with the element, or an empty string.

parameterOrder
A string representing theparameterOrder attribute of the operation, orNone if the attribute is not
defined.

input
A MessageRole instance representing the<input> element of the operation binding, orNone if no
input element is present.

output
A MessageRole instance representing the<output> element of the operation, orNone if no output
element is present.

faults
A collection ofMessageRole instances representing the<fault> elements of the operation.

The following methods are available:

getPortType ()
Return the parentPortType instance of the object.

getInputMessage ()
ReturnMessage object associated with the input to the operation.

getOutputMessage ()
ReturnMessage object associated with the output of the operation.

11.4. WSDL objects 43

getFaultMessage (name)
ReturnMessage object associated with the named fault.

classMessageRole ()
MessageRole objects represent WSDL<input> , <output> and<fault> elements within an operation.

The following attributes are read-only:

name
The name attribute of the element.

type
The type of the element, one of’input’ , ’output’ or ’fault’ .

message
The name of the message associated with the object.

documentation
The documentation associated with the element, or an empty string.

classBinding ()
A Binding object represents a WSDL<binding> element.

The following attributes are read-only:

name
The name of the binding.

documentation
The documentation associated with the element, or an empty string.

type
The name of the portType the binding is associated with.

operations
A collection that containsOperationBinding objects that represent the contained operation bindings.

extensions
A sequence of any contained WSDL extensions.

The following methods are available:

getWSDL()
Return the parentWSDLinstance of the object.

getPortType ()
Return thePortType object associated with the binding.

findBinding (kind)
Find a binding extension in the binding. Thekind can be a class object if the wanted extension is one
of the WSDL-defined types (such asSoapBinding or HttpBinding). If the extension is not one of
the supported types,kind can be a tuple of the form(namespace-URI, localname) , which will be
used to try to find a matching DOMElement .

findBindings (kind)
The same asfindBinding() , but will return multiple values of the givenkind.

classOperationBinding ()
A OperationBinding object represents a WSDL<operation> element within a binding element.

The following attributes are read-only:

name
The name of the operation binding.

documentation
The documentation associated with the element, or an empty string.

44 Chapter 11. WSDL Support

input
A MessageRoleBinding instance representing the<input> element of the operation binding, or
None if no input element is present.

output
A MessageRoleBinding instance representing the<output> element of the operation binding, or
None if no output element is present.

faults
A collection ofMessageRoleBinding instances representing the<fault> elements of the operation
binding.

extensions
A sequence of any contained WSDL extensions.

The following methods are available:

getBinding ()
Return the parentBinding instance of the operation binding.

getOperation ()
Return the abstractOperation associated with the operation binding.

findBinding (kind)
Find a binding extension in the operation binding. Thekind can be a class object if the
wanted extension is one of the WSDL-defined types (such asSoapOperationsBinding or
HttpOperationBinding).

If the extension is not one of the supported types,kind can be a tuple of the form(namespace-URI,
localname) , which will be used to try to find a matching DOMElement .

findBindings (kind)
The same asfindBinding() , but will return multiple values of the givenkind.

classMessageRoleBinding ()
MessageRoleBinding objects represent WSDL<input> , <output> and<fault> elements within an
operation binding.

The following attributes are read-only:

name
The name attribute of the element, for fault elements. This is alwaysNone for input and output elements.

type
The type of the element, one of’input’ , ’output’ or ’fault’ .

documentation
The documentation associated with the element, or an empty string.

extensions
A sequence of any contained WSDL extensions.

The following methods are available:

findBinding (kind)
Find a binding extension in the message role binding. Thekindcan be a class object if the wanted extension
is one of the WSDL-defined types.

If the extension is not one of the supported types,kind can be a tuple of the form(namespace-URI,
localname) , which will be used to try to find a matching DOMElement .

findBindings (kind)
The same asfindBinding() , but will return multiple values of the givenkind.

classMessage ()
A Message object represents a WSDL<message> element.

The following attributes are read-only:

11.4. WSDL objects 45

name
The name of the message.

documentation
The documentation associated with the element, or an empty string.

parts
A collection that containsMessagePart objects that represent the parts of the message. The items of
this collection may be indexed by name or ordinal.

classMessagePart ()
A MessagePart object represents a WSDL<part> element.

The following attributes are read-only:

name
The name of the message part.

documentation
The documentation associated with the element, or an empty string.

type
A tuple of the form(namespace-URI, localname) , or None if the type attribute is not defined.

element
A tuple of the form(namespace-URI, localname) , or None if the element attribute is not
defined.

classTypes ()
The following attributes are read-only:

A Types object represents a WSDL<types> element. It acts as an ordered collection containing
XMLSchemainstances associated with the service description (either directly defined in a<types> element,
or included via import). TheTypes object can be indexed by ordinal or by thetargetNamespace of the
contained schemas.

documentation
The documentation associated with the element, or an empty string.

extensions
A sequence of any contained WSDL extensions.

The following method is available:

getWSDL()
Return the parentWSDLinstance of the object.

classImportElement ()
A ImportElement object represents a WSDL<import> element.

The following attributes are read-only:

namespace
The namespace attribute of the import element.

The following method is available:

location
The location attribute of the import element.

