KD Chart Programmer's Manual

The KD Chart Team

KD Chart Programmer's Manual
The KD Chart Team

Version 2.2
Copyright © 2001—2008 Klarélvdaens Datakonsult AB

The contents of this manual and the associated KD Chart software are the property of Klarédlvdalens Datakonsult AB and are copyrighted.
KD Chart is available under two different licenses, depending on the intended use of this product:

* Commercial users (i.e. people intending to develop a commercial product using KD Chart) need to order a commercial license from
Klarélvdalens Datakonsult AB.

« KD Chart is aso available for creating non-commercial, open-source software under the GNU General Public License, version 2.0 or 3.0
as published by the Free Software Foundation. Alternatively you may (at your option) use any later version of the GNU General Public
Licenseif such license has been publicly approved by Klarévdalens Datakonsult AB (or its successors, if any).

It is your responsibility to decide which license type is appropriate for your intended use of KD Chart. Any reproduction of this manual and
the associated KD Chart software in whole or in part that is not allowed by the applicable license is strictly prohibited without prior written
permission by Klardlvdalens Datakonsult AB.

KD Chart and the KD Chart logo are trademarks or registered trademarks of Klarélvdalens Datakonsult AB in the European Union, the United
States, and/or other countries. Other product and company names and logos may be trademarks or registered trademarks of their respective
companies.

Table of Contents

O = =t RS 1
What YOU ShOUId KNOWceveiiiiciii e e e e e e e e e e e e e eaens 1
The Structure of ThIS ManUalooiiiiiiii e e e e 1
LAY = S =2 2

2 370 = 7 3
L@ < V1= R 3

€008 SAMPIE ..o 3
L0 o oK 3
Ownership of Components VErsus Parameterscoovvvveviiieiii i, 5
KD Chart and MOGEI/VTEW ...covniie e e e e e 5
€008 SAMPIE ..o 5
N 1] o U1 (== £ 6
€008 SAMPIE ..o 6
MEMOIY MaNAGEIMENTinie e e e e et e e e e ens 7
€008 SAMPIE ..o 7
RTAY] ST A= PN 8

G 7= o (= S 9
1= 1= 0 011 =S 9
I T (0o~ L1 9
TWO WaysS TO YOUr Chartcoeeiii e e e e e e et e e eanas 11

Widget EXAMPIE ...necei e 11
Chart EXAMPIE ..ovncii e 12
R TAY P ST AN P 12

147 1o 13

Cartesian Coordinate PlaneSiiiiiiiiii i 13
Bl Charts ...iviiiei e 14
[N o= T O 1 7= £ 14
Stacked Bar ChartScouvuiiiiici e e e e 14
Percent Bar ChartSuiviiiiii e 15
€008 SAMPIE ..o 15
Bars AMIDULEScovniiii e e 17
Bar Attributes Sampleoiii i 18
QLI 0TS o I o € 21
A complete Bar EXAMPIE .. ccvuniiiieii e 21
[T S5 7= £ 25
NOrMal LiNE Chartsuuiiiii i e e e e e e 25
Stacked LinNg Chartscoouiiiiiii e e e 26
Percent Ling Chartsooiuniiiiiic e e 26
€008 SAMPIE e 27
[T 1SR AN 1] 10 | == 29
Line AttHBULES SAMPIEcvecii e 30
TIPS AN THCKS .ovncii e e e e e s 33
A complete Ling EXamMPIeoviniii e 33
POINE Charts ... e e 36
Point SAMPIE COOEuuiiii e 36
POINES ATITDULES ... cevecee e e e e e e aanas 37
TIPS AN THCKS .ovncii e e e e e s 37
A complete POiNt EXAMPIE ...c.ouiiiici e 37
N == 117 11 £ S 39
Area SAMPIE COUE .. .covniii e 40
F N == AN 111U (= 40
TIPS AN THCKS .ovncii e e e e e s 40
A complete Area EXampPleoovviii e 40
[[= 7= £ 43
Plotter SAMPIE COOE ... cvvniii e e 44

KD Chart Programmer's Manual

Levey-JenningS Chartscoouueiiiiii e 44

Polar coOrdinate PlANEcooeuee e 45
PO CREITS ... 45
SIMPIE PIE CRatS ...coeviiiiii e e e 45
EXPlOding Pie Chartscoouuiiiiiii e 46
C00E SAMPIE ...t 47

PIES ATLIDULES ... et et 48

Pie AtribULES SAMPIE ... 49

TIPS @M THICKS .ttt et e e e e e e eaa e eees 52

A complete Pie EXAMPIE ... oo 52
POIAI CRAITS ...t 54

A SImple Polar Chartoooeei e 54
POLAr ATIITDULES ...t 55
Ternary COOrdiNate PIANEcoouuuiiiii et 56
Ternary Line Chartsooieiii e 56
WWNEE'S NEXE ... ettt et e et 57
7= 0 (= g R TP U PT O PPPRT 58
CAtESIAN AXIS .eeneeeiti ettt et eaaas 58
TEINAIY AXIS vttt 58
HOW t0 cONfigUre Cart@Sian AXEScouuuiiiiii ettt eaaans 58
Cartesian AXES SAMPIE ...coeviiiii e 59

LI o= T PP UPPPPPI 60
AXIS EXAMPIE ...t 60

S O 7= 0 (= G R PSP PPPRTR 65
HOW 10 CONFIQUIE ...ttt eeaas 65
Legend SAMPIE ... oo 66

LI o= T PP UPPPPPI 67
WWNEE'S NEXE ...ttt e et e et e s 71
TR 7= o (= S PSP PPPRT 72
HOW 10 CONFIQUIE ...ttt eeaas 72
Headers and Footers code Sampleoiiiiiiiiiiii e 72

LI o= T PP UPPPPPI 74
Headers and FOoters EXampleoooiiiiiiiiiii e 77
WWNEE'S NEXE ...ttt et e et e s 78
O 07 0 (= g T PP PP PPPPT 79
Attributes Model, ADSIract Diagramcoeuiiiinieii e e 79
HOW T WOTKS ettt eaaas 79

Data Tooltips and COMMENTSciiiiiei it e e 81
Specifying a data item tO0ItIPcovvniieiii e 81
Specifying a fixed data item COMMENTviiiiiiiiiiiii e 81

Data Values AtIITDULESuuiiiii e e 82
DataValue Attributes Sample COTEo.uuuiiiiiiii e 83

Data Values Labels: DEAIlSccovvvieiiiiii e 84

TEXE ALIIIDULES ...t 84
Text Attributes SamPIE COUEooovniiii e 85
Markers AIIDULESooui e 86
Markers Attributes SampPle COUEuuiiiiiieiee e 87
Value Tracker AtHDULESi i 88
Background AMIHULESuuii e 89
Background Attributes Sample COdeviiiiiiiiiiii e 89
Frame AIIDULEScoooei e 90
Frame Attributes Sample COOEuui i 91

GIid ATHDULES ...t ettt e e et e e e e e eaa e eees 91
Grid Attributes SamMPIE COUEcooviieiiii e 92
THreeD ATHIDULESiiei e e 93
ThreeD Attributes EXamplecoooiiiiiii e 94

Font Sizes and Other MEESUIESoouuiiiiiii e 95
When and how to use the Measure Classcc.uuvviiiiiiieiiiii e 95

KD Chart Programmer's Manual

How to specify absolUte VAIUESiiiiiiiciii e 96

How to SPeCify relative VEIUEScoouviiiiiiii e 96

Relative and ADSOIULE POSITIONSciiiiiieiiii e 97
What is relative positioning all about?cc.uoviiiiiiiiiii 97

HOW O SPECifY @ POSITIONcevviiiiiii e 97

Using Position and RelativePOSITiONc.uuiiiiiiiiiiiiicce e 97

WWNEE'S NEXE ... ettt et e et 98
7= o (= g PP UPPPT 99
Example programs tO CONSUITccuuuuiiiiii e 99

AL APPENGIX A e 104

Vi

List of Figures

2.1. Scope selection for Data Value TEXIS ..o.u.iiiiniiii i e e e e e 7
3.1 A SIMPIE WIAGEL . ovniiiiei e e e e e e e e e e e e e e e e 11
3.2, A SIMPLE Chart ..eecei e e e 12
4.1, A NOMEA Bar Chartveuieiiiiiieee et e e e e et e e e eaae e eeeee 14
4.2, A SEACKED Bar Chartoiiiiii e e e aaeas 15
4.3, A Percent Bar Chartiiiiiiiioiiie e 15
4.4. A SImple Bar Chart WIAQELccvuuiiiiiii e 17
4.5. Bar with Configured AtHDULESuiiiiiee e 21
4.6. A Full featured Bar Chartoooiiiiiiiii e 25
A.7. A NOrMEA LINE CaIT ...ouuuieiiiiiiiee et e et e e e et eeearan e eees 26
4.8. A StACKE LiNE Chartioiiiiii i e et e e et eeeaae e eees 26
4.9. A Percent LiNE Chartuiiiiiiiiiiii e 27
4.10. A Simple Line Chart WIdgELoveiiiii e e e e e e aens 29
4.11. Line With Configured AttriDULEScovuiiii e e e 32
4.12. A Full featured Line Chartoiiiiiiiiieiii e e e e eees 35
I N o] | A O = o PP 36
4.14. A Full featured POINt Chartuiiiiiiiiiic e 39
N N I N (== O o= PP 39
4.16. A Full featured Area Chartoooiieiiiiiiii e eaens 43
4.17. A Simple Plotter diagramooeueiiii e 44
4.18. A simple Levey-Jennings diagramco.ueeuuieiei e e e e e e e e e e e e e et e e eanaeees 45
4.19. A SIMPIE PIe Chart ...coueiii e e 46
4.20. An EXploding Pie Chartoiiiiiii e e e 46
4.21. A SIMPIE PI@ WIAGELceeiiii e e e e e e e et e e e e aneees 48
4.22. Pie With Configured AttHBULESccvniii e 52
4.23. A Full featured Pie Chartiiiiiiiiiee e 54
4.24. A NOrMal POIEr Chartiiiiiiiei e e s 55
4.25. A SIMPle TEMNAY Chartiiiiieii e e e e e e e e e e eaes 56
5.1. A SImple Widget With AXIS ...cceuiiii i e e e 60
5.2. Axis with configured Labels and TitleScoeviiiiii i 63
6.1. A Widget with asimple Legendcooeuiriiiiiii e e e 67
6.2. Legend advanced EXamPleviiunieiiie e 70
7.1. A Widget with aheader and afootercoooviiiiiiii 74
7.2. A Chart with a configured HEadercovvuiiiiiiiiii e 77
7.3. Headers and Footers advanced eXamplecoouviiiiiiiiii i e 78
8.1. Scope selection for Data Value TEXIS ..ouuuiviun i e e 81
8.2. A Chart with configured Data Value TeXISuiiiuiiiiiii e e e 84
8.3. Positioning / adjusting Data LabelScovvniiiiiiiii e 84
8.4. A Chart with a configured HEadercoovuiiiiiiiiii e 86
8.5. A Chart with configured Data MarkerScccuiiiiiiiiii e 88
8.6. A Line Chart showing Value TraCKerScc.ueiiiiiiiii e e e e 88
8.7. A simple Bar Chart with a Background Imagecoveviii i 20
8.8. A Chart with configured Frame AttribULEScovviiiii e 91
8.9. A Chart with configured Grid AHIHDULESccvuiiiiiii e 93
8.10. A ThreeD Bar Chartc.uuiiiiiiiiiiiiii e e 95
8.11. Data value text positions relative to COMPass POINESccvuevreeeeiereiireeiieeei e raneeaeaens 97
9.1. /eXxamples/ AXISParaMELErSuu i 99
9.2, /exampled AXIFLADEIS 99
9.3. /examplesd/Bars/AGVANCEcoiiiiiiii e 100
9.4. lexamples/HeadersFooters/HeadersFooters/Advancedcccovveveiiieiiiieciii e, 100
9.5. /examples/Legends/LegendAdvanCedcoovuiiiiiieii i 100
9.6. /examples/LineS/AGVaNCEdoiiiiiiiii e 101
9.7. lexamples/Plotter/BubbleChartco.iiiii i 101
9.8. /examples/Model VIieW/TabIEVIOWiiiii e e 101
9.9. /examples/PIe/AGVANCEiiiiiiiii e e 102

Vii

KD Chart Programmer's Manual

9.10. /examples/Shar@dADSCISSAuneiiii e 102
9.11. /examples/Widget/AGVaNCEooiiiiieeiii e e 102
9.12. /examples/Zo0M/KEYDOBITcoeuiieiiii et 103
9.13. /examples/ZOOM/SCIOIBAI'Suueiiiiiiee ettt e 103

viii

Chapter 1. Introduction

KD ChartisKlarélvdalens Datakonsult AB'scharting packagefor Qt applications. Thisisthe KD Chart
Programmer's Manual. It will get you started with creating your charts and it provideslots of pointers
to the many advanced featuresin KD Chart.

» Depending on your KD Chart version, you will find different | NSTALL files that explain how to
install KD Chart on your platform and a step by step description about how to build it from the
source code.

» KD Chart also comeswith an extensive Reference Manual, generated directly from the source code
itself, available both asaPDFfile and as browsable HTML pages. When refering to theinformation
in this manual we will simply use the term "API Reference".

Y ou should refer to it in conjunction with this Programmer's Manual, if your question is not covered
here in the respective chapter here (or in Appendix A, Q& A section at the end of this manual.)

* What isKD Chart?

KD Chart isatool for creating business and scientific charts, and isthe most powerful Qt component
of itskind. Besides having al of the standard features, it also enables the developer to design and
manage alarge number of axes and provide sophisticated means of layout customization. Since all
configuration settings have reasonable defaults you can usually get by with setting only a handful
of parameters and relying on the defaults for the rest.

* What can you use KD Chart for?

KD Chart isused by avariety of programs for avariety of different purposesincluding visualizing
flood events in a river; other samples on our web site at ht t p: / / ww. kdab. net / kdchar t
show how KD Chart isused for monitoring seismic activity. It isalso no coincidence that the current
version of the KOffice productivity suite uses our library.

What You Should Know

Y ou should be familiar with writing Qt applications, and have a working knowledge of C++. When
you are in doubt about how a Qt class mentioned in this Programmer's Manual works, please check
the Qt reference documentation or a good book about Qt. A more in-depth introduction to the API can
be found in the file doc/ KDChart - 2. 0- API - | nt r oduct i on. Also to browse KD Chart AP
Reference start with thisfile: doc/ r ef man/ i ndex. ht mi .

The Structure of This Manual

How we will proceed with presenting KD Chart?

This manual starts with an introduction to the KD Chart 2 API before going through the basic steps
and methods for the user to create her own chart.

The following Chapter 4, Planes and Diagrams will provide the reader with more details about the
different chart types supported and the information you need to know in order to get the most out of
KD Chart.

The subsequent chapters contain more advanced customizing material like how to specify colors, fonts
and other attributes if you don't want to use KD Chart's default settings. How to create and display
headers, footers and legends aswell as how to configure your chart axesis also apart of these chapters.

Chapter 9 Advanced Charti ng, will present you with KD Chart's other more advanced features
and show screenshots of example programs demonstrating how set up frames and backgrounds, data

http://www.kdab.net/kdchart

Chapter 1

value texts, axis and grids etc..Additionally it is covering features like Interactive and Multiple charts
or Zooming.

We provide you with many more example programs than shown in this manua and we recommend

our readersto try and run them, have alook at the code and experiment with the various settings, both
by adjusting them viathe user interface, and by trying out your own code modifications.

What's next

In the next chapter we introduce the KD Chart 2 API.

Chapter 2. KD Chart 2 API
Introduction

Since version 2.2 KD Chart fully supports and builds on the technol ogies introduced with Qt 4. The
charting engine makes use of the Arthur (painting) and Scribe (text rendering) frameworks to achieve
high quality visua results. KD Chart 2 also integrates with the Interview framework for model/view
separation and, much like Qt 4 itself, it provides a convenience Widget class for simple use cases.

Overview

The core of KD Chart 2 APl isthe KDChar t : : Chart class. It encapsulates the canvas onto which
the individual components of a chart are painted, manages them and provides access to them. There
can be more than one KDChart : : Di agramon a KDChart : : Chart. How they are laid out is
determined by which axes, if any, they share (more on axes below).

KDChart: : Di agr am subclasses for the various types of charts are provided, such as
KDChart : : Pi eDi agr am and users can subclass KDChart : : Abstract Di agr am(or one of
the other Diagram classes starting with 'Abstract’, which are designed to be base classes) to implement
custom chart types. A typical use of asimple Bar Diagram looks like this:

Code Sample

usi ng nanespace KDChart;

Bar Di agram *bars = new Bar Di agram

bar s- >set Model (&m nodel);

chart - >coor di nat ePl ane() - >r epl aceDi agranm(bars);

In Chapter 3, Basic steps: Create a Chart we will make this somewhat abstract description more
concrete by looking at some compl ete examples (Widget and Charts), which we recommend trying out.

Concepts

For now, in order to get an overview about the KD Chart 2 API and itsfeatures, you need to understand
the following base concepts:

» Each diagram has an associated Coordinate Plane (Cartesian by default), which is responsible for
the trangdlation of data values into pixel positions. It defines the scale of the diagram, and all axes
that are associated with it. This makesimplementing diagram subclasses (types) much easier, since
the drawing code can del egate the compl ete coordinate cal culation work to the coordinate plane.

 Each coordinate plane can have one or more diagrams associated to it. Those diagrams will share
the scale provided by the plane. A chart can also have more than one coordinate plane. This makes
it possible to have multiple diagrams (e.g aline and a bar chart) using the same or different scales
and displayed next to, or on top of each other in the same chart.

» To share an axis among two planes (and also diagrams) we make it owned by the first diagram and
we add it to the second diagram. The Chart layouting engine will take care of adjusting positions
accordingly.

This code is taken from mai nwi ndow.cpp in exanpl es/ SharedAbsci ssa/
Separ at eDi agr anms/ , hereweare using two data model s, two coordinate planes, two diagrams,
two ordinate axes - but just one abscissa axis:

Chapter 2

m | i nes = new Li neDi agram();
m | i nes->set Mbdel (&m nodel);

m | ines2 = new Li nebi agram();
m | i nes2- >set Model (&m nodel 2) ;

[l W call this "plane2" just for renmenbering, that we use it
/1 in addition to the plane, that's built-in by default.
pl ane2 = new Cart esi anCoordi nat ePl ane(m chart);

Cartesi anAxi s *xAxis = new Cartesi anAxi s(mlines);
CartesianAxis *yAxis = new CartesianAxis (mlines);
Cartesi anAxi s *yAxi s2 = new CartesianAxis (mlines2);

XAxi s->set Position (KDChart:: CartesianAxis::Top);
yAXi s->setPosition (KDChart::CartesianAxis::Left);
yAXi s2->set Position (KDChart:: CartesianAxis:: R ght);

m | i nes->addAxi s(yAXis);
m | i nes2- >addAxi s(xAXis);
m | i nes2- >addAxi s(yAxis2);

m chart - >coor di nat ePl ane() - >repl aceDi agran(mlines);
pl ane2->repl aceDi agram(mlines2);
m chart - >addCoor di nat ePl ane(pl ane2);
Note how the X axisis owned by the first diagram, but we explicitely add it to the second diagram,
so it is shared between both of them.
A chart can also have anumber of optional components such as L egends, Headers/Footers or custom
KDChart : : Ar ea subclasses that implement user-defined elements. The API for manipulating these
issimilar for al of them.
For example, to add an additional header you can use code like this:
Header Foot er * additi onal Header = new Header Foot er;
addi ti onal Header - >set Posi ti on(NorthWest);
/1 add the text and/or custom ze the header
...
chart - >addHeader Foot er (addi ti onal Header);
In the next section, we will further explain how ownership of such components is maintained.
Finally, and concluding this overview, al classes in the KD Chart 2 APl are in the KDChar t
namespace, to alow concise class names, while still avoiding name clashes. Unless you prefer to use

theKDChart : : prefix on al class namesin your code, you can add the following line at the top of
your implementation files, to make all namesin the KDChar t namespace available in that file:

usi ng nanespace KDChart;

Chapter 2

Like Qt, KD Chart provides STL-style forwarding headers, allowing you to omit the . h suffix when
including headers. To bring the bar diagram header into your implementation file, you could therefore
write:

#i ncl ude <KDChart Bar Di agr an®
or
#i ncl ude <KDChart Bar Di agr am h>

Note

File names of header and implementation files all have the KDChart prefix in
the name. The definition of KDChart:: Bar Di agram is thus located in the file
KDChar t Bar Di agr am h.

