
PKCS#11 Wrapper for Java

from IAIK
http://jce.iaik.tugraz.at

Version 1.2.17
21 July 2008

Introduction

Introduction

This is a library to access PKCS#11 modules from the Java programming language

[3]. It uses the Java Native Interface [4] to access the PKCS#11 modules of smart

cards or other hardware security modules (HSM). People at IBM had the idea of

implementing such a wrapper much earlier. Their wrapper [5] also works very well,

but one cannot use their implementation for commercial purposes or redistribute it for

any other purpose.

Please notice that this library does not come with a JCA or JCE provider

implementation. For this purpose there is a different product – the IAIK PKCS#11

Provider [1].

The documentation of this library assumes that the reader is familiar with the basic

principles of PKCS#11. There is a general overview chapter in the PKCS#11

specification from RSA Laboratories [2]. It gives a brief introduction into the basics

of PKCS#11.

The Layer Model of the System

Figure 1 shows the layer model of this library. This library consists of the Object

Oriented (OO) Java Wrapper API for PKCS#11, the (non-Object Oriented) Java

Wrapper API for PKCS#11 and the Native Module of the Wrapper, the green layers

in the figure. The following paragraphs describe these parts. The lowest layer, the

PKCS#11 Module of the Smart Card, is the PKCS#11 module that the smart card

manufacturer supplies. This is normally a DLL or shared library. As the arrows show,

the uppermost layer depends on the Java Wrapper for PKCS#11, but not vice versa.

This means you can use the Java Wrapper for PKCS#11 directly and build your

application upon it without using the OO layer. This can be useful to create smaller

applications, because you do not need most of the classes of the package

iaik.pkcs.pkcs11 and no class from iaik.pkcs.pkcs11.objects and

iaik.pkcs.pkcs11.parameters. The only classes from iaik.pkcs.pkcs11 you

need are the exception classes.

Java Wrapper for PKCS#11

Native Module of the Wrapper

PKCS#11 Module of the Smart Card

Java Native Interface

PKCS#11 API

pkcs11wrapper.c

iaik.pkcs.pkcs11.wrapper

OO Java Wrapper for PKCS#11

Java API for PKCS#11

OO Java API for PKCS#11
iaik.pkcs.pkcs11

iaik.pkcs.pkcs11.objects
iaik.pkcs.pkcs11.parameters

<DLL or shared library>

Figure 1

The Object-Oriented Java API for PKCS#11

This object-oriented Java API resides in the packages iaik.pkcs.pkcs11,

iaik.pkcs.pkcs11.objects and iaik.pkcs.pkcs11.parameters. It provides a

straight forward mapping of the PKCS#11 v2.11 standard to a set of classes and

interfaces. The package iaik.pkcs.pkcs11.objects is a model of the object

hierarchy presented in this PKCS#11 standard. The package

iaik.pkcs.pkcs11.parameters provides classes for objects that act as parameters

for mechanisms which require specific arguments. This layer solely builds upon the

Java API for PKCS#11 as implemented by the Java Wrapper for PKCS#11.

The Java API for PKCS#11

The non-Object Oriented Java Wrapper API for PKCS#11 is a set of Java classes and

interfaces that reflects the PKCS#11 API. It is a straightforward realization of the data

structures as defined in PKCS#11. For each structure in the pkcs11t.h header file of

PKCS#11, there is a corresponding class in the package

iaik.pkcs.pkcs11.wrapper. Notice, that this is not an object oriented approach at

this level; it is just a straightforward mapping of the data structures to Java. All

adoptions to the PKCS#11 API, including wrapping into an object oriented approach,

appear in the Object Oriented Java Wrapper API for PKCS#11. The interface PKCS11

in the iaik.pkcs.pkcs11.wrapper package is the interface to a PKCS#11 module

and provides access to the functions defined by PKCS#11. All names of classes, data

structures and methods are the same as the corresponding PKCS#11 counterpart. The

PKCS11Connector instantiates an object that implements this PKCS11 interface. The

returned object gives access to the PKCS#11 module of the smart card; it is the Java-

Counterpart to the CK_C_GetFunctionList returned by the C_GetFunctionList

function in PKCS#11. The Module class in the object-oriented layer provides the

respective functionality. Have a look at the demo.pkcs.pkcs11 package in the demo

directory for sample programs.