11.4.1 Binding Classes

The WSDLTools module contains a number of classes that represent the binding extensions defined in the WSDL
specification. These classes are straightforward, reflecting the attributes of the corresponding XML elements, so they
are not documented exhaustively here.

46 Chapter 11. WSDL Support

classSoapBinding (transport[, style])
Represents a<soap:binding> element.

classSoapAddressBinding (location)
Represents a<soap:address> element.

classSoapOperationBinding ()
Represents a<soap:operation> element.

classSoapBodyBinding ()
Represents a<soap:body> element.

classSoapFaultBinding ()
Represents a<soap:fault> element.

classSoapHeaderBinding ()
Represents a<soap:header> element.

classSoapHeaderFaultBinding ()
Represents a<soap:headerfault> element.

classHttpBinding ()
Represents a<http:binding> element.

classHttpAddressBinding ()
Represents a<http:address> element.

classHttpOperationBinding ()
Represents a<http:operation> element.

classHttpUrlReplacementBinding ()
Represents a<http:urlReplacement> element.

classHttpUrlEncodedBinding ()
Represents a<http:urlEncoded> element.

classMimeMultipartRelatedBinding ()
Represents a<mime:multipartRelated> element.

classMimePartBinding ()
Represents a<mime:part> element.

classMimeContentBinding ()
Represents a<mime:content> element.

classMimeXmlBinding ()
Represents a<mime:mimeXml> element.

11.4. WSDL objects 47

48

CHAPTER

TWELVE

ZSI Schema

The ZSI schema defines two sets of elements. One is used to enhance the SOAP Faultdetail element, and to
report header errors. The other is used to define a header element containing a name and password, for a class of basic
authentication.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://www.zolera.com/schemas/ZSI/"
xmlns:SOAPFAULT="http://schemas.xmlsoap.org/soap/envelope/"
targetNamespace="http://www.zolera.com/schemas/ZSI/">

<import namespace="http://schemas.xmlsoap.org/soap/envelope/"
schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

<!-- Soap doesn’t define a fault element to use when we want
to fault because of header problems. -->

<element name="detail" type="SOAPFAULT:detail"/>

<!-- A URIFaultDetail element typically reports an unknown
mustUnderstand element. -->

<element name="URIFaultDetail" type="tns:URIFaultDetail"/>
<complexType name="URIFaultDetail">

<sequence>
<element name="URI" type="anyURI" minOccurs="1"/>
<element name="localname" type="NCName" minOccurs="1"/>
<any minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

<!-- An ActorFaultDetail element typically reports an actor
attribute was found that cannot be processed. -->

<element name="ActorFaultDetail" type="tns:ActorFaultDetail"/>
<complexType name="ActorFaultDetail">

<sequence>
<element name="URI" type="anyURI" minOccurs="1"/>
<any minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

<!-- A ParseFaultDetail or a FaultDetail element are typically
used when there was parsing or "business-logic" errors.
The TracedFault type is intended to provide a human-readable
string that describes the error (in more detail then the
SOAP faultstring element, which is becoming codified),
and a human-readable "trace" (optional) that shows where

49

within the application that the fault happened. -->
<element name="ParseFaultDetail" type="tns:TracedFault"/>
<element name="FaultDetail" type="tns:TracedFault"/>
<complexType name="TracedFault">

<sequence>
<element name="string" type="string" minOccurs="1"/>
<element name="trace" type="string" minOccurs="0"/>
<!-- <any minOccurs="0" maxOccurs="unbounded"/> -->

</sequence>
</complexType>

<!-- An element to hold a name and password, for doing basic-auth. -->
<complexType name="BasicAuth">

<sequence>
<element name="Name" type="string" minOccurs="1"/>
<element name="Password" type="string" minOccurs="1"/>

</sequence>
</complexType>

</schema>

50 Chapter 12. ZSI Schema

	1 Introduction
	1.1 How to Read this Document

	2 Examples
	2.1 Server Side Examples
	2.1.1 Simple example
	2.1.2 More complex example
	2.1.3 A mod_python example

	2.2 Client Side Examples
	2.2.1 Simple Example
	2.2.2 Complex Example

	3 Exceptions
	4 Utilities
	4.1 Low-Level Utilities

	5 The ParsedSoap module --- basic message handling
	6 The TypeCode classes --- data conversions
	6.1 TC.Any --- the basis of dynamic typing
	6.2 Void
	6.3 Strings
	6.4 Integers
	6.5 Floating-point Numbers
	6.6 Dates and Times
	6.7 Boolean
	6.8 XML
	6.9 Struct
	6.10 Choice
	6.11 Arrays
	6.12 Apache Datatype

	7 The SoapWriter module --- serializing data
	8 The Fault module --- reporting errors
	9 The resolvers module --- fetching remote data
	10 Dispatching and Invoking
	10.1 Dispatching
	10.2 The client module --- sending SOAP messages

	11 WSDL Support
	11.1 WSDLReader
	11.2 ServiceProxy
	11.2.1 Example

	11.3 Code Generation from WSDL and XML Schema
	11.3.1 WriteServiceModule Class Description
	11.3.2 Example Use of Generated Code

	11.4 WSDL objects
	11.4.1 Binding Classes

	12 ZSI Schema