Ownership of Components versus Parameters

Setting up a chart consists of doing two different things: Adding components. (Diagrams, Coordinate
Planes, Axes, Headers, Legends, ...) and specifying attributes (Text Attributes, Data Value Attributes,
Frame Attributes, ...).

For the components please note they are typically owned by their respective container widgets.
Memory management of the component classes is explained in the section caled “Memory
Management” further down in this chapter.

Handling of attributes is different - their values are normally copied, no pointers are passed, and the
objects are owned by the one who instantiates them, please study the section called “ Attribute sets’
for details, thisis aso to be found a bit below this section in the same chapter.

KD Chart and Model/View

KD Chart 2 follows the "Interview" model/view paradigm introduced by Qt 4:

Any KDChart : : Abst ract Di agr amsubclass (which in turn inherits QAbst r act | t enVi ew)
can display data originating from any QAbst r act | t enivbdel object. In order to use your data
with KD Chart diagrams, you need to either use one of Qt's built-in models to manage it, or provide
the QAbst ract | t emvbdel interface on top of your already existing data storage by implementing
your own model that talks to that underlying storage.

KDChart:: W dget is a convenience class that provides a simpler, but less flexible, way
of displaying data in a chart. It stores the data it displays itself, and thus does not need a
QAbstract | t emvbdel . It should be sufficient for many basic charting needs but it is not meant
to handle very large amounts of data or to make use of user-supplied chart types.

KDChart:: W dget is provided in order to get started quickly without having to master the
complexities of the model/view framework in Qt 4. Wewould still advisetouseKDChar t : : Chart
so that you can make use of al the benefits that model/view programming brings.

In order to understand the relationship between KDChart: : Vi ew and KDChart:: W dget
better, compare for example KDChart : : Chart and KDChart:: W dget to QLi st Vi ew and
QLi st W dget inthe Qt 4 documentation. Y ou will clearly notice the similarities.

Code Sample

Now let'slook at the following lines of code where we are using QSt andar dl t enivbdel to store
the data which will be displayed by the diagram inaKDChar t : : Chart widget.

Chapter 2

/1 set up your nodel
m nodel . i nsert Rows(0, 2, Qwbdel I ndex());
m nodel . i nsert Colums(0, 3, QwbdelIndex());
for (int row = 0; row < 3; ++row) ({
for (int colum = 0; colum < 3; ++colum) {
QWbdel | ndex index =
m _nodel . i ndex(row, columm, QWodel | ndex());
m nodel . set Dat a(i ndex, Qvariant(row+l * colum));

Assign the model to your diagram and display it:

KDChart : : Bar Di agr ant di agram = new KDChart: : Bar Di agr am
di agr am >set Model (&m nodel) ;
m chart. coordi nat ePl ane() - >r epl aceDi agr an{di agran);

Using KDChart : : W dget wewould use code as follow:

KDChart:: Wdget wi dget;

QVector< double > vecO, vecl;

vecO << -5 << -4 << -3 << -2 << -1<<0 ...;
vecl << 25 << 16 << 9 << 4 << 1 << 0 ...}

wi dget . set Dataset (0, vecO, "Linear");

wi dget . set Dataset (1, vecl, "Quadratic");
wi dget . show() ;

We recommend that you read the APl Reference of KDChart : : Chart and KDChart: : W dget
to learn more about those classes and what they can do. Also compile and run the complete examples
that describe very simply the two ways you can use to display a Chart.

Attribute sets

The various components of achart such aslegends or axes have attribute sets associated with them that
define the way they are laid out and painted. For example, both the chart itself and all areas have a set
of KDChart : : Backgr oundAt t ri but es, which control whether there should be a background
pixmap, or a solid background color. Other attribute sets include frame attributes or grid attributes.
The default attributes provide reasonable, unintrusive settings, such as no visible background and no
visible frame.

These attribute sets are passed by value, they are intended to be used much like Qt's QPen or QBrush.
As shown below:

Code Sample

KDChart:: TextAttributes ta(chart->legend()->textAttributes());
ta.setPen(Q::red);

ta.set Font (Qront("Helvetica"));

chart->l egend()->set TextAttributes(ta);

Chapter 2

Note

When ever you want to modify an attribute set make sure to use the copy constructor for
instantiating your attributes object! By doing so you can be sureto not alter all of the existing
configuration when modifying only your desired details of the respective attributes set.

As an example, the code block shown above is just changing the font and its color, but it
leaves all size settings as they have been before.

All attribute sets can be set per cell, per column or per modelindex, and only be queried per cell.
Access at the cell level only ensures that the proper fallback hierarchy can be observed. If thereisa
valueset at cell level, it will be used. Otherwise, the dataset (column) level is checked. If nothing was
found at the dataset level, either the model wide setting is used or if there is none either, the default
valueswill be applied. All of this happens automatically, so that the code using these values only has
to ask the cell for its attributes, and will get the correct values. This avoids duplication of the fallback
logic in numerous placesin the library, thus avoiding unnecessary and expensive error handling.

When using attributes sets, you need to be aware of this falback hierarchy, because
e.g. per-cel changes will hide per-column changes. (see the APl Reference for
KDChart::[type] Attri butes classes)

As an example see the upper/left part of the screenshot below demonstrating a way the scope of some
attribute settings might be selected:

Figure 2.1. Scope selection for Data Value Texts

[
Scope of settings
dataset item 4

: N

() One Bar: |0

[a]¥] [4]¥]

) A Series: |0

%®| Display Data Values

Font: Dejavlu Sans] o

To see how this is done please have a look at the exanpl es/ Dat aVal ueText s/ example
program.

Relative Size: |25

O[] [«

minimum Size: |8

Memory Management

Asagenerd rule, everythinginaKDChar t : : Chart isowned by the chart. Manipulation of the built-
in components of a chart, such as for example a legend, happens through mutable pointers provided
by the view, but those components can also be replaced.

Code Sample

L et us make this more concrete by looking at the following lines of code.

/1 set the built-in (default) |egend visible
m chart->l egend() - >set Posi tion(North);

/1 replace the default |legend with a custom one

Chapter 2

//the chart view will take ownership of the allocated
/I menory and free the old | egend

KDChart::Legend *nylLegend =

m chart - >repl aceLegend(new Legend);

Similarly, inserting new components into the view transfers ownership to the chart. Notice that the
same procedure has to be applied for adiagram, too.

/1 add an additional |egend, chart takes ownership
chart - >addLegend(Legend);

Removing a component does not de-allocate it. If you "take" a component from a chart or diagram,
you are responsible for freeing it as appropriate.
(seethe API Reference for KDChart : : Chart and/or for KDChart : : Legend)

Notice how this pointer-based access to the components of a chart is different from the value-based
usage of the attribute classes; the latter can be copied around freely, and are meant to be transient
in your code; they will be copied internally as necessary. The reason for the difference, of course, is
polymorphism.

What's Next

Basic steps: Create a Chart or a Widget.

Chapter 3. Basic steps: Create a
Chart

As described in the previous chapter, there are two ways to create a chart:

» KDChart:: Wdget provides a limited set of functions as shown in the APl Reference of
KDChart: : W dget . Its purpose isto provide a convenient and simple way of displaying achart
for people who do not care about more complicated details like the Coordinate Plane and other
classes provided by the KD Chart 2 API.

e The purpose of KDChart: : Chart isto give the user access to the full power of both Qt and
KD Chart.

Basically, KDChart : : W dget has been designed for beginners, while KDChart: : Chart is
designed for experienced users and/or users who need more features and flexibility. Once again, we
recommend you to check out both interfaces of those classes in order to give yourself an idea about
which one of the classes best matches your needs. Seethe APl Reference of KDChart : : Chart and
KDChart:: W dget.

Prerequisites

As described above in the section called “KD Chart and Model/View ", a prerequisite for using the
full KD Chart API isthat the data to be charted be made available through a class implementing the
QAbst ract | t emvbdel interface. Before looking at some code, let us show you a few top-level
classes of the KD Chart 2 API:

» The"chart" is the central widget acting as a container for al the charting elements, including the
diagrams themselves, its classis called KDChart : : Chart .

A "chart" can hold several coordinate planes (Cartesian and polar coordinates are supported at the
moment) each of which can hold several diagrams.

» The "coordinate plane” (often called the "plane”) represents the entity that is responsible for
mapping the values to positions on the widget. The planeis also showing the (sub-)grid lines. There
can be several planes per chart.

» The"diagram" isthe actual plot (bars, lines and other chart types) representing the data. There can
be several diagrams per coordinate plane.

The Procedure

L et us go through the general procedure for creating a chart, without drilling down into the details too
much at this point. We will then build a complete example and create a small application displaying
achart using KDChart : : W dget and KDChart: : Chart respectively.

First of al, we need to include the appropriate headers, and bring in the KDChar t namespace:

#i ncl ude <KDChart Chart >
#i ncl ude <KDChart Li neDi agr an
usi ng nanespace KDChart;

/1 Add the widget to your layout |ike any other QW dget:
HBoxLayout * chartLayout = new (HBoxLayout (chartFrame);
m chart = new Chart ();

chart Layout - >addW dget (mchart);

Chapter 3

In this example, we will create a single line diagram, and use the default Cartesian coordinate plane,
which is already contained in an empty Chart object.

/1 Create a line diagram and associate the data nodel to it
m | i nes = new LineDi agram();
m | i nes- >set Model (&m nodel);

/1 Replace the default diagram of the default coordinate
/1 plane with your newly created one.

/1 Note that the plane takes ownership of the diagram
/1 so you are not allowed to delete it.

m chart - >coor di nat ePl ane() - >repl aceDi agran{ mlines);

Adding elements such as axes or legends is straightforward as well:

CartesianAxis *yAxis = new CartesianAxis (mlines);
yAXi s->set Position (KDChart::CartesianAxis::Left);

/1 the diagramtakes ownership of the Axis
m | i nes- >addAxi s(yAxis);

| egend = new Legend(mlines, mchart);
m chart - >addLegend(| egend);

Y ou can adjust and fine-tune various aspects of the diagrams, planes, legends, etc...

Much like Qt itself, KD Chart uses aval ue-based approach to these attributes. In the case of diagrams,
most aspects can be adjusted at different levels of granularity. The QPen that is used for drawing
datasets (lines, bars, etc...) can be set either for one data point within a dataset, for a dataset or for the
whole diagram. Seethe APl Reference for KDChart : : Abstract Di agr am

voi d set Pen(const Qvbdel | ndex& i ndex, const QPen& pen);
void setPen(int dataset, const Qen& pen);
voi d set Pen(const QPen& pen);

To use adark gray color for al linesin your example chart, you would write:

QPen pen;

pen.setColor(Q::darkGay);
pen.setWdth(1);

m | i nes->set Pen(pen);

Attributes that form logical groupings are combined into collection classes, such as
GridAttributes,DataVal ueAttri butes, Text Attri butes,etc....

This makes it possible to keep sets of such properties around and swap them in one step, based on
program state. However, you might often want to adjust just one or afew of the default settings, rather
than specifying a complete new set. Thus in most cases, using the copy constructor of the settings
class might be appropriate, so in order to use a special font for drawing a legend, for example, you
would just write:

10

Chapter 3

TextAttributes ta(|egend->textAttributes());
ta.set Font (nyfont);
| egend- >set Text Attributes(ta);

Wewill continue with more examples and more detailed information about all those pointsin the next
sections and chapters. Also, we recommend you check out and run the exampl es shipped together with
your KD Chart package.

Two Ways To Your Chart

We will now go through the basic steps of creating a simple chart widget, first using
KDChart: : W dget and then KDChart : : Chart . This will give us an overview about how to
proceed in both cases.

Widget Example

We recommend you read, compile and run the following example. It is available at the following
location of your KD Chart installation: exanpl es/ W dget / Si npl e/ .

1
2
3

The result of the code above will display the simple widget presented in the screenshot below.
Asyou can see, the code is straightforward:

* Include the headers and bring in the Chart namespace.

» Declareyour KDChart : : W dget

e UseaQVect or to store the data to be displayed.

» Assign the stored data to the widget, using one of the available set Dat aset () methods.
Figure 3.1. A Simple Widget

= z 'z‘llrtrl-i'f:‘l mpIE y _I & XI

Of course, it is possible to add new elements like Title, Headers, Footers, Legends, or Axes to this
simple widget as we will seelater in greater detail. Notice also that the default diagram displayed by
KDChart:: Wdget isaKDChart : : Li neDi agr am In the following example, we will look at
how to display a Chart widget using KDChart: : Chart.

11

Chapter 3

Chart Example

The following example is available at the following location of your KD Chart installation: /
exanpl es/ Bar s/ Si npl e/

1
2
3

In this example, we are making use of QSt andar dl t emivbdel in order to insert and store the data

to be displayed by the diagram. We are aso implicitly using aKDChar t : : Bar Di agr amto which
we assign the model. See below for the resulting chart widget created by this example.

Figure 3.2. A Simple Chart
PENCES, ST TR

. =s

We can of course add more elementsto this chart and change its default attributes as described above.

We will see in more detail how to configure those attributes (Pen, Color, etc ...) and add the various
elements (Axes, Legend, Headers etc...) later.

What's Next

In the next chapter, we will describe the different available chart types (diagrams) and their coordinate
planes. For each chart type, we will look at the attributes available for this particular type, and give
you afew examples.

12

Chapter 4. Planes and Diagrams

KD Chart provides two types of planesin order to display the different types of diagramsit supports.

» A Cartesian coordinate plane, determined by ahorizontal and avertical axis, often called the x axis
andy axis.

» A Polar coordinate plane which makes use of the radius and the polar angle which defines the
position of apoint on aplane.

This chapter tells you how to change the chart type from the default to any one of the other types. All
of the chart types provided by KD Chart are presented here with the help of some sample code and/
or small programs and their screenshots.

It will also give us an idea about which chart type could be appropriate for a specific purpose, and
providesinformation about the features that are available for each type of chart. Let usfirst go through
some important concept concerning the planes and their relation to the diagrams and the chart view
itself.

Each coordinate plane can have one or more diagram associated to it. Those diagrams will share the
scale provided by the plane. A chart can also have more than one coordinate plane. This makes it
possibleto have multiple diagrams using different scales and displayed next to, or on top of each other
in the same chart.

Note

There are two ways in which planes can be caused to interact in where they are positionned
layouting wise: Thefirst is the reference plane.

By calling the set Ref er enceCoor di nat ePl ane() method explained in the API
documentation of KDChar t : : Abst r act Coor di nat ePl ane you declaretherespective
plane to be layouted in the same cell asthe planeit is referenced too ("overlaying").

Also when planes share an axis they will be layed out in relation to each other as suggested
by the position of the axis. If, for example Planel and Plane2 share an axis at position Left,
that will result in the layout: Axis Planel Plane 2, vertically. If Planel aso happens to be
Plane2's reference plane, both planes are drawn over each other.

The reference plane concept allows two planesto share the same space even if none has axis,
and in case there are shared axis, it is used to decide whether the planes should be painted on
top of each other or layed out vertically or horizontally next to each other.

The above concept is illustrated in exanpl es/ Shar edAbsci ssa/
Over | ayedDi agr ans/ and study those examples. exanpl es/ Shar edAbsci ssa/
Separ at eDi agr ans/ , we recommend you

Cartesian Coordinate Planes

KD Chat uses the Cartesan coordinate system, and in particular its
KDChart: : Cart esi anCoor di nat ePl ane class for displaying chart types such as lines, bars,
points, etc.

In this section, wewill describe and present all of the chart types using the default Cartesian coordinate
plane.

In general, in order to implement a particular type of chart, just create an object of thistype by calling
KDChart: : [type] Di agram or if your are using KDChart : : W dget , call its set Type()
method and specify the appropriate chart type (e.g. Widget::Bar, Widget::Line, etc.)

13

Chapter 4

Bar Charts
Tip
Bar charts are the most common type of charts and can be used for visualizing amost any
kind of data. Like the Line Charts, the bar charts can be the ideal choice to compare multiple

series of data

A good example for using a bar chart would be a comparison of the sales figuresin different
departments.

Y our Bar Chart can be configured with the following (sub-)types as described in detail inthefollowing
sections:

e Norma
e Stacked

e Percent
Normal Bar Charts
Tip

In anorma bar chart, each individual value is displayed as a bar by itself. This flexibility
alows you to compare both the values in one series, and values of different series.

Figure4.1. A Normal Bar Chart

By default, a normal bar chart is displayed. You can switch to other bar chart types using
set Type(Stacked).

Stacked Bar Charts
Tip

Stacked bar charts focus on comparing the sums of the individual valuesin each data series,
but also show how much each individual value contributesto its sum.

14

Chapter 4

Figure4.2. A Stacked Bar Chart

For stacked bar chart mode call KDChart : : Bar Di agram : set Type(Stacked).

Percent Bar Charts

Unlike Stacked charts Percent bar charts are not suitable for comparing the sums of the data series,
but they rather focus on the respective contributions of their individual values.

Figure4.3. A Percent Bar Chart

Percent: Percentage mode for bar charts is activated by calling the KDChart : : Bar Di agr am
functionset Type(Percent).

Note

Three-dimensional ook of the bars does not require a separate diagram type; you can enable
it for all types(Nor mal , St acked, and Per cent) by setting its ThreeD attributes; we will
describe this in codexample further on.

Code Sample

For now, let us look at the following code sample based on the Si npl e W dget example you
have already seen. In this example, we show you how to configure your bar diagram and change its
attributes when working withaKDChar t : : W dget .

First, include the appropriate headers and bring in the KDChar t namespace:

15

Chapter 4

#i ncl ude <QApplication>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Bar Di agr an®
#i ncl ude <QPen>

usi ng nanespace KDChart;

We need to include KDChar t Bar Di agr amin order to be able to configure some of its attributes
aswe will seelater.

int main(int argc, char** argv) {

QApplication app(argc, argv);

W dget wi dget;

/1 our widget can be configured

/1 as any @ Wdget

wi dget . resi ze(600, 600);

/1l store the data and assign it

QVvector< double > vecO, vecl;

vec) <« 5 <« 4 <« 3 < 2 <1<« 0
<<1<<2<<3<<4<<5;

vecl << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

wi dget . set Dat aset(0, vecO, "vecOQ0");

wi dget . set Dataset(1, vecl, "vecl");

Wewant to change the default line chart type to abar chart type. In this case, we also want to display it
in stacked mode. KDChar t : : W dget withitsset Type() and set SubType() methods alow
usto achievethat in avery simple way.

wi dget . set Type(Wdget::Bar , Wdget:: Stacked);

The default type being Normal type for the widget, we need to implicitely pass the second parameter
when calingKDChar t : : W dget : : set Type() We can aso change the sub type of our bar chart
later, e.g. by calling set SubType(W dget:: Percent).

/1 Configure a pen and draw a |ine

/ /' surroundi ng the bars

QPen pen;

pen.setWdth(2);

pen.setColor(Q::darkGay);

/1 call your diagram and set the new pen
wi dget . bar Di agran{() - >set Pen(pen);

In the above code, our intention is to draw a gray line around the bars to make them look nicer. This
is referred to as configuring the attributes in a diagram. To do so, we configure a QPen and then
assign it to our diagram. KDChar t : : W dget : : bar Di agr anm() will get a pointer to our widget
diagram. As you can seg, it is very easy to assign a new pen to our diagram by calling the diagram
KDChart: : Abstract Di agram : set Pen() method.

/1 Set up your ThreeDAttributes

16

Chapter 4

/1display in ThreeD node
ThreeDBar Attri butes td(
wi dget . bar Di agran{)->t hreeDBar Attri butes());
td.setDepth(15);
td. setEnabl ed(true);
wi dget . bar Di agran() - >set ThreeDBar Attri butes(td);

We want our bar chart to be displayed in 3D mode and need to configure some ThreeDBarAttributes
and assign them to our diagram. Here we are configuring the depth of the 3D bars and
enable 3D mode. Depth is an attribute only avalable to bar charts, and its setter and
getter methods are implemented in the KDChart:: ThreeDBar Attri but es, whereas the
KDChart: : Abstract ThreeDAttri but es: : set Enabl ed() isageneric attribute available
to al chart types. Both of those attributes are made available at different levels in order to provide
a better attribute structure.

wi dget . show() ;

return app. exec();

—

See the screenshot below to view the resulting chart displayed by the code shown above.

