

PKCS#11 Wrapper for Java

from IAIK
jcewww.iaik.at

by

Karl Scheibelhofer
Karl.Scheibelhofer@iaik.at

Version 1.2.5
21 July 2008

Programmer's Manual

PKCS#11 Wrapper for Java

from IAIK
http://jce.iaik.tugraz.at

Version 1.2.17
21 July 2008

Introduction

The IAIK PKCS#11 Wrapper for Java [1] is a programming library that allows Java programs

to access PKCS#11 [2] modules. Such PKCS#11 modules provide access to cryptographic

hardware like smart cards or hardware security modules. Normally, the manufacturers of

cryptographic hardware provide PKCS#11 modules for their products. There is no standard

API for Java to access such modules.

The library consists of two major parts: the Java part and the native part. The application does

not need to access the native part itself; it only uses the Java classes and interfaces of the li-

brary. Internally, the Java part of the library uses the native part to connect to the PKCS#11

module of the cryptographic hardware. This is necessary, because a PKCS#11 module is a

native DLL or shared library.

The following paragraphs show how to use the Wrapper by stepping through a simple exam-

ple. You can find more demo programs in the demo subdirectory. The remaining part of this

document informs in more detail on how to use the library.

The documentation assumes that the reader is familiar with the basic principles of PKCS#11.

There is a general overview chapter in the PKCS#11 specification from RSA Laboratories [2].

It gives a brief introduction into the basics of PKCS#11.

Write a simple Program

First, we write a simple program that looks like the class below. You can find the source of

this example in the file demo/src/demo/pkcs/pkcs11/ModuleInfo.java.

package demo.pkcs.pkcs11;

import iaik.pkcs.pkcs11.Module;

import iaik.pkcs.pkcs11.Info;

public class ModuleInfo {

 public static void main(String[] args) {

 if (args.length == 1){

 try {

 Module pkcs11Module = Module.getInstance(args[0]);

 pkcs11Module.initialize(null);

 Info info = pkcs11Module.getInfo();

 System.out.println(info);

 pkcs11Module.finalize(null);

 } catch (Throwable ex) {

 ex.printStackTrace();

 }

 } else {

 printUsage();

 System.exit(1);

 }

 }

 protected static void printUsage() {

 System.out.println("ModuleInfo <PKCS#11 module name>");

 System.out.println("e.g.: ModuleInfo pk2priv.dll");

 }

}

This program will load a PKCS#11 module and print information about it to the console.

Compile the program

Use your Java compiler to compile the program like any other Java program. You must just

include the iaikPkcs11Wrapper.jar file. The compile command will look like this, if you

are in the demo directory.

javac -classpath ../java/lib/iaikPkcs11Wrapper.jar -sourcepath src -d

classes src/demo/pkcs/pkcs11/ModuleInfo.java

Keep in mind that this is a single command line. Write it in one line without a line break.

Run the Program

To run the program, you have to find out the name of your PKCS#11 module. For instance, if

you use GemSAFE smart cards, this will be pk2priv.dll. For other products, the module

will have a different name. Refer to the documentation of your hardware. If you have abso-

lutely no glue, try one of these:

iButton - dspkcs.dll

Schlumberger Cryptoflex or Cyberflex Access - slbck.dll

GemSAFE – pk2priv.dll or gclib.dll

SeTec - SetTokI.dll

ActiveCard - acpkcs.dll

ID2 – id2cbox.dll

Eracom – cryptoki.dll

G&D StarCos SPK – aetpkss1.dll

Rainbow iKey 3000 – aetpkss1.dll

Rainbow iKey 1000 or 2000 and DataKey – dkck201.dll

Rainbow CryptoSwift HSM – iveacryptoki.dll

Oberthur AuthentIC - AuCryptoki2-0.dll

Orga Micardo - MicardoPKCS11.dll

IBM MFC - CccSigIT.dll

Utimaco SafeGuard - pkcs201n.dll

SmartTrust - smartp11.dll

Aladdin eToken – eTpkcs11.dll

Eutron CryptoIdentity or Algorithmic Research MiniKey – sadaptor.dll

TeleSec – pkcs11.dll

nCipher nFast or nShield – cknfast.dll

Chrysalis – cryst201.dll

IBM 4758 – cryptoki.dll

Siemens (HiPath SIcurity Card API) – siecap11.dll

A-Sign Premium – psepkcs11.dll

Netscape or Mozilla – softokn3.dll

ASE Card – asepkcs.dll

Apollo OS card from SC2 Technology – Apollo_Cryptoki.dll

IBM Client Security Software for TPM (TCP) – ibmpkcst.dll

SUN Crypto Accelerator SCA1000 – libpkcs11.so

SUN Crypto Accelerator SCA4000 – libvpkcs11.so

The library needs its native part to work. Thus, you have to inform the Java VM where to find

the native part (the pkcs11wrapper.dll or libpkcs11wrapper.so). You can do this at the

command line when starting the program. The command will look like this, if you are in the

demo directory. Replace the pk2priv.dll with the name of your PKCS#11 module.

java -classpath classes;../java/lib/iaikPkcs11Wrapper.jar

-Djava.library.path=../native/platforms/win32/release

demo.pkcs.pkcs11.ModuleInfo pk2priv.dll

Once again, keep in mind that this is a single command line. Write it in one line without a line

break. The output of the program will look like this.