The Native Module of the Wrapper

This native module of the wrapper is responsible for translation of the Java data

structures, which the Java API for PKCS#11 part defines, to native PKCS#11 data

structures and vice versa. This module of the system does not include any additional

logic, it only provides a straightforward mapping from the Java API for PKCS#11 to

the PKCS#11 Module of the Smart Card. This layer is necessary, because the JNI

requires the native functions to have a special signature that is defined by JNI itself.

PKCS#11 and JNI are not compatible as they are, and this is the reason why this layer

is necessary at all. In compiled form, this module is a native DLL or shared library.

Compatibility

This implementation should be compatible to all Java2 (and also JDK 1.1.8) and JNI

1.1. It relies on the PKCS#11 version 2.11 but it should also work with any 2.x driver.

The native code is written in C and can be compiled on different Windows and Unix

platforms. The reference platform is Windows XP and Sun JDK 1.3. The compiler

used for development under Windows is Microsoft Visual C++ 2008. For Unix

platforms, we used the GCC 3.2 compiler and the make utility from GNU. On Solaris,

we used SUN JDK 1.4.2 on Solaris 9 and the SUN C compiler 5.7.

Performance

Tests showed that the calls through the Java Native Interface (JNI) and the parameter

conversions do not take much time. We did a short test on an AMD Athlon 1.4 GHz

using SUN JDK 1.3.1_04. It showed that an update call to a digest through the

wrapper, providing a 1024 bytes block of data, takes not even 0.01 milliseconds on

average. This time includes the Java call in the PKCS#11 Wrapper, in the native code

of the wrapper (including conversion of parameters from Java to PKCS#11 structures)

and down to the call to the PKCS#11 module. This excludes the time for the

calculation time in the PKCS#11 module. We tested this by using a dummy PKCS#11

module that does nothing in its digest functions. The core code from the testing

routine looks like this:

 long t0 = System.currentTimeMillis();

 for (int i = 0; i < 10000; i++) {

 session.digestUpdate(dataBuffer);

 }

 long t1 = System.currentTimeMillis();

We took a time difference of about 90 milliseconds between t1 and t0, which results

in 0.009 milliseconds per call. This value is roughly the same for a data buffer of 1024

bytes and 4096 bytes.

Sending a file with 4.372.615 bytes to the PKCS#11 module took about 70

milliseconds sending the data in 1024 byte blocks; this results in 4271 calls to the

update method. Increasing the block size to 4096 bytes improves the performance

significantly. The test with the file includes reading the data directly from file and

feeding it to the PKCS#11 Wrapper on the fly. However, we read the complete file

once, before we did the test run, what causes the operating system the have the file

cached in memory for the real test run. Then sending the same amount of data takes

30 milliseconds; this results in 1068 calls to the update method.

During the performance tests it showed out that it is even worth to calculate relatively

simple cryptographic operations likes hashes through a PKCS#11 module. For

example, we compared a pure Java implementation and C implementation of the

SHA-1 hashing algorithm. Both use very similar code; i.e. the compression function is

nearly a copy and paste from Java to C. However, the C implementation, accessed

through the PKCS#11 Wrapper, is about double as fast as the Java implementation

(using the same environment as before).

These tests unquestionably prove that this library is suitable for high performance

server applications.

License

We provide this software under an Apache style license. The complete license text is

as follows.

Copyright (c) 2002 Graz University of Technology. All rights

reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the

distribution.

3. The end-user documentation included with the redistribution, if

any, must include the following acknowledgment:

"This product includes software developed by IAIK of Graz

University of Technology."

Alternately, this acknowledgment may appear in the software

itself, if and wherever such third-party acknowledgments normally

appear.

4. The names "Graz University of Technology" and "IAIK of Graz

University of Technology" must not be used to endorse or promote

products derived from this software without prior written

permission.

5. Products derived from this software may not be called "IAIK PKCS

Wrapper", nor may "IAIK" appear in their name, without prior

written permission of Graz University of Technology.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE LICENSOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

References

[1] IAIK Java Cryptography Toolkits,

http://jce.iaik.tugraz.at/

[2] PKCS#11, Version 2.11 and Version 2.20, by RSA Laboratories,

http://www.rsa.com/rsalabs/node.asp?id=2133

[3] Java 2 Platform, by Sun Microsystems,

http://java.sun.com/j2se/

[4] Java Native Interface 1.1, by Sun Microsystems,

http://java.sun.com/j2se/1.3/docs/guide/jni/spec/jniTOC.doc.html

[5] PKCS#11 API for Java, by IBM Alphaworks,

http://alphaworks.ibm.com/