Figure4.4. A Simple Bar Chart Widget

=l L OWidgetFarameters __.g.x.

| Py |

This example can be compiled and run from the following location of your KD Chart installation
exanpl es/ W dget / Par anet er s/

Note

Configuring the attributes for a KDChart:: Bar Di agram making use of a
KDChart: : Chart isdoneinthe sameway asfor aKDChart : : W dget . You just need
to assign the configured attributes to your bar diagram and assign it to the chart by calling
KDChart:: Chart::replaceD agram().

Bars Attributes

By "Bars Attributes' we are talking about all parameters that can be configured and set by the user
and which are specifics to the Bar Chart type. The "getters’ and "setters’ for those attributes can be

17

Chapter 4

consulted by looking at the KDChartBarAttributes APl Reference to get an idea about what can be
configured there.

Note

KD Chart 2 API separatesthe attributes specific to achart typeitself and the generic attributes
which are common to all chart types, for example: the setters and getters for abrush or apen
and that are accessible from the KDChart : : Abst r act Di agr aminterface.

All those attributes have a reasonnable default value that can simply be modified by
the user by caling one of the diagram set function implemented for this purpose
KDChart: : Bar Di agram : set Bar Attri but es() or for example (to change the default Pen
directly) by calling the KDChar t : : Abst ract Di agr am : set Pen() method.

The procedure is straight forward for both cases. Let us discuss the type specifics attributes first:

* Create a KDChart::BarAttributes object by calling
KDChart:: BarDi agram : barAttributes().

» Configure this object using the setters available.

e Assign it to your Diagram with the help of one of the setters avalable in
KDChart : : Bar Di agr am All the attributes can be configured to be applied for the whole
diagram, for a column, or at a specified index (Qvbdel | ndex).

KD Chart 2 supportsthe following attributes for the Bar chart type. Each of those attributes can be set
and retrieved in the way we describe in our example below:

» BarWidth: Specifies the width of the bars
» GroupGapFactor: Configure the gap between groups of bars.
» BarGapFactor: Configure the gap between Bars within a group

» DrawSolidExcessArrow: Specify whether the arrows showing excess values should be drawn
solidly or split.

Bar Attributes Sample

L et us make thismore clear by looking at the following sample code that describes the above process.
We recommend you compile and run the following example which is located in the exanpl es/
Bar s/ Par anet er s/ directory of your KD Chart installation.

First of all we areincluding the header files and we need and bring KD Chart namespace.
#i ncl ude <Q Qui >
#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Bar Di agr ane
#i ncl ude <KDChart Dat aVal ueAttri but es>

usi ng nanespace KDChart ;
We haveincluded KDChar t Dat aVal ueAtt ri but es to be ableto display our datavalues. Those
attributes are of course used by all types of charts and are not specific to the Bar diagrams.

In this example we areusing aKDChart : : Chart classaswell asaQSt andar dl t emvbdel in
order to store the data which will be assigned to our diagram

18

Chapter 4

class ChartWdget : public QAN dget {
Q _OBJECT
public:
explicit ChartWdget (QWN dget* parent=0)
QW dget (par ent)
{
m nodel . i nsert Rows(0, 2, Qwbdel I ndex());
m nodel . i nsert Colums(0, 3, QwbdelIndex());
for (int row = 0; row < 3; ++row) ({
for (int colum = 0; colum < 3; ++colum) {

Qvbdel | ndex i ndex = m nodel . i ndex(row, col utm, Qvbdel | ndex());

m nodel . set Dat a(i ndex, Qvariant(row+l * colum));

}

Bar Di agr ant di agram = new KDChart: : Bar Di agr am
di agr am >set Model (&m nodel) ;

After having stored our datainto the model, we create a diagram, in this case, we want to display a
KDChar t : : Bar Di agr amand assing the model to our diagram. The procedure is of course similar
for al types of diagrams.

We are no ready to configure our bar specifics attributes using aKDChart : : Bar Attri but es to
do so.

Bar Attri butes ba(diagram >barAttributes());
//set the bar width and

[linplicitely enable it

ba. set Fi xedBar W dt h(500);

ba. set UseFi xedBar Wdt h(true);

/1 configure gab between val ues

/1and bl ocks

ba. set G- oupGapFactor(0.50);

ba. set Bar GapFactor(0.125);

/lassign to the diagram
di agram >setBar Attri butes(ba);

We want to configure our bars width so that they get displayed a bit larger. The Width of a bar is
calculated automatically depending on the gaps between each bar and the gaps between groups of bars
aswell asthe space available horizontally in the plane. So those values interact with each other so that
your bars does not exceed the plane surface horizontally. Here we are increasing the value of my bars
width and at the same time set some lower values for the gaps. Which will give us larger bars

Note

After having configured our attributeswe need to assigntheBar At t r i but es object to the
diagram. This can be done for the whole diagram, at a specific index or for a column. See
the KDChart::BarDiagram APl Reference and look at the methods available there to find out
those setters and getters.

We will now display the data values related to each bar making use of KD Chart 2 API
KDChart : : Dat aVal ueAt tri but es. Those attributes are not specific to the Bar Chart types but
can be used by any type of charts. The procedure isvery similar.

19

Chapter 4

/1 display the val ues

Dat aVal ueAttri butes dva(di agram >dataVal ueAttributes());
TextAttributes ta = dva.textAttributes();
//rotate if you wi sh

//ta.setRotation(0);

ta.setFont(Qont("Comic", 9));

ta .setPen(QPen(Qolor(Q::darkGeen)));
ta.setVisible(true);

dva. set Text Attributes(ta);

dva. setVisible(true);

di agr am >set Dat aVal ueAttri butes(dva);

We could have displayed the data values without caring about settings its
KDChart:: Text Attri but es, but we wanted to do so in order to demonstrate this feature too.
Notice that you have to implicitely enable your attributes (DataValue and Text) by calling their
set Vi si bl e() methods. After itisconfigured aswewant it, wejust haveto assignit to the diagram
aswith al other attributes.

Finally | want to paint a line around one of the datasets bars in order to bring the attention of the
viewer to this specific set of data. To do so | need to change the default pen used by my barsfor this
data set exclusively. Of course we could also have changed the pen for all datasets or for a specific
index or value.

//draw a surrounding |ine around bars
QPen |inePen;

linePen.setColor(Q::mgenta);

i nePen.setWdth(4);

i nePen.setStyle(Q::DotLine);
//draw only around a dat aset

//to draw around all the bars

/1 call setPen(nmyPen);

di agram >set Pen(1, linePen);

Note

The Pen and the Brush setters and getters are implemented at a lower level in our
KDChart: : Abstract Di agr amclass for a cleaner code structure. Those methods are
of course used by all types of diagram and their configuration is very simple and straight
forward as you can see in the above sample code. Create a Pen, configureit, call one of the
setters methods available (Seethe KDChar t : : Abst ract Di agr amAPI Reference about
those methods).

Our attribute having been configured and assigned we just need to assign the Bar diagram to our chart
and conclude the implementation.

m chart . coor di nat ePl ane() - >r epl aceDi agr am(di agr am ;

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

}

private:

20

Chapter 4

Chart mchart;
@St andar dl t emvbdel m _nodel ;

int main(int argc, char** argv) {
QApplication app(argc, argv);

Chart W dget w;
w. show() ;

return app. exec();

}

#i ncl ude " mai n. noc"

The above procedure can be applied to any of the supported attributes relative to the chart types. The
resulting display of the code we have gone through can be seen in the following screen-shot. We also
recommend you compile and run the example related to this section and located in the exanpl es/
Bar s/ Par anet er s/ directory of your KD Chart installation.

Figure 4.5. Bar with Configured Attributes

=

g

S —

The subtype of abar chart (Normal, Stacked or Percent) is not set viaits attribute class, but directly
by using the diagram KDChar t : : Bar Di agr am : set Type() method.

Note

ThreeDAttributesfor the different chart typesareimplemented asits own class, the sameway
asfor the other attributes. We will talk more in details about KD Chart 2 ThreeD featuresin
the section called “ ThreeD Attributes” of Chapter 8, Customizing your Chart.

Tips and Tricks

In this section we want to give you some examples about how to use some of the interesting features
offered by the KD Chart 2 API. Wewill study the code and display a screen-shot showing the resulting
widget.

A complete Bar Example

In the following implementation we want to be able to:

21

Chapter 4

» Digplay the data values.

» Change the bar chart subtype (Normal, percent, Stacked).

» Switch between the default (vertical) and the horizontal bar drawing mode.
» Select acolumn and mark it by changing the generic pen attributes.
 Display in ThreeD mode and change the Bars depth dynamically.

» Change the Bars width dynamically.

To do so we will need to use several types of attributes. Generics one available to al chart types
(e.g KDChart:: Abstract Di agram : set Pen(), KDChart:: Dat aVal ueAttri butes
andKDChart: : Text Attri but es aswell astypical bar attributes only applyableto the Bar types
asKDChart::BarAttributes::setWdth() orKDChart:: ThreeDBarAttri butes

We are making use of a KDChart:: Chart class and aso of a home made Tabl eModel for
convenience which is derived from QAbst r act Tabl eMbdel .

TableModel uses asimple rectangular vector of vectors to represent a data table that can be displayed
inregular Qt views. Additionally, it provides amethod to load CSV files exported by OpenOffice Calc
in the default configuration. This allows to prepare test data using spreadsheet software.

It expectsthe CSV filesin the subfolder ./modeldata. If the application is started from another location,
it will ask for the location of the model datafiles.

We recommend you consult the "TableModel" interface and implementation files which are located
inthe exanpl es/ t ool s/ directory of your KD Chart installation.

L et us cnow oncentrate on our Bar chart implementation and consult the following files: other needed
files like the ui, pro , grc ,CSV and main.cpp files can be consulted from the exanpl es/ Bar s/
Advanced/ directory of your installation.

1
2
3

In the above code we bring up the KDChar t namespace as usual and declare our slots. The purpose
is to let the user configure its bar chart attributes manually . As you can see we are using a
KDChart:: Chart object (m chart),aKDChart : : Bar Di agr amobject (m bar s), and our
home made Tabl eMbdel (m nodel).

Theimplementation is also straight forward as we will see below:

1
2
3

First of al we are adding our chart to the layout just like any other Qt widget. Then we load the data
to be display into our model, and assign the model to our bar diagram. We also want to configure a
Pen and surround the displayed bars by a darkGray line to make it somewhat nicer. Finally we assign
the diagram to our chart.

//draw a surrounding |ine around bars

HBoxLayout * chartLayout = new @BoxLayout (chartFrame);
m chart = new Chart ();

chart Layout - >addW dget (m chart);

22

Chapter 4

m nodel . | oadFronCSV(":/data");

/1 Set up the diagram
m bars = new Bar Di agram);
m bar s- >set Mbdel (&m nodel);

QPen pen;

pen.setColor(Q::darkGay);
pen.setWdth(1);

m bar s- >set Pen(pen);

m chart - >coor di nat ePl ane() - >repl aceDi agran{ m bars);

Theuser should be able to change the default sub-type viaacombo box from the GUI. Thiscan be done
by using KDChart : : Bar Di agr am : set Type() asshown below and by updating the view.

if (text == "Normal")
m bar s- >set Type(Bar Di agram : Normal);
else if (text == "Stacked")

m bar s- >set Type(Bar Di agram : St acked);

m chart - >updat e() ;

We set the DataValueAttributes on a per-column basis here, because we want the text to be printed
in different colors - according to its respective dataset's color. The user will be able to display or hide
the values.

const QFont font(QFont("Comic", 10));
const int col Count = m bars->npdel ()->col umCount ();
for (int iColum = 0; iColumm<col Count; ++i Colum) {
@rush brush(mbars->brush(i Colum));
Dat aVal ueAttri butes a(m bars->dataVal ueAttributes(i Colum));
TextAttributes ta(a.textAttributes());
ta.setRotation(0);
ta.setFont(font);
ta .setPen(Qen(brush.color()));
if (checked)
ta.setVisible(true);
el se
ta.setVisible(false);

a.setTextAttributes(ta);
a.setVisible(true);
m bar s- >set Dat aVal ueAttri butes(i Colum, a);

}

m chart - >updat e() ;

Asyou can seein the above code we are changing the default valuesfor Dat aVal uesAt tri but es
Text Attri but es. Also we alow the user to display or not display the text dynamicaly. see
KDChart:: Text Attributes::setVisible().

23

Chapter 4

To display our diagram in threeD mode we configure its global
KDChart:: ThreeDBar Attri but es. Here we are enabling or disabling the 3D look, and we
adjust the depth of the bars according to user settings.

ThreeDBar Attri butes td(mbars->threeDBarAttributes());
doubl e defaultDepth = td. depth();
if (checked) {
td. set Enabl ed(true);
if (threeDDept hCB->i sChecked())
td. set Dept h(dept hSB->val ue());
el se
td. set Dept h(defaul t Depth);
} else {
td. set Enabl ed(fal se);
}

m bar s- >set ThreeDBar Attributes(td);
m chart - >updat e() ;

ThreeDBarAttributes are as simple to use as all other Attributes types. Our next lines of code will
make use of the generic KDChart : : Abstract Di agram : set Pen() available to all diagram
types, to allow the user to mark a column or reset it to the original Pen interactively.

const int colum = markCol umsSB- >val ue();
QPen pen(m_bars->pen(colum));
if (checked) {
pen.setColor(Q::yellow);
pen. setStyle(Q::DashLine);
pen. setWdth(3);
m bar s- >set Pen(col um, pen);
} else {
pen.setColor(Q::darkGay);
pen.setStyle(Q::SolidLine);
pen.setWdth(1);
m bar s- >set Pen(col um, pen);

}

m chart - >updat e() ;

Note

It isimportant to know that have three levels of precedence when setting the attributes:

+ Global: Weak

* Per column: Medium

* Per cell: Strong

Which means that once you have set the attributes for a column or a cell, you will not be

able to change those settings by calling the "global" method to reset it to another value, but
instead call the per column or per index setter. As demonstrated in the above code.

24

Chapter 4

Finally we configureatypical KDChart: : Bar At t ri but es, the Bar Width, for the user to be able
to change the width of the bars dynamically increasing or decreasing its value viathe Gui.

if (widthCB->i sChecked()) {
Bar Attri butes ba(mbars->barAttributes());
ba. set Fi xedBar W dt h(val ue);
ba. set UseFi xedBar Wdt h(true);
m bars->setBarAttri butes(ba);

}

m chart - >updat e() ;

Here we are making use of the KDChart: : Bar Attri but es: : set UseFi xedBar W dt h()
method to enable or disable the effect. The Bar Width value being passed by the value of a Spin Box.

See how this widget having some attributes enabled is displayed in the following screen-shot.

Figure4.6. A Full featured Bar Chart

-, U Barchart _halix

[] Display Data Values

Bar Chart Type:
Stacked |-

Bar Orientation:

ﬁ]
Pen Settings
Brarccoum T =2
Paint ThreeD Bars ﬁ
| ThreeD
=]
— T
Configure Width
[=]
DEarSW‘dth _n m

[Data / plane space relation fixed

Thisexampleisavailable to compile and run fromtheexanpl es/ Bar s/ Advanced/ directory in
your KD Chart installation.

Line Charts

Line charts usually show numerical values and their devel opment over time. Like the Bar Charts they
can be used to compare multiple series of data.

An example might be the devel opment of stock values over alonger period of time or the water level
rise on several gauges.

Aswith Bar types, KD Chart can generate line charts of different types. KDChart : : Li neDi agr am
supports the following subtypes explained below:

e Normal Line Chart
» Stacked Line Chart

* Percent Line chart
Normal Line Charts
Tip

Normal line charts are the most common type of line charts and are used when the datasets are
compared to each other individualy. For example, if you want to visualize the devel opment

25

Chapter 4

of sales figures over time for each department separately, you might have one line per
department.

Figure4.7. A Normal Line Chart

KD Chart draws normal line charts by default when in line chart mode so no method needsto be called
to get one, however after having used your KDChar t : : Li neDi agr amto display another line chart
subtype you can reset it by calling set Type(Normal).

Stacked Line Charts
Tip
Stacked line charts allow you to compare the development of a series of values summarized
over al datasets. You could use this if you are only interested in the development of total

sales figures in your company, but have the data split up by department.

Figure4.8. A Stacked Line Chart

Stacked mode for line charts is activated by calling the KDChart : : Li neDi agr am method
set Type(Stacked).

Percent Line Charts
Tip

Percent line charts show how much each value contributesto the total sum, similar to percent
bar charts.

26

Chapter 4

Figure4.9. A Percent Line Chart

0.7

Percent: Percentage mode for line charts is activated by calling the KDChart : : Li neDi agr am
functionset Type(Percent).

Note

Three-dimensional look of the lines can be enabled for all types (Nor mal , St acked or
Per cent) by setting its ThreeD attributes class (see the KDChart:: ThreeDLineAttributes
API Referencefor details). Wewill describeit morein detailsinthe"Line Attributes® section
further on.

Code Sample

For now let us make the above description more concrete by looking at the following code sample
based on the Si npl e W dget example we have been demonstrating above, see Chapter 3, Basic
steps. Create a Chart - the section called “Widget Example”. In this example we demonstrate how to
configure your line diagram and change its attributes when working with aKDChar t ; : W dget .

First include the appropriate headers and bring in the KDChar t namespace:

#i ncl ude <QApplication>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Li neDi agr an
#i ncl ude <QPen>

usi ng nanespace KDChart ;

We need to include KDChar t Li neDi agr amin order to be able to configure some of its attributes
aswe will see further on.

int main(int argc, char** argv) {
QApplication app(argc, argv);
W dget wi dget;
/1 our Wdget can be configured
/1l as any Q@ Wdget
wi dget . resize(600, 600);
/] store the data and assign it
QVector< double > vecO, vecl;
vecO << 5 << 1 << 3 << 4 << 1,
vecl << 3 << 6 << 2 << 4 << §;

27

Chapter 4

vec2 << 0 << 7 << 1 << 2 << 1;

wi dget . set Dataset (0, vecO, "vec0");
wi dget . set Dataset (1, vecl, "vecl");
wi dget . set Dataset (2, vec2, "vec2");
wi dget . set SubType(Wdget:: Percent);

We dont need to change the default chart type as Line Chartsis the default . In this case we al so want
to display it in percent mode using the KDChart : : W dget withitsset SubType() method.

wi dget . set SubType(W dget:: Percent);

The default sub-type being Normal for al types of charts we need to call implicitely
KDChart:: W dget: : set SubType() inthiscase. We can also change the sub-type of our line
chart further on by calling set SubType(W dget:: Stacked) or reset its default value by
calingset SubType(Wdget:: Nornmal).

/1 Configure a pen and draw

/la dashed line for colum 1

QPen pen;

pen.setWdth(3);

pen.setStyle(Q::DashDotLine);
pen.setColor(Q::green);

/1 call your diagram and set the new pen
wi dget . lineDi agram()->setPen(1, pen);

In the above code our intention is to draw a new style of line for this specific dataset in order
to draw attention to it. To do so we configure a QPen and then assign it to our diagram.
KDChart:: Wdget::lineD agran() alow usto get a pointer to our widget diagram. As
you can see it is very simple to assign a new pen to our diagram by caling the diagram
KDChart: : Abstract Di agram : set Pen() method.

/1 Display in Area node

LineAttributes |d(w dget.linebDiagran()->lineAttributes());
| d. set Di spl ayArea(true);

[/ configure transparency

/lit is nicer and |let us

[lall the area

| d. set Transparency(25);

wi dget . lineDi agram()->setLineAttributes(Id);

The code above makes use of typical KDChart : : Li neAtt ri but es and let usdiplay the areas as
well as set up the color transparency which isvery helpfull when displaying anormal chart typewhere
the areas can hide each other. Finally we conclude our small example:

wi dget . show() ;

return app.exec();

See the screen-shot below to view The resulting chart displayed by the above code.

28

Chapter 4

Figure4.10. A Simple Line Chart Widget
[0 ! :‘mrmlalinq‘:‘;‘lrtrla'r — =l X

This example can be compiled and run from the following location of your KD Chart installation
exanpl es/ Li nes/ Si npl eLi neW dget /

Note

Configuring the attributes for a KDChart:: Li neDi agram making use of a
KDChart : : Chart isdonethe sameway asforaKDChart: : W dget . Youjust need to
assign the configured attributes to your line diagram and assign the diagram to the chart by
calingKDChart: : Chart::repl acebi agranm().

Lines Attributes

There are only a few attributes specific to a line chart as it is using a Pen to draw the lines.
Pen and Brush are generic attributes common to al types of diagrams and are handled by
KDChart: : Abstract Di agr amfromwhich KDChart: : Li neDi agr amisderived indirectly.

However to make it simple for the user we have added some convenient functions to
KDChart: : Li neAttri butes in order to be able to display Areas and set transparency for all
subtypes of a line chart. We will go through those methods further on in the section called “Area
Charts’ in this Chapter.