Cryptoki Version: 2.00

ManufacturerID: Gemplus

Library Description: PKCS#11 Private Cryptoki

Library Version: 3.00

If you get an exception that looks like this

java.io.IOException: The specified module could not be found.

p11module.dll

 at iaik.pkcs.pkcs11.wrapper.PKCS11Implementation.connect(Native

Method)

 at

iaik.pkcs.pkcs11.wrapper.PKCS11Implementation.<init>(PKCS11Implementation.j

ava:118)

 at

iaik.pkcs.pkcs11.wrapper.PKCS11Connector.connectToPKCS11Module(PKCS11Connec

tor.java:53)

 at iaik.pkcs.pkcs11.Module.getInstance(Module.java:139)

 at demo.pkcs.pkcs11.ModuleInfo.main(ModuleInfo.java:37)

the VM and the Operating System did not find the specified PKCS#11 module. You can try to

specify the module with its full file-path. If this does not help either, ensure you have the right

file.

You have just written a Java program that uses PKCS#11. To find more sophisticated exam-

ples, have a look in the demo\src\demo\pkcs\pkcs11 directory. If you are dealing with al-

ready personalized smart cards, cards that already have key-pairs and certificates on them,

demo.pkcs.pkcs11.GetInfo is a good example to start with. It shows you a lot of informa-

tion about your card: version information, serial number, supported algorithms, keys, certifi-

cates and much more. The Sample Code and Demos section below provides some more in-

formation about the demos.

Basic usage of PKCS#11

The basic usage of PKCS#11 is roughly always the same. First, you connect to a concrete

PKCS#11 module.

Module module = Module.getInstance("slbck.dll");

You have to replace slbck.dll with the name of the PKCS#11 module for your hardware

(see Run the Program). Before the application can start using the module, it has to initialize

the module.

module.initialize (new DefaultInitializeArgs());

Then you can select a slot.

// list all slots (readers) in which there is currenlty a token present

Slot[] slotsWithToken =

 module.getSlotList(Module.SlotRequirement.TOKEN_PRESENT);

Now, you can take one of these slots (for example the first one) and get the token.

Token token = slotsWithToken[0].getToken();

Then you open a session on this token. In this sample, a read-only session, what means that

you cannot write data to the token or manipulate data on it, but you can do cryptographic op-

erations like signing.

Session session =

 token.openSession(Token.SessionType.SERIAL_SESSION,

 Token.SessionReadWriteBehavior.RO_SESSION,

 null,

 null);

If you want to sign some data, you would try to find a key on the token.

// we search for a RSA private key which we can use for signing

RSAPrivateKey searchTemplate = new RSAPrivateKey();

searchTemplate.getSign().setBooleanValue(Boolean.TRUE);

// search for a key

session.findObjectsInit(searchTemplate);

Object[] matchingKeys;

RSAPrivateKey signatureKey;

if ((matchingKeys = session.findObjects(1)).length > 0) {

 signatureKey = (RSAPrivateKey) matchingKeys[0]);

} else {

 // we have not found a suitable key, we cannot contiue

}

// do not forget to finish the find operation

session.findObjectsFinal();

You can also specify more attributes in the search template, to get one specific key; for in-

stance, a key ID, a label or the key's modulus.

Now, you can sign some data.

byte[] data = ...;

// select the signature mechanism, ensure your token supports it

Mechanism signatureMechanism = Mechanism.SHA1_RSA_PKCS;

// initialize for signing

session.signInit(signatureMechanism, signatureKey);

byte[] signatureValue = session.sign(data);

The resulting signature value is a RSA signature according to PKCS#1 (v 1.5). For more ad-

vanced code samples, please have a look at the included demos.