KDChart: : Li neDi agr amcombined with its attributes and methods or combined together with
KDChart: : Marker Attri but es let usdisplay the line chart subtypes as described above aswell
as Area Charts and Point charts the easy way. We will of course present all those aternatives with
some sample code and ready to use examples in the next sections.

The use of LineAttributesis as simple as for the other chart types:

* Cregte a KDChart:: LineAttributes object by caling
KDChart:: Li neDi agram :|lineAttributes().

 Configure this object using the setters available.

* Assign it to your Diagram with the help of one of the setters avalable in
KDChart: : Li neDi agram All the attributes can be configured to be applied for the whole
diagram, for a column, or at a specified index (Qvbdel | ndex).

KD Chart 2 supports the following attributes for the Line chart type. Each of those attributes can be
set and retrieved the way we describe it in our example below:

* MissingValuesPolicy: Specifies how missing values will be shown in aline diagram.

29

Chapter 4

» Digplay area: paint the areafor a dataset.

» Areatransparency: set the transparency for the displayed area color.

Note

All other attributes as ThreeDLineAttributes (specific to line charts), or MarkerAttributes,
DataValueAttributes and TextAttributes ..etc.. available to all types of charts are of course
also available to the line charts types and sub-types.

Line Attributes Sample

Let us look at the following sample code that describes the above process. The following example
whichislocatedintheexanpl es/ Li nes/ Par anet er s/ directory of your KD Chart installation.

First of all we areincluding the header files and bring KD Chart hamespace.

#i ncl ude <Q Qui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Li neDi agr anp

#i ncl ude <KDChart Dat aVal ueAttri but es>

usi ng nanespace KDChart;

We haveincluded KDChar t Dat aVal ueAtt ri but es to beableto display our datavalues. Those
attributes are of course used by all types of charts and are not specific to the Line diagram.

In this example we are using aKDChart : : Chart classaswell asaQst andar dl t enivbdel in
order to store the data which will be assigned to our diagram.

class ChartWdget : public QAN dget {
Q OBJECT
public:
explicit ChartWdget (QW dget* parent=0)
QW dget (par ent)
{

m nodel . i nsert Rows(0,5, Qwdel I ndex());
m nodel . i nsert Col ums(0,5, QWodel I ndex());

for(int i =0; i <5 ++) {
for(int j =0; j <5 ++) {
m nodel . set Dat a(m nodel .index(i,j, Qvbdel I ndex()), (double)i?*
}
}

Li neDi agrant di agram = new Li neDi agram
di agr am >set Model (&m nodel) ;

After having stored our data in the model, we create a diagram. In this case, we want to display a
KDChart : : Li neDi agr am Asalways, we need to assign the model to our diagram. This procedure
isof course similar for all types of diagrams.

We are now ready to configure our attributes. We want to display the data values and configure their
text and font.

30

Chapter 4

/1 Display val ues

/1 1 - Call the relevant attributes

Dat aVal ueAttri butes dva(di agram >dataVal ueAttributes());
/1 2 - W want to configure the font and col ors
/1 for the data val ue texts.

Text Attributes ta(dva.textAttributes());
//rotate if you wi sh

//ta.setRotation(0);

/1 3 - Set up your text attributes

ta.setFont(Qont("Comic", 6));

ta .setPen(QPen(Qolor(Q::darkGeen)));
ta.setVisible(true);

/1 4 - Assign the text attributes to your

/1 Dat aVal uesAttri butes

dva. set Text Attributes(ta);

dva. setVisible(true);

/1 5 - Assign to the diagram

di agr am >set Dat aVal ueAttri butes(dva);

Asfor al attributes we call them by using the relevant method available from our diagram interface,
heredi agr am >dat aVal ueAt tri but es() . The second step isto set it up with our own values
and finally we assign it to our diagram.

We could have displayed the data values without caring about settings its
KDChart:: Text Attri but es, but we wanted to do so in order to demonstrate this feature too.
Notice that you have to implicitely enable your attributes (DataValue and Text) by calling their
set Vi si bl e() methods before we assign it to the diagram.

Note

After having configured our attributes we need to assign the attributes to the diagram. This
can be done for the whole diagram, at a specific index or for acolumn. Look at the attributes
interface and look at the methods available there to find out those setters and getters.

We want to configure the Pen in order to draw a section of a line (dataset) differently. e.g. We want
to focus the attention of the reader on this particular section.

/1 Draw a the section of a line differently.

/1 1 - Retrieve the pen for the dataset and change

/1 its style.

/1 This allow us to keep the Iine original color.

Qen linePen(diagram>pen(1));

i nePen.setWdth(3);

i nePen.setStyle(Q::DashLine);

/1l 2 - Change the Pen for a section within a line

while assigning it to the diagram

di agram >set Pen(m_nodel .index(1, 1, QWdellndex()), linePen);

Of course we could also have changed the pen for asingle or all datasets as well. See how we call the
pen for this very dataset before changing its style and width. This is done to keep its original color
for consistancy. Alos

Note

The Pen and the Brush setters and getters are implemented at a lower level in our
KDChart: : Abstract Di agr amclass for a cleaner code structure. Those methods are
of course used by all types of diagrams and their configuration is very simple and straight

31

Chapter 4

forward asyou can seein the above sample code. Create or get aPen, configureit, call one of
the setters methods available (See the KDChar t : : Abstract Di agr amAPI Reference).

Our attribute having been configured and assigned we just need to assign our line diagram to our chart
and conclude the implementation.

m chart. coor di nat ePl ane() - >r epl aceDi agr am(di agr am ;

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

}

private:
Chart mchart;
QSt andar dI t enivodel m nodel ;

int main(int argc, char** argv) {
QApplication app(argc, argv);

Chart W dget w;
w. show() ;

return app.exec();

}

#i ncl ude "mai n. noc"

The above procedure can be applied to any of the supported attributesfor all chart types. The resulting
display of the codewe have gonethrough can be seenin thefoll owing screen-shot. Weal so recommend
you compile and run the example related to this section and located in the exanpl es/ Li nes/
Par amet er s/ directory of your KD Chart installation.

Figure4.11. Line With Configured Attributes

O D) =)

The subtype of aline chart (Normal, Stacked or Percent) is not set viaits attribute class, but directly
by using the diagram KDChar t : : Li neDi agr am : set Type() method.

Note

ThreeDALttibutes for the different chart types are implemented in their own class, the same
way asfor the other attributes. We will talk morein detail about KD Chart 2 ThreeD features
in the section called “ThreeD Attributes” of Chapter 8, Customizing your Chart.

32

Chapter 4

Tips and Tricks

In this section we want to give you some examples of theinteresting features offered by the KD Chart 2
API. We will study the code and display a screen-shot showing the resulting widget.

A complete Line Example

In the following implementation we want to be able to:

» Display the data values.

 Change the line chart subtype (Normal, percent, Stacked).

» Display Areasfor one or several for one or several dataset(s).

e Run asmall animation highlighting the areas one after the other.

To do so we will need to use severa types of attributes and methods, as
KDChart: : Abstract Di agram : set Pen(), KDChart::DataVal ueAttributes and
KDChart:: Text Attri butes.

We are making use of a KDChart:: Chart class and also of a home made Tabl eModel for
convenience, it isderived from QAbst r act Tabl eModel .

TableModel uses asimple rectangular vector of vectors to represent adata table that can be displayed
inregular Qt views. Additionally, it providesamethod to load CSV files exported by OpenOffice Calc
in the default configuration. This allows for preparation of test data using spreadsheet software.

It expectsthe CSV filesin the subfolder ./modeldata. If the application is started from another location,
it will ask for the location of the model datafiles.

We recommend you consult the "TableModel" interface and implementation files which are located
inthe exanpl es/ t ool s/ directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following files: other
needed files like the ui, pro, grc ,CSV and main.cpp files can be consulted from the exanpl es/
Li nes/ Advanced/ directory of your installation.

1
2
3

In the above code we bring up the KDChar t namespace as usua and declare our slots. The purpose
is to let the user configure its line chart attributes manually . As you can see we are using a
KDChart: : Chart object (m chart),aKDChart : : Li neDi agramobject (m | i nes), and
our home made Tabl eMbdel (m_nodel).

Theimplementation is also straight forward as we will see below:

1
2
3

First of all we are adding our chart to the layout as with any other Qt widget. Load the data to be
display into our model, and assign the model to our line diagram. We also want to set up a QTi ner
to be able to run our animation. Finally we assign the diagram to our chart.

33

Chapter 4

HBoxLayout * chartLayout = new @BoxLayout (chartFrame);
m chart = new Chart ();
chart Layout - >addW dget (m chart);

m nodel . | oadFronCSV(":/data");

/1 Set up the diagram

m |ines = new Li neDi agram();

m | i nes- >set Model (&m nodel);

m chart - >coor di nat ePl ane() - >repl aceDi agran{ mlines);

/] Instantiate the tinmer

Qrinmer *tiner = new QTiner(this);

connect (timer, SIGNAL(tinmeout()), this, SLOI(slot_timerFired()));
timer->start (40);

Theuser should be able to change the default sub-type viaacombo box from the GUI. Thiscan be done
by using KDChart : : Bar Di agr am : set Type() asshown below and by updating the view.

if (text == "Normal")

m | i nes->set Type(Li neDi agram : Normal);
else if (text == "Stacked")

m | i nes->set Type(Li neDi agram : Stacked);
else if (text == "Percent")

m | i nes->set Type(Li neDi agram : Percent);

m chart - >updat e() ;

We want the user to be able to display or hide the data values from the GUI, and also change the
default font for our data value texts to make it nicer.

const int col Count = mlines->nodel ()->col umCount (m.|ines->rootlndex());
for (int iColum = 0; iColumm<col Count; ++i Colum) {

Dat aVal ueAttri butes a(mlines->dataVval ueAttributes(i Colum));

@rush brush(mlines->brush(i Colum));

TextAttributes ta(a.textAttributes());

ta.setRotation(0);

ta.setFont(Qront("Comc", 10));

ta.set Pen(QPen(brush.color()));

if (checked)

ta.setVisible(true);

el se

ta.setVisible(false);

a.setVisible(true);

a.setTextAttributes(ta);

m | i nes- >set Dat aVal ueAttri butes(i Colum, a);

}

m chart - >updat e() ;

In the code above, we make sure our data value texts will be painted using the dataset default color by
retrieving the brush for each dataset and assigning the color of the brush to the pen.

34

Chapter 4

Note

It isimportant to know that there are three levels of precedence when setting the attributes:
 Global: Weak

* Per column: Medium

 Per cell: Strong

Which means that once you have set the attributes for a column or a cell, you will not be
able to change those settings by calling the "global" method to reset it to another value, but
instead call the per column or per index setter. As demonstrated in the above code.

The user should be able to display the area for one or several dataset.

LineAttributes la = mlines->ineAttributes(colum);
if (checked) {
| a. set Di spl ayArea(true);
| a. set Transparency(opacity);
} else {
| a. set Di spl ayArea(false);
}

m | i nes->setLineAttributes(colum, la);

m chart - >updat e() ;

Thisis implemented by configuring our line attributes and assign them by dataset to the diagram, as
shown above.

The same procedure is used for usto be able to run our animation. Y ou can of course learn more about
this part of the code which is more related to Qt programming by consulting exanpl es/ Li nes/
Advanced/ mai nwi ndow. cpp.

This exampleis available to compile and run from the exanpl es/ Li nes/ Advanced/ directory
inyour KD Chart installation. The widget displayed by the above code is shown in the figure below.

Figure4.12. A Full featured Line Chart

N QIR Hr) =lallx

[Display Data Values

Line Chart Type:

Show Areas
% Highlight Area (2 |Z]

Animate

[Highlight

The following sections about Point charts and Area are tightly related to line charts. Point charts are
line diagrams with Markers (lines themselves are not painted). Area charts are aso line charts with
the area below the lines, filled by the respective dataset's color.

35

Chapter 4

Point Charts

Point charts often are used to visualize a large amount of data in one or several datasets. A well
known point chart example isthe historical first Herzsprung-Russel diagram from 1914 where circles
represented stars with directly measured parallaxes and crosses were used for guessed values of stars
from star clusters similar to the following simple chart.

Figure4.13. A Point Chart

1]
L]
o
[]
0
[} |
|] n} L |
L L | L |
Note

Unlike the other chart typesin KD Chart the point chart is not atype of its own but actually
aspecia kind of Line Chart. The resulting display is obtained by painting markersinstead of
lines as we will seein the following code sample.

The process for creating a point chart is very simple as described below:
» Set up aline diagram and configure its pen to Qt::NoPen.

» Display its data values marker attributes.

Point Sample Code

Thefollowing code sampleis going through the process described above to obtain avery simple point
chart. It is based on the exanpl es/ W dget / Si npl e/ which code has been slightly modified to
display a Point diagram.

/!l Hide the lines

wi dget . lineDi agram()->setPen(Q::NoPen);

/1 Set up the Attributes

Dat aVal ueAttri butes dva(widget.!|ineDi agran()->dataVal ueAttri butes()
Mar ker Attri butes ma(dva.nmarkerAttributes());
TextAttributes ta(dva.textAttributes());

ma. setVisible(true);

/1 display values or not

ta.setVisible(false);

dva. set Text Attributes(ta);

dva. set MarkerAttri butes(ma);

dva.setVisible(true);

wi dget . | i neDi agram() - >set Dat aVal ueAttri butes(dva);

36

Chapter 4

This sample code is making use of aKDChart : : W dget and aKDChart : : Li neDi agr ambut
of course the processisvery similar if we were working withaKDChart : : Chart .

We recommend you run the complete example presented in the following Tips section.

Points Attributes

As you have probably deduced from the section above, point charts are line charts
configured with no pen to avoid displaying the lines and using the generic classes
KDChart: : Dat aVal ueAttri but es and its KDChart:: Marker Attri but es available to
all other diagram types supported by KD Chart 2.

For this reason we will for now point you to the sections related to those subjects and in particular
to Chapter 8, Customizing your Chart - the section called “Markers Attributes’ or the section called
“Data Values Attributes’ and finalize this section by implementing a full featured point chart in the
Tips section below.

Tips and Tricks

In this section we want to give you some example about how to use some interesting features offered
by the KD Chart 2 API. Wewill study the code and display a screen-shot showing the resulting widget.

A complete Point Example

In the following implementation we want to be able to:

» Specify the points' styles and their sizes.

 Switch between point chart line chart.

» Digplay the chart in Normal / Stacked / Percent mode.
+ Show or hide the data value texts.

Let us concentrate on our Line chart implementation for now and consult the following files: other
needed files like the ui, pro, grc ,CSV and main.cpp files can be consulted from the exanpl es/
Li nes/ Poi nt Char t/ directory of your installation.

1
2
3

In the above code we bring up the KDChar t namespace asusual and declare our slots. The purposeis
to let the user configureitsline chart attributes manually from the GUI. Asyou can seewe are using a
KDChart:: Chart object(m chart),aKDChart: : Li neDi agr amaobject (m | i nes), and
our home made Tabl eMbdel (m nodel).

Theimplementation is similar to the line chart implementation presented earlier:

1
2
3

Here we will not comment on the code in detail asit issimilar to what we have seen beforein our line
chart example, but only pick out the interesting parts of it.

In order to get a point chart we paint or hide the lines by setting our line diagram pen:

voi d Mai nW ndow:. : on_pai nt Li nesCB_t oggl ed(bool checked)
{

37

Chapter 4

const int col Count = m.lines->nodel ()->col umCount(m_|ines->rootlndex());
for (int iColum = 0; iColumm<col Count; ++i Colum) {
Dat aVal ueAttributes a(m.lines->dataVal ueAttributes(i Colum));
@Brush lineBrush(mlines->brush(iColum));
if (checked) {
Qen linePen(lineBrush.color());
m | i nes->setPen(iColum, I|inePen);
}
el se
m | i nes->setPen(i Colum, Q::NoPen);
}

m chart - >updat e() ;

We need toretrievethe pen color beforeresetting it to itsoriginal value, and do that by looping through
the datasets.

Note

It isimportant to know that have three levels of precedence when setting the attributes:
¢ Global: Weak

* Per column: Medium

* Per cell: Strong

Which means that once you have set the attributes for a column or a cell, you will not be
able to change those settings by calling the "global™ method to reset it to another value, but
instead call the per column or per index setter. As demonstrated in the above code.

For us to be able to dsore different Markers style we make use of
Mar ker Attri but es: : Marker Styl esMap map() whichisvery convenient in this case.

Mar ker Attri but es: : Marker Styl esMap nap;
map.insert(O, MarkerAttributes:: MrkerSquare);
map.insert(1, MarkerAttributes::MarkerCircle);
map.insert(2, MarkerAttributes:: MarkerRing);
map.insert(3, MarkerAttributes:: MrkerCross);
map.insert(4, MarkerAttributes:: MarkerDi anond);

Mar ker Attri butes ma(dva. markerAttributes());
ma. set Mar ker St yl esMap(nmap);

The user may also change the size of the marker form the GUI and this is implemented in a straight
forward way by using KDChart : : Mar ker At t ri but es method set Mar ker Si ze() .

ma. set Mar ker Si ze(QSi ze(mar ker sW dt hSB- >val ue(),
mar ker sHei ght SB- >val ue()));

This example is available to compile and run from the exanpl es/ Li nes/ Poi nt Chart/
directory inyour KD Chart installation. The widget displayed by the above codeis shown in thefigure
below.

38

Chapter 4

Figure4.14. A Full featured Point Chart

%] Display Data Values

Line Chart Type:

Normal

[[] Paint Lines

Markers: 2

| Paint Markers
Markers Style J1.5 15

Markers Size: 4 4 4

EN
m

0.7 0.7

I

a

B4
ii
KICACID

05 5

Note

For two-dimensional datayou would use the same technique as described above, but applying
it to the KDChart:: Pl otter class, for details please have a look at exanpl es/
Pl ott er/ Bubbl eChart/.

Area Charts

Even more than a Line Chart (of which they are attributes) an area chart can give a good visual
impression of different datasets and their relation to each other. For example this chart type might be
ideal for showing how several sources contributed to increasing ozone values in a conurbation during
asummer's months.

Area charts are Line Charts and thus based upon several points which are connected by lines—the
difference compared to the line chart is that the area below aline isfilled by the respective dataset's
color. Thisgives aclear indication of each dataset's relative values.

In order to make it possible to see al points, since some are covered by ancther dataset's area, we
have introduced an attribute which allow the user to configure the level of transparency (more about
that in the section called “ Area Attributes’ below. KD Chart 2 supports of course Areadisplay for all
subtypes of line charts and thus alows aso the user to display the non-overlapping line types. The
following types can be displayed very simply in Area mode:

e Normal Line Area
» Stacked Line Area

» Percent Line Area

Figure4.15. An Area Chart

39

Chapter 4

Note

KD Chart usesthe term "ared’ in two different ways which can be distinguished easily:

* Inthis chapter it stands for a special chart type or even more accurately as aline diagram
attribute.

* Inother context it can also point to the different (normally rectangular) parts of achart like
for example the legend area or the headers area.

This varying usage of the word "area" should Not cause a lack of clarity: In the context of
this special section on area charts the word is clear, in the rest of the manual it just means
apart of achart.

Displaying the area for a dataset or the whole diagram is straight forward:
» Create aLineAttribute object by calling KDChart: : Li neDi agram : | i neAttri butes()

» Display it. You can also configure the level of transparency.

Area Sample Code

Let us make this more concrete by looking at the following lines of code and reproduce the process
described above:

/1l Create a LineAttribute object

LineAttributes la = mlines->lineAttributes(index);
/1 Make the areas visible

| a. set Di spl ayArea(true);

/1 Assign to the diagram

m | i nes->setLineAttributes(index, la);

Of course Brush and Pen settings aswell as all other configurable attributes accessible by the diagram
itself can be set, which give the user alot of flexibility (display or hide data values, markers, lines,
configure colors etc ...).

Note

KDChart: : Li neAttri butes can be set for the whole diagram, for a dataset, or for a
specific index (see sample code above), as for any other attributes.

Area Attributes

There are no specific attributes rel ated to the Area chart. As explained above Areacharts display mode
is implemented as a Line Attribute. Of course the generic attributes common to all chart types are
available, which give us full flexibility to configure our Area chart.

Tips and Tricks

In this section we will give you some examples of the interesting features offered by the KD Chart 2
API. Wewill study the code and display a screen-shot showing the resulting widget.

A complete Area Example
Note

This example has already been presented in details in codexample. You dont need to go
through it, if you already have studied the section above.

40

Chapter 4

In the following implementation we want to be able to:
 Display or hide the data values texts

» Select the line chart type (Normal, Stacked, Percent)
» Display areas for each dataset on its own.

Weareusing aKDChart : : Chart classand also ahome made Tabl eMbdel for convenience. It
isderived from QAbst r act Tabl eModel .

We recommend you consult the "TableModel" interface and implementation files which are located
intheexanpl es/ t ool s/ directory of your KD Chart installation.

Let us concentrate on our Line chart implementation for now and consult the following files: other
needed files like the ui, pro, grc ,CSV and main.cpp files can be consulted from the exanpl es/
Li nes/ Advanced/ directory of your installation.

1
2
3

In the above code we bring up the KDChar t namespace as usua and declare our slots. The purposeis
to let the user configureitsline chart attributes manually from the GUI. Asyou can seewe are using a
KDChart: : Chart object (m chart),aKDChart : : Li neDi agramobject (m | i nes), and
our home made Tabl eMbdel (m nodel).

Theimplementation is similar to the line chart implementation presented earlier:

1
2
3

First of all we are adding our chart to the layout as we would do with any other Qt widget. We then
load the datato be display into our model, and assign the model to our line diagram. We also want to
set up aQTi ner to be ableto run our animation. Finally we assign the diagram to our chart.

HBoxLayout * chartLayout = new @BoxLayout (chartFrame);
m chart = new Chart ();
chart Layout - >addW dget (m chart);

m nodel . | oadFronCSV(":/data");

/1 Set up the diagram

m | ines = new Li neDi agram();

m | i nes- >set Model (&m nodel);

m chart - >coor di nat ePl ane() - >repl aceDi agran{ mlines);

/] Instantiate the tinmer

Qrinmer *tiner = new QTiner(this);

connect (timer, SIGNAL(tinmeout()), this, SLOT(slot_timerFired()));
timer->start (40);

Theuser should be able to change the default sub-type viaacombo box from the GUI. Thiscan be done
by using KDChart : : Bar Di agr am : set Type() asshown below and by updating the view.

41

Chapter 4

if (text == "Normal")

m | i nes->set Type(Li neDi agram : Normal);
else if (text == "Stacked")

m | i nes- >set Type(Li neDi agram : St acked);
else if (text == "Percent")

m | i nes- >set Type(Li neDi agram : Percent);

m chart - >updat e() ;

We want the user to be able to display or hide the data values from the GUI, and also change the
default font for our data value texts to make it nicer.

const int col Count = mlines->nodel ()->col umCount(m_|ines->rootlndex());
for (int iColum = 0; iColumm<col Count; ++i Colum) {

Dat aVal ueAttributes a(m.lines->dataVal ueAttributes(i Colum));

@Brush brush(m.lines->brush(i Colum));

TextAttributes ta(a.textAttributes());

ta.setRotation(0);

ta.setFont(QFont("Comic", 10));

ta.set Pen(QPen(brush.color()));

if (checked)
ta.setVisible(true);
el se
ta.setVisible(false);
a.setVisible(true);
a.setTextAttributes(ta);
m | i nes- >set Dat aVal ueAttri butes(i Colum, a);

}

m chart->updat e();

In the code above, we make sure our data value texts will be painted using the dataset default color by
retrieving the brush for each dataset and assigning the color of the brush to the pen.

Note

It isimportant to know that have three levels of precedence when setting the attributes:

» Global: Weak

* Per column: Medium

* Per cell: Strong

Which means that once you have set the attributes for a column or a cell, you will not be
able to change those settings by calling the "global" method to reset it to another value, but

instead call the per column or per index setter. As demonstrated in the above code.

The user should be able to display the areafor one or several datasets.

LineAttributes la(mlines->lineAttributes(colum));

42

Chapter 4

if (checked) {

| a. set Di spl ayArea(true);

| a. set Transparency(opacity);
} else {

| a. set Di spl ayArea(false);
}

m | i nes->setLineAttributes(colum, la);

m chart - >updat e() ;

Thisisimplemented by configuring our line attributes and assigning them by dataset to the diagram,
as shown above.

The same procedure is used for usto be able to run our animation. Y ou can of course learn more about
this part of the code which is more related to Qt programming by consulting exanpl es/ Li nes/
Advanced/ mai nwi ndow. cpp.

This exampleis available to compile and run from the exanpl es/ Li nes/ Advanced/ directory
inyour KD Chart installation. The widget displayed by the above code is shown in the figure below.

Figure4.16. A Full featured Area Chart

vlml e'Chart i =%

[_] Display Data Values

Line Chart Type:
Show Areas

X Highlight Area [1 [2]

Animate

[_] Highlight

Plotter Charts

Plotter charts are amost the same as normal line diagrams with one important exception: Line
diagrams always expect the values running from 1..n having step width 1. Plotters can instead of that
handle free X/Y -pairsin any order and not being equidistant.

Therefore, KDChart : : Pl ot t er expectstwo columnsin the model for each dataset being plotted.
Seethe example below to find out how to usethis. Apart fom that difference, please refer to the section
called “Line Charts’ in this manual explaining how to set the attributes for this diagram type.

The following screenshot is made from the plotter examplein exanpl es/ Pl ot t er/ Si mpl e/

43

Chapter 4

Figure4.17. A simple Plotter diagram

V) " PlotterSimple _alix

Legend

7
A B 100 " sin(x)

{
- \\

. \ \

R \/ \/ m 3
-100 =

Plotter Sample Code

The following code sample is plotting a sine wave and an exponential curve from -2*pi - 2*pi
consisting of 400 points on the x-axis:

St andar dI t envodel nodel (points, 4);

double x = -2 * 3.141592653589793;
for(int n =0; n < 400; ++n) {
QWbdel I ndex i ndex = nodel .index(n, 0);
nodel . set Data(i ndex, Qvariant(x));
/1 the x value: x
i ndex = nodel .index(n, 1);
/1l the y value sin(x) * 100
nodel . set Data(i ndex, Qvariant(sin(x) * 100));

i ndex = nodel .index(n, 2);

nodel . set Dat a(i ndex, Qvariant(x));

i ndex = nodel .index(n, 3);

nodel . setData(index, Qvariant(x * x * x));

X += 4 * 3.141592653589793 / 399.0;
}

KDChart::Chart chart;

KDChart::Plotter plotter;

pl otter.setnodel (& nodel);

chart. coordi nat ePl ane() - >repl aceDi agran{ &plotter);

chart. show();

Levey-Jennings Charts

A Levey-Jennings chart is a graph on which quality control datais plotted to give avisua indication
as to whether alaboratory test is working well or not.

If you are interested in using this diagram type please have a look at the APl Reference for the
classesKDChart : : LeveyJenni ngsDi agr am(derived fromKDChart : : Li neDi agr am and
KDChart: : LeveyJenni ngsAxi s (derived from KDChart : : Cart esi anAxi s).

44

Chapter 4

The following screenshot is made from the Levey-Jennings example in exanpl es/
LeveyJenni ngs/ Si npl e/

Figure 4.18. A simple L evey-Jennings diagram

*lleveylenningssimple
ate
210 true 6/07/07 /\
4 +23d

B e sor07 o
200 true 7/07/07 / \

e
rue B/07/07

rue 8/07/07

ue 9/07/07 L L 2 L

b

t

t

false 9/07/07) oz
210 true 10707/

B V]

tn

t

t

t

t

ue 10/07/(

EEEEEEEE [E

E

ue 11/07/(

ue 11/07/(2sd

ue 12/07/(

NN N N N RN N 8 e e e s e
N
b=}
2

[T
lw| R

ue 12/07/(

1

[[r] Flis 2007 FriJul 13 2007

Polar coordinate plane

KD Chat makes use of the Polar coordinate system, and in particular its
KDChart : : Pol ar Coor di nat ePl ane classfor displaying chart types like Pie and Polar.

In this section we will describe and present each of the chart types which uses the Polar coordinate
plane.

In genera to implement a particular type of chart, just create an object of this type by calling
KDChart: : [type] Di agram orif your are using KDChart : : W dget you will need to call its
set Type() and specify the appropriate chart type. (e.g Widget::Pie, Widget::Polar etc...)

Pie Charts

Pie charts can be used to visualize the relative values of afew datacells (typically 2-20 values). Larger
amounts of items can be hard to distinguish in a pie chart, so a Percent Bar Chart might fit your needs
better. Pie charts are most suitable if one of the data elements covers at least one forth, preferably
even more of the total area

A good exampleis the distribution of market shares among products or vendors.

Piechartstypically consist of two or more piecesany number of which can be shown 'exploded’ (shifted
away from the center) at different amounts, the starting position of the first pie can be specified and
your pie chart can be drawn in three-D look. Activating the pie chart mode is done by calling the
KDChart:: W dget methodset Type(KDChart:: W dget:: Pi e) orby creating an object
of thistype using the KDChar t : : Pi eDi agr amclass.

Thethree-dimensional |ook of the pies can be enabled by setting its ThreeD attributes, wewill describe
thisin Chapter 8, Customizing your Chart - the section called “ ThreeD Attributes’ below.

Simple Pie Charts

A simple pie chart shows the data without emphasizing a special item.

45

Chapter 4

Figure4.19. A Simple Pie Chart

£ ~PieSimple —fallx

&

KD Chart by default draws two-dimensional pie charts when in pie chart mode so no method needs
to be called to get one. We describe more in detail about how to obtain three dimensional ook for a
pie chart in the following the section called “ Pies Attributes”.

Exploding Pie Charts
Tip
Explode individual segments to emphasize individual data.

Figure 4.20. An Exploding Pie Chart

46

Chapter 4

We will go through all the configuration possibilities in the section called “Pies Attributes’ below,
but let us study some code sample first.

Code Sample

For now let us make the above description more concrete by looking at the following code sample
based on the Si npl e W dget example we have been demonstrating above, see Chapter 3, Basic
steps: Create a Chart - the section called “Widget Example”. In this example we demonstrate how to
configure your Pie diagram and change its attributes when working with aKDChar t : : W dget .

First include the appropriate headers and bring in the KDChar t namespace:

#i ncl ude <QApplication>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Pi eDi agr ane
#i ncl ude <QPen>

usi ng nanespace KDChart;

We need to include KDChar t Pi eDi agr amin order to be able to configure some of its attributes
aswe will see further on.

int min(int argc, char** argv) {
QApplication app(argc, argv);
W dget wi dget;
/1 our Wdget can be configured
/1 as any Q@ Wdget
wi dget . resi ze(600, 600);
/1 store the data and assign it
QVector< double > vecO, vecl;
vecO << 5 << 1 << 3 << 4 << 1;
vecl << 3 << 6 << 2 << 4 << §;
vec2 << 0 << 7 << 1 << 2 << 1;
wi dget . set Dataset (0, vecO, "vec0");
wi dget . set Dataset (1, vecl, "vecl");
wi dget . set Dat aset (2, vec2, "vec2");
wi dget . set Type(Wdget::Pie);

We just need to change the default chart type (Line Charts) by caling the
KDChart:: Wdget::set Type() method.

Now let us configure a Pen to draw aline arount the Pie and its section

QPen pi ePen(w dget. pi eDi agram()->pen());
pi ePen. setWdth(3);

pi ePen.setColor(Q::yellow);

/1 call your diagram and set the new pen
wi dget . pi eDi agram() - >set Pen(2, piePen);

Here we are configuring the pen "attribute”. As you can see it is straight forward.
KDChart:: W dget: : pi eDi agran() alow us to get a pointer to our widget diagram. As
you can see it is very simple to assign a new pen to our diagram by caling the diagram
KDChart: : Abstract Di agram : set Pen() method.

47

Chapter 4

Finally we conclude our small example:

wi dget . show() ;

return app. exec();

See the screen-shot below to view The resulting chart displayed by the above code.

Figure4.21. A Simple Pie Widget

This example can be compiled and run from the following location of your KD Chart installation
exanpl es/ Pi e/ Si npl e/

Note

Configuring the attributes for a KDChart:: Pi eDi agram making use of a
KDChart: : Chart isdonethesameway asfor aKDChart : : W dget . You just need to
assign the configured attributes to your pie diagram and assign the diagram to the chart by
calingKDChart: : Chart::repl acebDi agran().

Pies Attributes

By "Pie attributes' we are talking about all parameters that can be configured and set by the user
and which are specific to the Pie Chart type. KD Chart 2 APl separates the attributes specifics
to a chart type itself and the generic attributes which are common to all chart types as for
exampl e the setters and getters for a brush or a pen (See the KDChar t : : Abstract Di agr amor
KDChart: : Pi eAbstract Di agr am etc ...)

All those attributes have a reasonnable default value that can simply be modified by
the user by caling one of the diagram set function implemented for this purpose
KDChart: : Pi eDi agram :setPieAttributes().

The procedure is straight forward:

* Create a KDChart:: PieAttributes object by caling
KDChart: : Pi eDi agram : pi eAttributes().

» Configure this object using the setters available.

48

Chapter 4

* Assign it to your Diagram with the help of one of the setters avalable in
KDChart: : Pi eDi agram All the attributes can be configured to be applied for the whole
diagram, for a column, or at a specified index (Qvbdel | ndex).

KD Chart 2 supports the following attributes for the Pie chart type. Each of those attributes can be set
and retrieved in the way we describe in our example below:

» Explode: Enable/Disable exploding pie piece(s)

» Explode factor: The explode factor is a greal between 0 and 1, it is interpreted as a percentage of
the total available radius.

 StartPosition: Set the starting anglefor thefirst dataset. Can only be specified for thewhol e diagram.

» Granularity: Set the granularity: the smaller the granularity the more your diagramsegments will
show facettes instead of rounded segments. Can only be specified for the whole diagram.

» PieAttributes: set or retrieve the pie diagram Attributes. (see:
KDChart: : Abstract Pi eDi agr am)

e ThreeDPieAttributes: set or retrieve the diagram ThreeDAttributes. (see
KDChart: : Abstract Pi eDi agr am)

Tip
Thedefault explodefactor is 10 percent; useset Expl odeFact or () to specify adifferent
factor. Thisis a convenience function: Calling set Expl ode(true) doesthe sameas

calingset Expl odeFactor(0.1),andcalingset Expl ode(fal se) doesthe
same ascalling set Expl odeFactor(0.0).

To get a pie chat like the one presented above (having one or severa
of the pieces separated from the others in exploded mode) you would have
to set its attributes by caling KDChart:: PieAttributes::setExplode() or
KDChart:: PieAttributes::set Expl odeFactor () if you want to change the explode
factore default value and then use the available methods to assing those attributes to your diagram as
shown in the following code sample

/1 1 - Create a PieAttribute object

PieAttri butes pa(mpie->PieAttributes(colum));

/1 2 - Enable exploding, point to a dataset and give the
/'l expl ode factor passing the dataset number and the factor
pa. set Expl odeFactor(0.5);

/1 3 - Assign to your diagram

m pi e->set Pi eAttri butes(columm, pa);

Note

Three-dimensional look of the pies can be enable and configured by setting its ThreeD
attributes the same way as we are setting the PieAttributes in the code sample above, we
will describe that more in detail in Chapter 8, Customizing your Chart - the section called
“ThreeD Attributes’ later on.

Pie Attributes Sample

L et us make thismore clear by looking at the following sample code that describes the above process.
We recommend that you compile and run the following example which islocated in the exanpl es/
Li nes/ Par amet er s/ directory of your KD Chart installation.

First of all we areinclude the header files and bring in the KD Chart namespace.

49

Chapter 4

#i ncl ude <Q Qui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Pi eDi agr ane

#i ncl ude <KDChart Pi eAttri but es>

usi ng nanespace KDChart;

We have included KDChar t Pi eAtt ri but es to be able to configure exploding for one of the pie
dice. Those attributes are specific to the Pie types.

In this example we areusing aKDChart : : Chart classaswell asa QSt andar dl t emvbdel in
order to store the data which will be assigned to our diagram.

m nodel . i nsert Rows(0, 1, Qwbdel I ndex());
m nodel . i nsert Colums(0, 6, Qwbdellndex());
for (int row = 0; row < 1; ++row) {
for (int colum = 0; colum < 6; ++colum) {
QWbdel | ndex index =
m _nodel . i ndex(row, colum, Qwvbdel I ndex());
m nodel . set Dat a(i ndex, Qvariant(row+l * colum+1l));
}

}
/1 W need a Polar plane for the Pie type

Pol ar Coor di nat ePl ane* pol ar Pl ane =

new Pol ar Coor di nat ePl ane(&m chart);

/1 replace the default Cartesian plane with
/1 our Polar plane

m chart . repl aceCoor di nat ePl ane(pol ar Pl ane);

/1 assign the nodel to our pie diagram
Pi eDi agrant di agram = new Pi eDi agram
di agr am >set Mbdel (&m nodel) ;

After having stored our data into the model, we create a need to replace the default Cartesian
plane against a Polar plane before creating our Pie diagram. In this case, we want to display a
KDChart : : Pi eDi agr am Asawayswe need to assign the model to our diagram. This procedure
is of course similar for all types of diagrams.

We are now ready to configure our attributes. We want to explode a section and configure a Pen to
surround it. Let us begin with the specific KDChart: : Pi eAttri but es.

/1 Configure some Pie specific attributes

/1 explode a section
Pi eAttri butes pa(diagram >pieAttributes(1));
pa. set Expl odeFactor(0.1);

/1 Assign the attributes
/1 to the 2nd dataset of the diagram
di agram >set Pi eAttributes(1, pa);

Asfor al attributes we call them by using the relevant method available from our diagram interface,
here di agr am >pi eAttri but es() . The second step is to set it up with our own values and
finally we assign it to our diagram. In the above code we explode the second slice (dataset) in our Pie.

50

Chapter 4

Note

After having configured our attributes we need to assign the attributes to the diagram. This
can be done for the whole diagram, at a specific index or for acolumn. Look at the attributes
interface and look at the methods available there to find out those setters and getters.

Wewant to configure the Pen in order to draw asurrounding line around the exploded section (dataset)
to focus the attention of the reader on this particular section.

QPen sectionPen(diagram>pen(1));

sectionPen.setWdth(5);
sectionPen. setStyle(Q::DashLine);
sectionPen. setColor(Q::nmagenta);

di agram >set Pen(1, sectionPen);

Of course we could a so have changed the pen for all datasets as well.

Note

The Pen and the Brush setters and getters are implemented at a lower level in our
KDChart: : Abstract Di agr amclass for a cleaner code structure. Those methods are
of course used by all types of diagrams and their configuration is very simple and straight
forward as you can see in the above sample code. Create or get a Pen, configure it, call one
of the setters methods available (Seethe KDChar t : : Abst ract Di agr amAPI Reference
about those methods).

Once our attributes having been configured and assigned, we just need to assign our Pie diagram to
our chart and conclude the implementation.

m chart . coor di nat ePl ane() - >r epl aceDi agr am(di agram ;

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

The above procedure can be applied to any of the supported attributes for al chart types. The
resulting display of the code we have gone through can be seen in the following screen-shot. We also
recommend you compile and run the example related to this section and located in the exanpl es/
Pi e/ Par anet er s/ directory of your KD Chart installation.

51

Chapter 4

Figure 4.22. Pie With Configured Attributes
z K PRusastis SEES

Tips and Tricks

In this section we will to go through some examples about how to use the interesting features offered
by the KD Chart 2 API. Wewill study the code and display a screen-shot showing the resulting widget.

A complete Pie Example

In the following implementation we want to be able to:

» Configure the Start position .

 Display aPie chart and shift between normal and 3D appearance.

» Explode one or several slices and set a surrounding line around exploded sections
* Run an animation (exploding).

Inthe example below weareusingaKDChar t : : Chart classand also ahome made Tabl eMbdel
for convenience. It is derived from QAbst r act Tabl eMbdel .

We recommend you consult the "TableModel" interface and implementation files which are located
inthe exanpl es/ t ool s/ directory of your KD Chart installation.

Let us concentrate on our Pie chart implementation for now and consult the following files: other
needed files like the ui, pro, grc ,CSV and main.cpp files can be consulted from the exanpl es/
Pi e/ Advanced/ directory of your installation.

1
2
3

In the above code we bring up the KDChar t namespace as usual and declare our slots. The purposeis
to let the user configureitsline chart attributes manually from the GUI. Asyou can seewe are using a
KDChart:: Chart (mchart),aKDChart: : Pi eDi agram(m pi es), and our home made
Tabl eModel (m nodel).

Note

Before displaying our Pie diagram we need to implicitely replace the default cartesian plane
by aKDChart : : Pol ar Coor di nat ePl ane.