Usage Details

Include the JAR-Files, DLL and Shared Library

To simply use the IAIK PKCS#11 wrapper, you have to include the

iaikPkcs11Wrapper.jar file in your CLASSPATH or in some other directory where your Java

VM can find it; for example, you can put it in the jre/lib/ext directory. You must also

specify the native part of the wrapper. One way is to put the wrapper library into a directory

where the system or the Java VM can find it. For instance, the search path of the operating

system can be set via the PATH environment variable on Windows systems or via the

LD_LIBRARY_PATH environment variable on UNIX systems. Alternatively, you can tell

your VM directly where to search for libraries. The java.library.path property holds such

search paths for the VM. For example, you can set it via the java command line like

-Djava.library.path=../../native/platforms/win32/Release. Another way to spec-

ify the native part of the wrapper is by instantiating the module in your java code with the

absolute path of the wrapper as additional parameter. The native part is the DLL called

pkcs11wrapper.dll for Windows, or the shared library libpkcs11wrapper.so for Unix

systems. To find the appropriate version of this DLL or shared library go to the plat-

forms/<platform name>/release directory, where <platform name> is the name of your

platform; for instance Win32 for Windows NT or Windows 2000. You should not take the

version that is in the debug subdirectory. This is the debug version of the native part, which is

compiled with DEBUG defined, and it generates a lot of debug output to standard out, which

is only useful for debugging.

Other Platforms and JDKs

If you want to use the wrapper with JDK 1.1.8, you need to recompile the native part. To re-

compile it for JDK 1.1.8, you have to replace the jvm.lib file in the

platforms/<platform name>/lib with the corresponding .lib file of your target Java

VM; for example, it is called javai.lib in SUN’s JDK 1.1.8 and resides in the lib subdirec-

tory of the JDK’s home. Moreover, you need to modify the projects files or the Makefile to

link to this library. In the Makefile, this is an ordinary search and replace. In the MS Visual

C++ projects have a look into Project/Settings…/(Select “All Configurations” at the left

top)/Linker/Object-/Library-Modules. Change jvm.lib to javai.lib. This should be suffi-

cient to rebuild the DLL. If you decide that you do not need to support callbacks in your

PKCS#11 based application, or if the driver of your PKCS#11 device does not support call-

backs, you can compile the DLL with NO_CALLBACKS defined. In this case, you do not need

the jvm.lib or javai.lib at all. Callbacks are rarely used in practice. Most applications do

not need them.

Porting the Native Part to another Platform

If you want to port the native part of this library to another platform, I suggest doing it like

this. Choose one of the existing platforms that is most similar to the new platform. Make a

copy of the complete platform directory and give it an appropriate name; for example, make a

copy of the platforms/linux directory and call it platforms/solaris for instance. Then

adapt the platform.h and platform.c files of the copy to fit to your new platform. That

should be everything. You can also use the Makefile of one of the existing platforms as tem-

plate for building the new platform target.

Lower Level Access and Small Footprint

If you want to access PKCS#11 on a more low level, or if you need a minimum footprint sys-

tem, you can directly build upon the iaik.pkcs.pkcs11.wrapper package, which is a

straightforward mapping of the PKCS#11 standard to Java. One might even throw out classes

not used by the application or library in a special use-case.

Sample Code and Demos

Have a look into the demo/src/demo/pkcs/pkcs11 directory to see some example code. It

should be relatively easy to use for one who is familiar with PKCS#11. Some of the demo and

test programs need the IAIK JCE library to compile and run. You can download an evaluation

version from http://jce.iaik.tugraz.at. You just need to register (for free). The wrapper itself

does not need the JCE library.

All demos are precompiled. For each demo, there is a batch file to run it from the command

line. These batch files assume that there is an appropriate java.exe in you search path. If not,

you can modify the setEnvironment batch file.

You may start with the GetInfo demo. It displays information about PKCS#11 tokens; in-

formation about the PKCS#11 module, information about the slots, information about the

tokens and the objects on the tokens. You may also use the DumpObjects demo to dump the

contents of a token into a directory.

If you have a blank token, you may want to import keys. You can download the key and cer-

tificate of a PKCS#12 file to the token using the DownloadPrivateKey demo. After

downloading a key, you may use it for signing or encryption.

Alternatively, you can generate a new key-pair on the token. You may use the

GenerateKeyPair demo to generate a new key-pair. Thereafter, you can start the

SignCertificateRequest demo to create a PKCS#10 certificate request that you can send to

a CA. After receiving the certificate, you can import it with the ImportCertificate demo.

To sign some data, you can use the SignAndVerify or the SignPKCS7 demo.

SignAndVerify crates a raw signature value, and SignPKCS7 creates a signature in PKCS#7

(version 1.5) format. For verifying raw signatures, you can use VerifySignature; for

PKCS#7 signatures, you can use VerifyPKCS7SignedData. For VerifySignature, you need

to provide the certificate, which you can get from the card using the DumpObjects demo.

References

[1] IAIK Java Cryptography Toolkits,

http://jce.iaik.tugraz.at/

[2] PKCS#11, Version 2.11, by RSA Laboratories,

http://www.rsa.com/rsalabs/node.asp?id=2133

[3] Java 2 Platform, by Sun Microsystems,

http://java.sun.com/j2se/

[4] Java Native Interface 1.1, by Sun Microsystems,

http://java.sun.com/j2se/1.3/docs/guide/jni/spec/jniTOC.doc.html