52

Chapter 4

1
2
3

First of all we are adding our chart to the layout as we would any other Qt widget. Load the datato be
display into our model, and assign the model to our pie diagram. We also want to set up aQTi ner to
be able to run our animation. Finally we assign the diagram to our chart.

HBoxLayout * chartLayout = new @BoxLayout (chartFrame);
m chart = new Chart ();
chart Layout - >addW dget (m chart);

m nodel . | oadFronCSV(":/data");

/1 Set up the plane
Pol ar Coor di nat ePl ane* pol ar Pl ane = new Pol ar Coor di nat ePl ane(m chart);
m chart - >r epl aceCoor di nat ePl ane(pol ar Pl ane);

/1 Set up the diagram

m pi e = new Li neDi agram);

m pi e- >set Model (&m nodel);

m chart - >coor di nat ePl ane() - >repl aceDi agran{ mpie);

/] Instantiate the tinmer
Qrinmer *tiner = new QTiner(this);
connect (timer, SIGNAL(tineout()), this, SLOT(slot_NextFrame()));

The user should be able to change the start position from the GUI. This can be implemented by using
KDChart: : Pi eAttri but es asshown below and by updating the view.

PieAttributes pa(mpie->pieAttributes());
pa. set Start Position(pos);

m pi e->set Pi eAttri butes(pa);

m chart - >updat e() ;

We want the user to be able to shift between 3D mode display or the normal standard display from
the GUI.

/1 note: We use the global getter nethod here, it will fall back
/] automatically to return the default settings.

ThreeDPi eAttri butes tda(mpie->threeDPieAttributes());

t da. set Enabl ed(toggle);

t da. set Dept h(t hreeDFact or SB- >val ue());

m pi e- >set ThreeDPi eAttri butes(tda);

m chart - >updat e() ;

We want the user to be able to explode one or several slice(s) (dataset) and to configure the exploding
factor.

53

Chapter 4

/1 note: We use the per-colum getter nmethod here, it will fall back
/1 automatically to return the global (or even the default) settings.
PieAttributes pa(mpie->pieAttributes(colum));

pa. set Expl odeFact or (val ue);

m pi e->set Pi eAttri butes(columm, pa);

m chart - >updat e() ;

Thisisimplemented by configuring our pie attributes and assign them by dataset to the diagram, as
shown above.

The same procedure is used for us to be able to run our animation. You can of course learn more
about this part of the code which is more related to Qt programming by consulting exanpl es/ Pi e/
Advanced/ mai nwi ndow. cpp.

This example is available to compile and run from the exanpl es/ Pi e/ Advanced/ directory in
your KD Chart installation. The widget displayed by the above code is shown in the figure below.

Figure 4.23. A Full featured Pie Chart

S S Pielchart _lalix
Start position: |4.00 H‘

3D

Factor 8

@

Explode

Dataset

Factor 0.05

[] Animate

Polar Charts

Polar charts get their name from displaying "polar coordinates’ instead of Cartesian coordinates, thus
they areusing the KDChar t : : Pol ar Coor di nat ePl ane.

To instantiate a polar chat you may call the KDChart::Wdget function

set Type(W dget : : Pol ar), or create an object of type KDChart : : Pol ar Di agr am and
assignittoyour KDChart : : Chart by calingitsr epl aceDi agr an() method.

A Simple Polar Chart

Compile and run the example file exanpl es/ Pol ar/ Si npl e/ to see a normal polar chart as
shown below.

Chapter 4

Figure4.24. A Normal Polar Chart

- " PolarSimple _hal x

Polar Attributes

In addition to using the generic classes KDChart:: Dat aVal ueAttri butes and
KDChart: : Marker Attri but es available to al diagram types supported by KD Chart 2 the
following setter methods are provided by the KDChar t : : Pol ar Di agr am

» setRotateCircul arLabel s(bool) determineswhether circular labels are to be rotated
automatically or not: If set the labels base lines will be adjusted to the circular grid lines.

set Cl oseDat aset s(bool) may be used to close each of the data series by connecting the
last point to its respective start point.

The KDChar t : : Pol ar Coor di nat ePl ane provides an additional means of configuration that
might make sense for your polar chart:

e setStartPosition(greal) specifiesthe Position of the Zero degrees value and thus the
rotation of your grid.

e setGidAttributes(bool circul ar) setstheattributesto beusedfor grid linesdrawn
in circular direction (or in sagittal direction, resp.).

In example to hide the circular grid lines you would do this:

KDChart : : Pol ar Coor di nat ePl ane* pl ane =
stati c_cast < Pol ar Coordi nat ePl ane* >(m chart->coordi nat ePl ane());

KDChart:: GidAttributes attrs(plane->gridAttributes(true));
attrs.setGidvVisible(false);
pl ane->set G i dAttributes(true, attrs);

These additional exampl efilesare demonstrating the methods described above: exanpl es/ Pol ar /
Advanced/ and exanpl es/ Pol ar/ Par anet ers/ .

55

Chapter 4

Tip

Currently only normalized polar charts can be shown: all values advance by the same number
of polar degrees and there is no way to specify a data cell's angle individually. While this
isideal for some situations it is not possible to display true world map data like this since
you can hot specify each cell'srotation angle. Transforming your coordinatesto the Cartesian
system and using a Point Chart might be a solution in such cases.

Ternary coordinate plane

KD Chart has support for ternary charts and has therefore an appropriate coordinate plane. Thisisthe
classkDChart : : Ter nar yCoor di nat ePl ane.

The idea of ternary chartsisto plot triple values on atriangle. Triple values are represented by three

floating point values having the fixed sum 1.0. Therefore each plotted dataset needs three columns
in the model.

Figure4.25. A Simple Ternary Chart

(O S Ternany Diagnam 22l x
A

Tip
KD Chart is using only the first two of them and cal culates the third one out of those. If the
sum of the first two columnsis already greater than 1.0, the data triple is considered invalid
and disregarded.
This section will describe the chart types which can be added to aternary coordinate plane.
To use such a diagram, you need to create an instance of

KDChart: : Ter nar yCoor di nat ePl ane. After that, you can make KD Chart using it by using
KDChart:: Chart::repl aceCoordi nat ePl ane() and add adiagramtoit.

Ternary Line Charts

A ternary line charts connects all points of each dataset with aline.
Have alook at the following code example explaining how to work with it:
KDChart:: Chart chart;

/1 replace the default (cartesian) coordinate plane with a ternary one
KDChart: : Ter nar yCoor di nat ePl ane* ternaryPl ane

56

Chapter 4

= new KDChart: : Ter nar yCoor di nat ePl ane;
chart.repl aceCoordi nat ePl ane(ternaryPl ane);
/1 make a ternary |ine diagram
KDChart: : Ter naryLi neDi agrant di agram = new KDChart: : Ter naryLi neDi agr am
/1 and replace the default diagramwth it
t er naryPl ane- >repl acebDi agran{ di agram);

chart. show();

What's next

For our diagram to be useful we need to be able to display its axis. That will be the subject of our
next chapter.

57

Chapter 5. Axes

Axes are implemented at different levels in the KD Chart 2 API. KD Chart makes use of
KDChart:: Cartesi anAxi s and KDChart: : Ter nar yAxi s which are derived from their
common base classKDChart : : Abstract Axi s..

The user may specify its own set of strings to be used as Axis labels with the
KDChart:: Abstract Axi s:: set Label s() method.

Note

Labels specified via setLabels take precedence: If anon-empty list is passed, KD Chart will
use these strings as axislabels, instead of cal culating them. By passing an empty QStringList
you can reset the default behaviour.

For convenience we can aso specify short labels in our own set of string
to be used as axis labelsin case the normal labels are too long by using
KDChart: : Abstract Axi s: : set Short Label s(const QStringList)

Axisvalues and label s text attributes can also be configured. Thus the labels of all of your axesin all
of your diagrams within that Chart will be drawn in same font size, by default.

The setters and getters for axis labels and their text attributes are implemented in the axis base
class KDChart : : Abstract Axi s, we recommend studying the KDChart : : Abst ract Axi s
API Reference.

Tip
If you set asmaller number of strings than the number of labels drawn at thisaxis, KD Chart
will iterate over the list, repeating the strings, until all labels are drawn.

Asan example you could specify the seven days of the week as abscissalabels, which would
be repeatedly used then.

Cartesian AXxis

TheclassKDChart : : Cart esi anAxi s isused together with the diagrams displayed in a cartesian
coordinate plane and contains the setters and getters related to the axis specifics to those chart types.

It allows the user to set and retrieve the position (top, bottom, left or right), or the type (abscissa,
ordinate) of the axis, assign or retrieve atitle and itstext attributes. That iswhere the axis are painted.

The setters and getters for those specific cartesian features are implemented in
KDChart: : Cartesi anAxi s.

Ternary AXxis

The class KDChart: : Ter nar yAxi s is made for use with diagrams displayed in a ternary
coordinate plane.

Since ternary diagrams are not rectangular but triangular, ternary axes can be added at three different
positions relative to the diagram: South, East and West.

How to configure Cartesian Axes

In order to add axis to a catesan diag)pan we need to use
KDChart: : Abstract Cartesi anDi agram : addAxi s() method. The diagram takes
ownership of the axis and will deleteit by itself.

58

Chapter 5

To gain back ownership (eg. for assigning the axis to another diagram) use the
KDChart: : Abstract Di agram : t akeAxi s() method, before calling addAxis on the other
diagram.

Note

KDChart: : Abstract Di agram : t akeAxi s() Removes the axis from the diagram,
without deleting it. The diagram no longer owns the axis, so it is the caller's responsibility
to delete the axis.

Cartesian Axes sample

Let us look at the following lines of code based on the Si npl e W dget example we have
been demonstrating above, see Chapter 3, Basic steps: Create a Chart - the section called “Widget
Example”. In this example we demonstrate how to add an X axisand a'Y axis to your diagram and
set the Axis titles when working with aKDChar t : : W dget ..

First include the appropriate headers and bring in the KDChar t namespace:

#i ncl ude <QApplication>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Li neDi agr anp
#i ncl ude <KDChart Cart esi anAxi s>

usi ng nanespace KDChart;
WeneedtoincludeKDChar t Li neDi agr amin order to beableto add theaxisaswewill seelater on.

int min(int argc, char** argv) {
QApplication app(argc, argv);
W dget wi dget;
/1 our Wdget can be configured
/1 as any Q@ Wdget
wi dget . resi ze(600, 600);
/1 store the data and assign it
Qvect or< doubl e > vecO, vecl;
vecO << 5 << 1 << 3 << 4 << 1;
vecl << 3 << 6 << 2 << 4 << 8;
vec2 << 0 << 7 << 1 << 2 << 1,
wi dget . set Dataset (0, vecO, "vec0");
wi dget . set Dataset (1, vecl, "vecl");
wi dget . set Dat aset (2, vec2, "vec2");

Note

We don't need to change the default chart type (Line Charts) by caling the
KDChart:: Wdget::set Type() method.

Now let us create our axes, position them and set their titles:

Cartesi anAxi s *XAXi s new Cartesi anAxi s(widget.!linebiagram());
Cartesi anAxi s *yAxi s new Cartesi anAxi s (widget.!linebiagram());
XAxi s->set Position (CartesianAxis::Bottom);

yAXi s->setPosition (CartesianAxis::Left);

59

Chapter 5

XAXi s->setTitl eText ("Abscissa bottom position");
yAxi s->setTitleText ("Ordinate |left position");

And add them to our diagram which will take the ownership:

wi dget . | i neDi agran() - >addAxi s(xAxis);
wi dget . | i neDi agran() - >addAxi s(yAxis);

Finally we conclude our small example:

wi dget . show() ;

return app. exec();

See the screen-shot below to view The resulting chart displayed by the above code.

Figure5.1. A Simple Widget With Axis

S M.’h‘ Al

100 -

Ordinate left position
o

Abscissa bottom position

This example can be compiled and run from the following location of your KD Chart installation
exanpl es/ Axi s/ W dget /.

In the section called “Tips’ below we will present you a more elaborate example which uses
KDChart : : Chart and wherewe are configuring our axistitle text attributes. We also use our own
labels and their shortened version.

Tips

In this section we want to give you some examples concening the interesting features offered by the
KD Chart 2 API. We will study the code and display a screen-shot showing the resulting widget.

Axis Example

In the following implementation we want to be able to:

» Add axes at different positions.

60

Chapter 5

» Set the axistitle and configure their text attributes.
» Use our own labels and their shortened versions.
» Configure our labelstext attributes.

Inthe example below weareusingaKDChar t : : Chart classand also ahome made Tabl eMbdel
for convenience. It isderived from QAbst r act Tabl eModel .

We recommend you consult the "TableModel" interface and implementation files which are located
inthe exanpl es/ t ool s/ directory of your KD Chart installation.

L et usconcentrate on our diagram _with_axisimplementation for now and consult thefollowing files:
other neededfilesliketheui, pro, grc ,CSV and main.cpp files can be consulted fromtheexanpl es/
Axi s/ Chart/ directory of your installation.

1
2
3

In the above code we bring up the KDChar t namespace as usual. AS you can see we are using a
KDChart: : Chart object(m chart),aKDChart: : Li neDi agr amobject (m | i nes), and
our home made Tabl eMbdel (m_nodel).

1
2
3

First of all we are adding our chart to the layout as for any other Qt widget. Load the data to be
displayed into our model, and assign the model to our diagram.

HBoxLayout * chartLayout = new @BoxLayout (chartFrame);
m chart = new Chart ();

chart Layout - >addW dget (m chart);

hSBar - >set Vi si bl e(fal se);

vSBar - >set Visi bl e(false);

m nodel . | oadFronCSV(":/data");

/1 Set up the diagram
m | i nes = new LineDi agram();
m | i nes- >set Model (&m nodel);

We want to display three axis, respectively positioned at the top, |eft and bottom side of our diagram.
Thisis straight forward:

Cartesi anAxi s *topAxis = new CartesianAxis(mlines);
CartesianAxis *left Axis = new CartesianAxis (mlines);
Cartesi anAxi s *bottomAxis = new CartesianAxis (mlines);
t OpAxi s- >set Posi tion (CartesianAxis::Top);

| ef t Axi s->set Position (CartesianAxis::Left);

bot t omAXi s- >set Position (CartesianAxis::Bottom);

61

Chapter 5

In the code above we ae declasing our axis and make use of
KDChart: : Cart esi anAxi s: : set Posi ti on() to givetheir location.

Let us now define the title text for each of those axis:

t opAxi s->set Titl eText ("Abscissa color configured top position");
left AXi s->setTitl eText ("Ordinate font configured");
bott omAxi s->set Titl eText ("Abscissa Bottont);

setTitleText () and setTitleTextAttributes() are provided by in
KDChart: : Cart esi anAxi s class, for details seeits APl Reference.

> Contained in this example and to demonstrate the text configuration for the title and the labels we
want to have a different configuration for each of our title axis and aso for our labels. The processis
the same as for configuring any type of attributes, as follows:

Create an attribute object, configure it and assign it.

/1 configure titles text attributes

TextAttributes taTop (topAxis->titleTextAttributes ());
/1 color configuration

taTop. setPen(QPen(Q::red));

/] assign to the axis

t opAxi s->set Titl eTextAttri butes (taTop);

TextAttributes talLeft (leftAxis->titleTextAttributes ());
/1 Font configuration

Measure me(talLeft.fontSize());

ne. set Val ue(ne.value() * 1.5);

taLeft.setFontSize(nme);

| eft AXi s->setTitl eText Attributes (talLeft);

Text Attributes taBottom (bottomAxis->titleTextAttributes ());
taBottom set Pen(QPen(Q::blue));
bott omAXi s->set Titl eTextAttri butes (taBottom);

/1 configure labels text attributes by nodifying the

/1 current settings valid for the bottom axis

/1 Note:

/1 By default KD Chart is using the sane text attributes
/1 for all of its axes, so it does not matter which

/1 axis we are asking in the following Iine of code here.
Text Attributes talLabel s(bottomAxis->textAttributes());
taLabel s. setPen(QPen(Q::darkGeen));

t opAXi s- >set Text At tri but es(talLabel s);

| ef t AXi s->set Text Attri butes(talLabel s);

bot t omAXi s- >set Text Attri butes(talLabels);

We want our top and bottom axis to display different types of labels as well as to make sure those
labels will be shortened in case the normal |abels are too long (see setShortLabels()).

62

Chapter 5

/1 configure |abels and their shortened versions
@St ringlLi st daysOf Veek;

daysOf Week << "Monday" << "Tuesday" << "Wednesday"
<< "Thursday" << "Friday" ;

t opAxi s- >set Label s(daysOf Week) ;

@St ringLi st short Days;

short Days << "Mon" << "Tue" << "Wed"
<< "Thu" << "Fri";

t opAxi s- >set Short Label s(shortDays);

@StringLi st bottonLabel s;

bottomLabel s << "Day 1" << "Day 2" << "Day 3"
<< "Day 4" << "Day 5";

bot t omAXi s- >set Label s(bottonlLabels);

@St ringLi st shortBottonLabel s;

shortBottonlLabel s << "D1" << "D2" << "D3"

<< "D4" << "DB";

bot t omAXi s- >set Short Label s(short BottonLabel s);

Note

Labels specified via setl abel s take precedence: if a non-empty list is passed, KD Chart will
use these strings as axis labels, instead of cal culating them.

Finally the last step is to assign our axis to the diagram and the diagram to our chart view.

/] add axis

m | i nes->addAxi s(topAxis);
m | i nes->addAxi s(leftAxis);
m | i nes->addAxi s(bottomAxis);

/1 assign diagramto chart view

m chart - >coor di nat ePl ane() - >repl aceDi agram(m.lines);

Thisexampleisavailableto compile and run from theexanpl es/ Axi s/ Char t / directory inyour
KD Chart installation. We recommend checkig it out. The widget displayed by the above code is
shown in the figure below.

Figure5.2. Axiswith configured Labelsand Titles

= x Axes —l=fx
Abscissa color configured top position
Mon Tue Wed Thu Fri
3 3 ;
= -
2 =
t3 -
2 -
5] - =
= B -
£ 7 ST _—
2z N — \)G’;
2 e
3,
] : | : :
Day 1 Day 2 Day 3 Day 4 Day 5
Absdssa Bettom

63

Chapter 5

Severa ready to run examples related to axis are available at the following location exanpl es/
Axi s/, we recommend you to run them all and consult their implementation.

Note

Toreplacethe default tick marks/ l1abelsand have your own texts shown at your own positions
instead please use Cart esi anAxi s: : set Annot ati ons() as shown in this piece of
code:

Qvap< doubl e, QString > ordi nat eAnnot ati ons;

ordi nateAnnot ati ons[3.3] = "three point three";
ordi nateAnnot ations[7.5] = "seven and a hal f";
ordi nat eAnnot ati ons[16. 0] = "si xteen";

ordi nateAnnot ati ons[-8] = "m nus eight";

yAXi s- >set Annot at i ons(or di nat eAnnotations);

Chapter 6. Legends

Legends can be drawn for all kind of diagrams and are drawn at the chart level (in relation to diagram
level). We can have more than one legend per chart and add it to our chart or our widget view by using
respectively KDChart : : Chart: : addLegend() or KDChart:: Wdget: : addLegend()

Note

Legend isdifferent from all other classes of KD Chart, sinceit can be displayed outside of the
Chart's area. If we want to, we can embedd the legend into your own widget, or into another
part of abigger grid, into which we might have inserted the chart.

On the other hand, please note that we must call KDChart : : Chart: : addLegend() to
get our legend positioned at the correct position in our chart in case we want to display the
legend inside of the chart which is probably true for most cases.

L et usgo through the main configuration features offered by KDChar t : : Legend. Of coursewealso
recommend that you consult its APl Reerence as well as the documentation for KDChar t : : Char t
and KDChart::Wdget to have a complete idea over how to handle legends and what
configurations parameters are available.

How to configure

In order to add a legend to our chart we need to use the KDChart:: Chart: : addLegend()
method. The chart takes ownership of the legend and will take care of removing it by itself. The
KDChart: : Chart method above and the ones discussed in the paragraphs are similar for the
KDChart: : W dget class. Inorder to make the following description simpler wewill only mention
KDChart: : Chart inthefollowing paragraphs.

Tip
Youmay asowishtouseKDChart : : Chart repl aceLegend() whichisasoavailable

for convenience:

The old legend will be deleted automatically. If its parameter is omitted, the very first legend
will be replaced. In case, there was no legend yet, the new legend will just be added.

If you want to re-use the old legend, call takel egend and addL egend, instead of using replacel egend.

Note

KDChart:: Chart::takeLegend() Removes the legend from the chart without
deleting it. The chart no longer owns the legend, it is the caller's responsibility to delete the
legend.

The main configurations elementsfor KDChart : : Legend are:

» ReferenceArea: Specifies or retrieve the reference area for font size of title text and for font size
of the item texts.

» Diagrams: Add, retrieve, replace or remove diagrams associated to the legends.
* Position, alignment and orientation are of course configurable.
» Show Lines: Paint lines between the different items of alegend.

 Title, markers and text attributes can be set, aswell as colors and spacing.

65

Chapter 6

Note

The KDChart : : Posi ti on class, defines positions, using compass terminology. Using
this class you can specify one of nine pre-defined, logical points, in asimilar way, as you
would use a compass to navigate on a map.

Please consult the setters and getters methods available in the KDChar t : : Legend interface.

Legend Sample

We will now describe those features a more concrete way by looking at the following sample code
based onthe Si npl e W dget examplewe have been demonstrating abovein Chapter 3, Basic steps:
Create a Chart - the section called “Widget Example”. Through the following code we demonstrate
how to add and position a Legend to your chart Widget using a KDChart::Widget.

First include the appropriate headers and bring in the KDChar t namespace:

#i ncl ude <QApplication>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Bar Di agr an®
#i ncl ude <KDChart Position>

usi ng nanespace KDChart;

In this sample code we want to display a bar chart and need to include KDChar t Bar Di agr am In
order to be ableto giveaposition our legend inthewidget view wealsoincludeKDChar t Posi ti on.

int min(int argc, char** argv) {
QApplication app(argc, argv);

W dget wi dget;
wi dget . resi ze(600, 600);

Qvector< doubl e > vecO, vecl, vecZ;

vecO << -5 << -4 << -3 << -2 << -1 << 0
<< 1 << 2 << 3 << 4 << 5;

vecl << 25 << 16 << 9 <« 4 << 1 << O
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

wi dget . set Dat aset (0, vecO, "vO0");
wi dget . set Dataset (1, vecl, "v1");
wi dget . set Dat aset (2, vec2, "v2");
wi dget . set Type(Wdget::Bar);

Note

We need to change the default chart type (line charts) by caling the
KDChart:: Wdget: :set Type() method in order to display abar type diagram.

Now let us add our legend, set its position and orientation, its title and dataset labels text:

66

Chapter 6

Tips

wi dget . addLegend(Posi ti on:: North);

wi dget.firstLegend()->setOrientation(Q::Horizontal);
wi dget.firstLegend()->setTitleText("Bars Legend");

wi dget . firstLegend()->setText(0, "Vector 1");

wi dget . firstlLegend()->setText(1, "Vector 2");

wi dget . firstlLegend()->set Text(2, "Vector 3");

wi dget . firstLegend()->set ShowLi nes(true);

Theinteresting point hereishow wecall KDChart : : Wdget: : firstl egend() togetapointer
to to our legend object and be able to set up and configure it. We will see further on in the next
code example, see the section called “ Tips’ how to configure the elements of alegend (e.g Titletext,
markers, etc.).

Finally we conclude our small application by runnig the usual lines of code.

wi dget . show() ;

return app. exec();

See the screenshot below to view The resulting chart displayed by the above code.

Figure6.1. A Widget with a simple Legend

=l .&' SENUSITIPIENN _ = x
| Bars Legend
|.Vecmr1 | VecmrEl.VecmrS

AANARRARRRY
AN

This example can be compiled and run from the following location of your KD Chart installation
exanpl es/ Legends/ LegendSi npl e/ , we recommend doing so.

In the section called “Tips’ below, we will present you a more elaborate example which uses
KDChart : : Chart and where we are setting up our legend elements (title, texts, markers, etc...).

In this section we want to give you some examples about how to use some interesting features offered
by the KD Chart 2 API. We will study the code and display a screenshot showing the resulting widget.

Before we go through this example, let us study a very simple chart implementation with its legend
by looking at the following line of codes which we will comment.

67

Chapter 6

First and as we always do, we set up amodel, declare our diagram, and assign the model to it and the
diagram to our chart after having included the relevant header files.

#i ncl ude <Q Qui >

#i ncl ude <KDChart Chart >

#i ncl ude <KDChart Bar Di agr ane

#i ncl ude <KDChart Legend>

#i ncl ude <KDChart Position>

#i ncl ude <KDChart BackgroundAttri butes>
#i ncl ude <KDChart FranmeAttri but es>

usi ng nanespace KDChart ;

class ChartWdget : public QN dget ({
Q _OBJECT
publi c:
explicit ChartWdget (QN dget* parent=0) : QAW dget (parent)
{
m nodel . i nsert Rows(0, 2, Qwbdel I ndex());
m nodel . i nsert Colums(0, 3, Qwbdellndex());
for (int row = 0; row < 3; ++row) ({
for (int colum = 0; colum < 3; ++colum) {
Qwodel I ndex i ndex = m_nodel . i ndex(row, columm, QVodel | ndex());
m nodel . set Dat a(i ndex, Qvariant(row+l * colum));

}

Bar Di agr ant di agram = new Bar Di agr am
di agr am >set Model (&m nodel) ;

m chart . coor di nat ePl ane() - >r epl aceDi agr am(di agr am ;

Wewill set thelegend position aswell asits background and frame attributes and include those header
files on this purpose. That will allow us to make use of the methods available in those classes.

We will now add alegend and set it up (positions, orientations, etc...):

/1 Add a | egend and set it up

Legend* | egend = new Legend(diagram &mchart);
| egend- >set Posi ti on(Position::NorthEast);

| egend->set Alignment(Q::AlignCenter);

| egend- >set ShowLi nes(fal se);

| egend->set Titl eText(tr("Bars"));

| egend->setOrientation(Q::Vertical);

m chart . addLegend(| egend);

The code above handles the attributes specific to alegend, the setters and getters for the methods we
have used here are implemented in the KDChar t : : Legend class. We recommend you consult its
API Reference.

Set the Legend marker attributes. We want each dataset's marker to have its own marker style.
/1 Configure the items markers

Mar ker Attri butes | ng;
| ma. set Marker Styl e(Marker Attri butes:: Marker Di anond) ;

68

Chapter 6

| egend- >set Marker Attributes(0, |m);
| ma. set Marker Styl e(MarkerAttributes::MarkerCircle);
| egend- >set Marker Attributes(1, |m);

Markers are assigned per dataset as you can see above. You can learn more about the marker styles
and the methods available to configure markersinthe KDChar t : : Mar ker At t ri but es classAPI
Reference.

Let us now configure our legend's items text:

/1 Configure labels for Legend' s itens
| egend- >set Text(0, "Series 1");
| egend->set Text(1, "Series 2");
| egend- >set Text(2, "Series 3");

Each dataset can be assigned its own text. We want to change their pen color for demonstrating this
feature and also to make our legend nicer. We proceed as follow and configure their text attributes.

TextAttributes Ita;
I[ta.setPen(QPen(Q::darkGay));
| egend- >set Text Attributes(Ita);

Text attributes configuration and assignment is done as for al other types of attribute. Create a text
attribute object, configure it and assign it. In this case we assign it to our legend by using its method
KDChart:: Legend: :set TextAttri butes().

Tip

If we wish to paint a surrounding line round our legend markers we just need to configure
a pen and assign it to our legend by calling KDChart : : Legend: : set Pen() . See the
following code sample that demonstrate that.

/1 Configure a pen to surround

/1 the markers with a border

QPen nar ker Pen;

mar ker Pen. setColor(Q::darkGay);

mar ker Pen. set Wdth(2);

/1 Pending M chel use datasetCount() here as soon

/1 as it is fixed

for (uint i = 0; i < |legend->datasetCount(); i++)
| egend- >set Pen(i, markerPen);

Note

Mind the call to KDChart : : Legend: : dat aset Count () which alow you to retrieve
the count of the dataset and simply loop through it.

We want to make our legend more readable by setting a white background inside its frame.

/1 Add a background to your |egend
BackgroundAttri butes ba;
ba.setBrush(Q::white);
ba.setVisible(true);

69

Chapter 6

| egend- >set BackgroundAttri butes(ba);

Asfor all attribute settings, the code is straight forward. Just create the attribute object, configure it
and assign it. Werecommend you have alook at the KDChar t : : Backgr oundAt t ri but es class
APl Reference.

Let us now configure our legend's frame:

FranmeAttri butes fa;

fa.set Pen(markerPen);
fa.setPadding(5);

fa.setVisible(true);

| egend- >set FraneAttri butes(fa);

Same procedure as above. Please notetheset Vi si bl e() method which is necessary as the default
value hides those attributes.

Finally we will to conclude our small application.

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

}

private:
Chart mchart;
@St andar dl t enivodel m nodel ;

s

int min(int argc, char** argv) {
QApplication app(argc, argv);

Chart Wdget w;
w. show() ;

return app. exec();

}

#i ncl ude " mai n. npc"

The screenshot shows the chart of the code listened above.

Figure 6.2. Legend advanced example

~Legends

Position

| Show Lines |

Title

no
no

yes.
yes

o

East
South
West
North

1)

| add. || Edt. || Remove |

70

Chapter 6

This ready to run example is available at the following location exanpl es/ Legends/
LegendAdvanced/ of your KD Chart installation, we recommend you to study its code, compile
and run it.

What's next

You can aso add headers and/or footers to your chart to make it more understandable. In the next
section we will go through the several features and configuration possibilities availablein KD Chart 2
about "Headers and Footers".

71

Chapter 7. Header and Footers

Headers and footers can be added and configured in several ways. That will be the subject of this
section where we will go through the main features and methods available. Of course we recommend
you consulttheKDChar t : : Header Foot er classAPI Referenceto learn more about thosefeatures
and methods.

How to configure

In order to add a header or a footer to our chat we need to use the
KDChart:: Chart:: addHeader Foot er () method. The chart takes ownership and will take
care of removing it by itself. This method and the ones discussed in the next paragraphs of this section
aresimilar for themethodsof theKDChar t : : W dget class. Inorder to makethisdescription simpler
wewill only mention KDChart : : Chart there.

Tip
Youmay alsowishtouseKDChart : : Chart r epl aceHeader Foot er () whichisaso
available for convenience:

The new header or footer to be used instead of the old one must not be zero. Otherwise the
method will just do nothing. The second parameter of this method isthe header or footer to be
removed by the new one. This header or footer will be deleted automatically. If the parameter
is omitted, the very first header or footer will be replaced. In case, there was no header and
no footer yet, the new header or footer will just be added.

If you want to re-use the old header or footer, call takeHeaderFooter and addHeaderFooter, instead
of using replaceHeaderFooter.

Note

KDChart:: Chart::takeHeader Foot er () removes the header or footer from the
chart without deleting it. The chart no longer owns the header or footer, it is the caller's
responsibility to delete it.

The main configurations elements for KDChar t : : Header Foot er are:

* Type: Either KDChart: : Header Foot er : : Header or
KDChart : : Header Foot er : : Foot er

» Position: Allow the user to define or retrieve the header or footer position using compass
terminology.

» Text and text attributes can of course also be configured as we will seein the following examples.
Note
TheKDChart : : Posi ti on classdefines positions using compass terminology. Using this

class you can specify one of nine pre-defined, logical pointsin asimilar way, as you would
use a compass to navigate on a map. We recommend you consult its APl Reference.

Headers and Footers code Sample

We will now describe those features more in depth by looking at the following sample code based on
theSi npl e W dget example we have been demonstrating above in Chapter 3, Basic steps: Create

72

Chapter 7

a Chart - the section called “Widget Example’. Through the following code, we demonstrate how to
add and position a header and a footer to a chart Widget using aKDChart : : W dget .

First include the appropriate headers and bring in the KDChar t namespace:

#i ncl ude <QApplication>

#i ncl ude <KDChart W dget >

#i ncl ude <KDChart Bar Di agr ane
#i ncl ude <KDChart Position>

usi ng nanespace KDChart ;

In this sample code we want to display a bar chart and need to include KDChar t Bar Di agr am In
order to be able to give alocation (position) to our header and our footer in the widget view we also
include KDChar t Posi ti on.

int min(int argc, char** argv) {
QApplication app(argc, argv);

W dget wi dget;
wi dget . resi ze(600, 600);

QVector< double > vecO, vecl, vec?Z

vecO << -5 << -4 << -3 << -2 << -1 << 0
<< 1 << 2 << 3 << 4 << b5;

vecl << 25 << 16 << 9 << 4 << 1 << 0
<< 1 << 4 << 9 << 16 << 25;

vec2 << -125 << -64 << -27 << -8 << -1 << 0
<< 1 << 8 << 27 << 64 << 125;

wi dget . set Dataset (0, vecO, "v0");
wi dget . setDataset (1, vecl, "v1");
wi dget . set Dat aset (2, vec2, "v2");
wi dget . set Type(Wdget::Bar);

Note

We need to change the default chart type (Line Charts) by caling the
KDChart:: Wdget::set Type() method in order to display abar type diagram.

Now let us add our header and footer, set its position and its text.

wi dget . addHeader Footer ("A default Header - North",

Header Foot er: : Header, Position::North);
wi dget . addHeader Footer ("A default Footer - South",

Header Foot er: : Footer, Position::South);

As you can see the code above is straight forward and we just need to call
KDChart:: Wdget: : addHeader Foot er () passing the text, type and position we want to
assigntoit.

Finally we conclude our small application:

73

Chapter 7

Tips

wi dget . show() ;

return app. exec();

See the screenshot below to view The resulting chart displayed by the above code.

Figure7.1. A Widget with a header and a footer

= x >i 3 ri'i(fE'A'i*Hf:rw

A default Header - North

A default Footer - South

This example can be compiled and run from the following location of your KD Chart installation
exanpl es/ Header sFoot er s/ Header sFoot er sSi npl e/ .

In the section called “Tips’ below we will present you a more elaborate example which uses
KDChart : : Chart and where we are setting up our headers and footers (texts, background, frame
etc...).

In this section we want to give you some example about how to use some interesting features offered
by the KD Chart 2 API. Wewill study the code and display a screenshot showing the resulting widget.

Before we go through this example, let us study avery simple chart implementation with a configured
header by looking at the following lines of code which we will comment.

First, and as we always do, we set up amodel, declare our diagram, and assign the model to it and the
diagram to our chart after having included the relevant header files.

#i
#i
#i
#i
#i
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<Q Qi >

<KDChart Chart >

<KDChar t Bar Di agr ane

<KDChar t Header Foot er >
<KDChart Posi ti on>

<KDChart Backgr oundAttri but es>
<KDChart FranmeAttri but es>

usi ng nanespace KDChart;

74

Chapter 7

class ChartWdget : public QAN dget {
Q _OBJECT
public:
explicit ChartWdget (QWN dget* parent=0)
QW dget (par ent)
{

m nodel . i nsert Rows(0, 2, Qwbdel I ndex());
m nodel . i nsert Colums(0, 3, QwbdelIndex());
for (int row = 0; row < 3; ++row) ({
for (int colum = 0; colum < 3; ++colum) {
Qwbdel I ndex i ndex = m_nodel . i ndex(row, columm, QVodel | ndex());
m nodel . set Dat a(i ndex, Qvariant(row+l * colum));
}
}

Bar Di agr ant di agram = new Bar Di agr am
di agr am >set Model (&m nodel) ;

m chart . coor di nat ePl ane() - >r epl aceDi agr am(di agram ;

Wewill configure the header position as well asitstext, background and frame attributes and include
the header filesrelated to those attributes on this purpose. That will allow usto make use of the methods
available in these classes.

We will now add our header and set it up:

/1 Add at one Header and set it up

Header Foot er* header = new Header Footer(&mchart);
header - >set Posi ti on(Position::North);

header - >set Text("A Sinple Bar Chart");

m chart . addHeader Foot er (header);

The code above handles the attributes specific to headers and footers. The setters and getters for the
methods we have been used here are implemented in the KDChar t : : Header Foot er class. We
recommend you consult its APl Reference.

Let us configure the header text attributes and make sure the font will be resized together with the
widget in case the user resizesit.

/1 Configure the Header text attributes
Text Attributes hta(header->textAttributes());
hta.setPen(QPen(Q::blue));

/1 let the header resize itself
/1 together with the wi dget.
/] so-called relative size
Measure n(35.0);
m set Rel ati veMode(header - >aut oRef erenceArea(),
KDChar t Enuns: : MeasureOri entati onM ni num) ;
ht a. set Font Si ze(m);
/[l min font size
m set Val ue(3.0);
m set Cal cul ati onMode(KDChart Enuns: : Measur eCal cul ati onMbdeAbsol ute);
ht a. set M ni nal Font Si ze(m);

75

Chapter 7

/] assign
header - >set Text Attri butes(hta);

Our header text is now displayed using a blue pen, the fonts are configured to take arelative size.

We also want to configure a white background to make it nicer, and proceed as follows:

/1 Configure the header Background attri butes
BackgroundAttri butes hba(header->backgroundAttributes());
hba. setBrush(Q::white);

hba. setVisible(true);

header - >set Backgr oundAttri butes(hba);

As for al types of attributes we just need to create the attribute object, configure it and assign it to
our header.

The same processis applied to configure our header's frame attributes:

/1 Configure the header Frane attributes
FrameAttri butes hfa(header->franmeAttributes());
hf a. set Pen(QPen (Brush(Q::darkGay), 2));
hfa.setVisible(true);

header - >set FraneAttri butes(hfa);

In the code above we assign a pen to the frame attributes in order to get a Gray line around the frame.
Note

Same procedure as above. Please note the set Vi si bl e() method which is necessary as
the default value hides the attributes above.

Finally, we conclude our small application.

QvBoxLayout* | = new QvBoxLayout (this);
| - >addW dget (&m chart);
set Layout (1) ;

}

private:

Chart mchart;

@St andar dI t enivodel m nodel ;
1

int main(int argc, char** argv) {
QApplication app(argc, argv);

Chart Wdget w;
w. show() ;

return app. exec();

76

Chapter 7

#i ncl ude " mai n. noc"

See the screenshot below to view the resulting chart displayed by the above code.

Figure7.2. A Chart with a configured Header

A Simple Bar Chart

We recommend you compile and run the above example. It is available at the following location:
exanpl es/ Header sFoot er s/ Header sFoot er sPar anet ers/ .

Headers and Footers Example

In the following implementation we want to be able to:

+ Add, edit or remove headers and footers in/from our chart view.

» Configure their positions.

» Settheir text

* All of the above operations should be avail ableto the user from the GUI and performed dynamically.

Inthe example below weareusingaKDChart : : Chart classand also ahome made Tabl eMbdel
for convenience. It isderived from QAbst r act Tabl eModel .

We recommend you consult the "TableModel" interface and implementation files which are located
inthe exanpl es/ t ool s/ directory of your KD Chart installation.

L et us concentrate on our diagram _with_ axisimplementation for now and consult the following files:
other needed filesliketheui, pro, grc ,CSV and main.cpp files can be consulted from theexanpl es/
Header sFoot er s/ Advanced/ directory of your installation.

1
2
3

In the above code we bring up the KDChar t namespace as usual. As you can see we are using a
KDChart: : Chart object(m chart),aKDChart: : Li neDi agr amaobject (m | i nes), and
our home made Tabl eMbdel (m_nodel).

1
2
3

See the screenshot below to view The resulting chart displayed by the above code.

7

Chapter 7

Figure 7.3. Header s and Footer s advanced example

North Header
t West Header East Header
" porn South Header

28|19

North Footer
West Footer East Footer

South Footer

This ready to run example is available at the following location exanpl es/ Header sFoot er s/
Advanced/ of your KD Chart installation, we recommend you to study its code, compile and runiit.

What's next

The next chapter will be dedicated to KD Chart's Attributes Model which is derived indirectly from
QAbst r act Pr oxyModel and givesthe user flexibility in customizing her chart and its component
at different levels (whole diagram, per index, per row or column etc....).

78

Chapter 8. Customizing your Chart

Customizing your chart means configuring the attributes available for the different components of a
chart (e.g diagrams, legends, headers and footers etc...). In Chapter 4, Planes and Diagrams we have
been looking at the different attributes specific to a certain type of diagram (Line, Bar, Pie, etc...).
In this chapter we will go through the details of the attributes related to the elements of a chart and
also the ones common to all types of charts.

Attributes Model, Abstract Diagram

The KDChart:: Attri but esMdel class is derived from QAbstract ProxyModel and
used internally by the base class for al diagrams KDChart : : Abst ract Di agr am which
set Attri but esModel (Attri but eshbdel * nmodel) method associates an
AttributesModel with a diagram.

Note

The diagram does _not_ take ownership of the AttributesModel. This should thus only
be used with AttributesModels that have been explicitely created by the user. Setting an
AttributesModel that isinternal to another diagram will result in undefined behavior.

Let usillustrate the above assertion, the right way is:
/1 correct
AttributesMdel *am = new AttributeshMdel (nodel, 0);

di agraml- >set Attri but esModel (am);
di agr am2- >set Attri but esModel (am);

It would be wrong to proceed as follow:

/1 Wong
di agranil- >set Attri but esMobdel (di agranR->attri buteshvodel ());

To retrieve the attribute model associated to a particular diagram, we can make use of the
KDChart: : Abstract Di agrammethod at t ri but esModel () .

Note

By default each diagram ownsits own AttributesM odel, which should never be deleted. Only
if auser-supplied AttributesModel has been set does the pointer returned here not belong to
the diagram.

How it works

L et us make this more concrete by looking at the following methods for settings a Pen and extracted
fromKDChart: : Abstract Di agr anisinterface.

voi d set Pen(const Qwbdel | ndex& i ndex, const QPen& pen);
voi d setPen(int dataset, const Qen& pen);
voi d set Pen(const QPen& pen);

79

Chapter 8

Note

KDChart: : Abstract Di agr amdefines the interface, that needs to be implemented for
the diagram to function within the KD Chart framework. It extends Qt's AbstractitemView.

Those methods allow us to set the Pen to be used respectively: at a given index, for a given dataset,
or for al datasets in the model.

By looking a their implementations we can see how we make use of the
KDChart:: Attribut esModel methods set Data(), set Header Dat a(), and
set Mbdel Dat a() to achievethistask.

voi d AbstractDi agram : set Pen(const Qwdel | ndex& i ndex, const QPen& pen)
{

attri but esModel () - >set Dat a(

attri but esModel () - >mapFr onSour ce(i ndex),

gVvari ant Fromval ue(pen), DatasetPenRole);

}
voi d AbstractDi agram : set Pen(const QPen& pen)
{

attri but esModel () - >set Model Dat a(

gVvari ant Fromval ue(pen), DatasetPenRole);
}

voi d AbstractDi agram :setPen(int colum, const QPen& pen)

{
attri but esModel () - >set Header Dat a(

colum, Q::Vertical,
gVari ant FronVal ue(pen),
Dat aset PenRol e) ;

The above description to demonstrate how it works for almost all the attributes available for the
configuranble elements of a chart, and the flexibility of this approch.

Note

It isimportant to know that have three levels of precedence when setting the attributes:

» Global: Weak

* Per column: Medium

* Per cell: Strong
Once you have set the attributes for a column or a cell, you can not change those settings by calling
the "global" method to reset it to another value, but instead call the per column or per index setter as

demonstrated in the code above.

Seethe upper/left part of the screenshot below demonstrating ahow the scope of some attribute settings
might be selected:

80

Chapter 8

Figure8.1. Scope selection for Data Value Texts
[

Scope of settings
dataset itermn
A2

() One Bar: N
() A Series:

[%| Display Data \Walues

Kl
Q

|

Font: [Dejavu Sans

Relative Size: (25

minimum Size: [8

To see how this is done please have a look at the exanpl es/ Dat aVal ueText s/ example
program.

In the next section we will have a quick look at the attributes common to all chart types and elements
of achart and learn about the way to use them.

Data Tooltips and Comments

As of version KD Chart 2.2 two roles are supported for specifying tooltips (ballon help) and/or fixed
comment texts for any dataitem.

Specifying a data item tooltip

To haveatooltip shown for adataitem, just set it at the respective cell, e.g. for adatamodel containing
integer values you could do something like this:

const int row = 2;

const int colum = 3;
const QwWodel I ndex i ndex = m nodel .index(row, colum, Qwbdel lndex());

m _nodel . set Dat a(i ndex,
@St ring("<tabl e><tr><t d>Row</ t d><t d>Col urm</t d>"

"<td>Val ue</td></tr>"
"<tr><t h>%</t h><t h>9R2</t h><t h>%8</t h></tr></t abl e>")

.arg(row)
.arg(colum)
.arg(mnodel.data(index).tolnt()),

Q::Tool Ti pRol e);

Thisset Dat a() method call is al you need, KD Chart and Qt will do the job for you: Once the
mouse is resting over a dataitem (e.g. abar) the tooltip will be shown for awhile.

Specifying a fixed data item comment
To have a comment shown for a data item, just set it at the respective cell, e.g. for a data model

containing integer values you could do something like this:

const int row = O;
const int colum = 2;

81

Chapter 8

const QwWodel I ndex i ndex = m nodel .index(row, colum, Qwbdellndex());
m nodel . set Dat a(i ndex,
@String("Value %/ 9%: 938")
.arg(row)
.arg(colum)
.arg(mnodel.data(index).tolnt()),
KDChart:: Comrent Rol e);

Thisset Dat a() method call isall you need, KD Chart will then display a fixed comment next to
the respective item (e.g. next to a bar).

Note

While tooltips may be both QML texts and normal texts, fixed comments as of yet can only
be normal text. This might be changed in future versions of KD Chart depending on users
requests.

Data Values Attributes

The Data Value Attributes group all propertiesthat can be set in relation to data value texts and if and
how they are displayed. This includes things like the text attributes (font, color), what markers are
used, and how many decimal digits are displayed, etc.

We recommend you consult KDChart : : Dat aVal ueAt t ri but es' interface to find out more in
details what can be done. In this section we will describe quickly its main properties and go through
a commented example that will demonstrates how to proceed in order to use and configure those
attributes.

Data values can be set with some defined text, background, frame and markers. The list below gives
us an overview about the most used features. We will only list the setters here and explain them. Of
course each of those setters has a corresponding getter:

» setVisible(bool visible): Set whether data value texts should be displayed.
o setTextAttributes(const TextAttributes &a): Set the text attributes to use for the data value texts.

 setFrameAttributes(const FrameAttributes &a): Set the frame attributes to use for the data value
text areas.

 setBackgroundAttributes(const BackgroundAttributes &a): Set the background attributes to use
for the data value text areas.

» setMarkerAttributes(const MarkerAttributes &a): Set the marker attributes to use for the data
values. Thisincludes the marker type.

* void setDecimalDigits(int digits): Set how many decimal digits to use when rendering the data
value texts.

The process to configure the data value attributes for a diagram is very simple, and similar to all other
kind of attributes:

o Cdl the relevant attributes - eg We want to configure the font and colors we
need to configure the Text attributes and call them as follow: TextAttri butes
ta(dataval uesattrinbutes.textAttributes())

» Assign the configurated attributes to your data values attributes. eg cal
dat aval ueattributes. set TextAttributes(ta).

82

Chapter 8

* sat them as visdible implicitly and assign them to the diagram by calling the diagram method
di agr am >set Dat aVal ueAttri but es()

DataValue Attributes Sample code

Let us make this more concrete by looking at the following lines of code which describe the above
process. This example is based on the mai n. cpp file of the exanpl es/ Li nes/ Par anet er s/
dlightly modified. We recommend you compile and run this example and to study its code.

/1 Display val ues
/1 1 - Call the relevant attributes
Dat aVal ueAttri butes dva(diagram >dataVal ueAttributes());

/1 2 - W want to configure the font and colors
/1 for the data val ue text.
TextAttributes ta(dva.textAttributes());

/1 3 - Set up your text attributes
ta.setFont(Qont("Comic", 6));
ta.setPen(QPen(QColor(Q::darkGeen)));
ta.setVisible(true);

/1 4 - Assign the text attributes to your
/1 Dat aVal uesAttri butes

dva. set Text Attributes(ta);

dva. setVisible(true);

dva. setDecimal Digits(2);

dva.setSuffix(" Chnm');

/1 5 - Assign to the diagram
di agr am >set Dat aVal ueAttri butes(dva);

/1 6 - Assign the diagramto the chart
m chart. coor di nat ePl ane() - >r epl aceDi agr an(di agram ;

/1 nmake sure there is space to display the

/1 data value texts at the edges of the data area
m chart. set d obal Leadi ng(15, 15, 15, 15);

As we can see the code is straight forward and the process is similar as for setting all others types
of attributes.

See the screenshot below to view The resulting chart displayed by the above code.

83

Chapter 8

Figure8.2. A Chart with configured Data Value Texts

We recommend you modifying, compiling and runing the example at the following location:
exanpl es/ Li nes/ Paraneters/.

Data Values Labels: Details

Text

If you are interested in more details on positioning and/or customizing your data labels, have a look
at the example exanpl es/ Dat aVal ueText s/ .

Note that all data value attributes can be configured on three different levels, in increasing hierarchy:
» Global settings to be used if no other settings have been specified.

 Dataset-specific settings to be used if no cell-specific settings have been specified.
 Cell-specific settings to be used for one single cell.

The "Scope" radio buttons and spin boxes of this example allow for selecting which data range the
settings are to be applied to:

Figure 8.3. Positioning / adjusting Data L abels

) Bar Chart -l

% Display Data Values
Fort: [Arial Black [~
S|
e S—
=]
5]
sostre os
: B = v =
egave os:
=] v [100 2]
Padding Ha [0 13w 100 12

Custom Label:
Prefix:

Suffix:

Il

For information on how thisis done please study the APl Reference and also have alook at thisfile:
exanpl es/ Dat aVal ueText s/

Attributes

Text Attri but es encapsulates settings that have to do with text. This includes font, font size,
color, whether the text is rotated, etc...

Chapter 8

We recommend studying the KDChart : : Text Attri but es APl Reference to find out more in
details what can be done. In this section we will describe quickly its main properties and go through
a commented example that will demonstrate how to proceed in order to use and configure those
attributes.

Text attributes can be set with some defined font, pen, rotation etc... The text font size can be fixed or
relative (e.g it will adapt to the widget size), thelist below givesus an overview of the most commonly
used features. We will only list the setters here and explain them. Of course each of those setters has
a corresponding getter:

» satVisible(bool visible): Set whether text attributes should be displayed.
* setFont(const QFonté& font): Set the font to be used for rendering the text.
* void setFontSize(const Measure & measure): Set the size of the font used for rendering text

» setMinimalFontSize(const Measure & measure): Set theminimal size of thefont used for rendering
text.

 setRotation(int rotation): Set the rotation angle to use for the text.
* setPen(const QPen& pen): Set the pen to use for rendering the text.

The process to configure the text attributes any elements of a chart is very simple, and similar to all
other kind of attributes:

» Cdl thetext attributes - e.g We want to configure the font and colors we need to configure the Text
attributesand call themasfollow: Text Attri but es ta(header.text Attri butes())

e Assign the configurated attributes to your header attributes. eg cal
header. set Text Attributes(ta).

Text Attributes Sample code

Let us now look a the following lines of code which describe the above process.
This example is based on the mai n. cpp file of the exanpl es/ Header sFoot er s/
Header sFoot er sPar anet er s/ . Werecommend you compile and run this example and to study
its code.

/1 Configure the Header text attributes
Text Attributes hta(header->textAttributes());
hta.setPen(QPen(Q::blue));

/1 let the header resize itself

/1 together with the wi dget.

/1 so-called relative size

Measure n(35.0);

m set Rel ati veMode(header - >aut oRef erenceArea(),
KDChar t Enuns: : MeasureOri entati onM ni num) ;

ht a. set Font Si ze(m);

/1l min font size

m set Val ue(3.0);

m set Cal cul ati onMode(

KDChar t Enuns: : Measur eCal cul ati onModeAbsol ute);
ht a. set M ni nal Font Si ze(m);

/1 Assign thre text attributes

85

Chapter 8

/1 to our header.
header - >set Text Attri butes(hta);

As we can see the code is straight forward and the process is similar as with setting all others types
of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure8.4. A Chart with a configured Header

POIC Trectbisrootersparmeters. S R
A Simple Bar Chart

We recommend you to modify, compile and run the example at the following location: exanpl es/
Header sFoot er s/ Header sFoot er sPar anet ers/ .

Markers Attributes

MarkerAttributes encapsul ates settingsthat haveto do with markers. Thisincludestheir types (square,
diamond, ring etc...), size and colors. For convenience the user may also set up a map of markers.

We recommend you consult KDChar t : : Mar ker At t ri but es'interfaceto find out morein detail
what can be done. In this section we will describe quickly its main properties and go through a
commented example that will demonstrates how to proceed in order to use and configure those
attributes.

Marker attributes can be set with some defined type(s), size, color etc..., the list below gives us an
overview about the most used features. We will only list the setters here and explain them - Of course
each of those setters has a corresponding getter.

» setMarkerStyle(const MarkerStyle style): Set the style of the marker to be used.
» setMarkerSize(const QSizeF& size): Set the size of the marker.

» setMarkerColor(const QColor& color): Set the color of the marker.

 void setVisible(bool visible): Set whether marker attributes should be displayed.

o setMarkerStylesMap(MarkerStylesMap map): Define a map of marker to be used.

Note

Asdefinedinthe KDChart : : Mar ker sAtt ri but es classinterface the differnet marker
types available are;

86

Chapter 8

enum MarkerStyle { MarkerCircle
Mar ker Squar e
Mar ker Di anmond
Mar ker 1Pi xel
Mar ker 4Pi xel s
Mar ker Ri ng
Mar ker Cr oss
Mar ker Fast Cr oss

(T T TR TR I T
HoONAMWNEO

7},

The process of configuring the marker attributes is very simple and similar to al other kind of
attributes:

e Cdl the marker attributes - eg We want to configure their types and sizes we need to
configure the data values marker attributes and call them as follow: Marker Attri butes
ma(dva. markerAttributes())

* Assign the configurated attributes to your data values attributes. eg cal
dva. set Marker Attributes(m).

Markers Attributes Sample code

Let us make this more concrete by looking at the following lines of code which describe the
above process. This example is based on the mai nwi ndow. cpp file of the exanpl es/ Axi s/
Par anet er s/ . We recommend you compile and run this example and to study its code.

/]l set up a map with different marker styles

Mar ker Attri but es: : Marker Styl esMap nap;
map.insert(O, MarkerAttributes:: MarkerSquare);
map.insert(1, MarkerAttributes::MarkerCircle);
map.insert(2, MarkerAttributes:: MarkerRing);
map.insert(3, MarkerAttributes:: MarkerCross);
map.insert(4, MarkerAttributes:: MarkerDi anond);

/1 Configure markers per dataset in this exanple
const int col Count =
m_ | i nes->nodel ()->col umCount (m_| i nes->root | ndex());
for (int iColum = 0; iColumm<col Count; ++i Colum) {
Dat aVal ueAttri butes dva
(mlines->dataVal ueAttributes(i Colum));
Mar ker Attri butes ma(dva. markerAttributes());
ma. set Mar ker St yl esMap(nmap);
ma. set Mar ker Si ze(QSi ze(mar ker sW dt hSB- >val ue(),
mar ker sHei ght SB- >val ue()));

ma. setVisible(true);

/1 Assign markers attributes
/1l to Data values attributes
dva. set Marker Attri butes(nma);

/1 Assign Data Values Attributes to
/1 Di agr am
m | i nes- >set Dat aVal ueAttri butes(i Colum, dva);

87

Chapter 8

As we can see the code is straight forward and the process is similar as for setting al others types
of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure8.5. A Chart with configured Data Markers

S CinelChart = %

[] Display Data Values

Line Chart Type:

Normal

[%| Paint Lines

o

Markers:
[%| Paint Markers
Markers Style

Circle H

Markers Size:

We recommend you to modify, compile and run the example at the following location: See file:
exanpl es/ Axi s/ Par anet er s/ mai nwi ndow. cpp.

Value Tracker Attributes

Both, the KDChart: : Li neDi agramand the KDChart:: Pl ott er class, provide access to
KDChart: : Val ueTracker Attri but es alowing you to have extra lines drawn from a data
point to one of the axes, and/or to fill the area between that line and the axis using a brush.

Please have a look at the KDChart : : Val ueTr acker Attri but es interface for details on the
respective setter methods.

Usage of value trackersis demonstrated in exanpl es/ Li nes/ Advanced/ mai nwi ndow. cpp,
the following screenshot is taken from this example:

Figure8.6. A Line Chart showing Value Trackers

|| Display Data alues

Line Chart Type:

lNorma\ |v]

ThreeD Mode ThreeD Mode

[=]
["] ThreeD Mode ﬂ

Show Areas # 7

O] Highlight Area

Animate
[Highlight

‘alue tracker @ =

[%]:Enable value trackeri [3]%]

Reverse Axis ®--

["] Reverse abscissa axis

|| Reverse ordinate axis

88

Chapter 8

Note

As of yet, value tracker markers are just circles as shown in the screenshot and
the end of the tracker lines are these small arrow heads, but to be configured via
KDChart:: Val ueTracker Attri butes:: set Marker Si ze(). Additiona setup
options might be added to future versions of KD Chart depending on users' requests.

Background Attributes

Background attributes encapsul ate settings that have to do with backgounds for the diverse elements
of achart view. Thisincludes their modes (pixmap and its sub-modes and brush).

We recommend you consult KDChar t : : Backgr oundAt t ri but es'interfaceto find out morein
details what can be done. In this section we will describe quickly its main properties and go through
a commented example that will demonstrates how to proceed in order to use and configure those
attributes.

The list below gives us an overview about the most used features. We will only list the setters here
and explain them. Of course, each of those setters has a corresponding getter.

» setVisible(bool visible):
* setBrush(const QBrush &brush):
* setPixmapM ode(BackgroundPixmapM ode mode):

* setPixmap(const QPixmap & backPixmap):
Note

As defined in the KDChart:: BackgroundAttri butes' interface the different
Backgr oundPi xmapMode available are;

enum Backgr oundPi xmapMode {
Backgr oundPi xmapModeNone,
Backgr oundPi xmapModeCent er ed,
Backgr oundPi xmapModeScal ed,
Backgr oundPi xmapModeSt r et ched

The process to configure the background attributes is very simple, and similar to al other kind of
attributes:

* Call the background attributes and configure it.

* Assign the configurated attributes to the element of a chart.
el ement . set BackgroundAttri butes(ba).

Background Attributes Sample code

L et us makethismore clear by looking at thefollowing lines of code which describe the above process.
This example is based on the mai n. cpp file of the exanpl es/ Backgr ound/ . We recommend
you compile and run this example and to study its code.

89

Chapter 8

/1 Configure the plane's Background

BackgroundAttri butes pba(di agram >coordi nat ePl ane() - >backgroundAttri but es()
pba. set Pi xmap(*pi xmap);

pba. set Pi xmapMode(

BackgroundAttri but es: : Backgr oundPi xmapModeSt r et ched) ;

pba. setVisible(true);

di agr am >coor di nat ePl ane() - >set Backgr oundAttri butes(pba);

/1 Configure the Header's Background

BackgroundAttri butes hba(header->backgroundAttributes());
hba. set Brush(Q::white);

hba. setVisible(true);

header - >set Backgr oundAttri butes(hba);

As we can see the code is straight forward and the process is similar as for setting al others types
of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure8.7. A simple Bar Chart with a Background Image

“- EIFER P".i'l('lllll'l) — & X
|A Simple Bar Chart]

\‘\\\ |
' ~
I \
N

For details have alook at exanpl es/ Backgr ound/ .

Frame Attributes

Frame attributes encapsul ate settings that have to do with frames for the diverse elements of a chart
view. Thisincludes their pen and padding properties.

We recommend you consult KDChar t : : FranmeAt tri but es'interfaceto find out more in details
what can be done. In this section we will describe quickly its main properties and go through a
commented example that will demonstrates how to proceed in order to use and configure those
attributes.

The list below gives us an overview about the most used features. We will only list the setters here
and explain them - Of course each of those setters has a corresponding getter.

+ setVisible(bool visible):

* setPen(const QPen & pen):

90

Chapter 8

* setPadding(int padding):
The processto configure the frame attributes is very simple, and similar to all other kind of attributes:
 Call the frame attributes and configureiit.

* Assign the configurated atributes to the element of a chart
el ement . set FraneAttributes(fa).

Frame Attributes Sample code

Grid

Let us make this more concrete by looking at the following lines of code which describes the above
process. This example is based on the mai n. cpp file of the exanpl es/ Backgr ound/ . We
recommend you compile and run this example and to study its code.

/1 Configure the plane Frane attributes

FrameAttri butes pfa(di agram >coordi natePl ane()->franeAttributes());
pfa.setPen(QPen (@Brush(Q::blue), 2));

pfa.setVisible(true);

di agr am >coor di nat ePl ane() - >set FraneAttri butes(pfa);

/1 Configure the header Frane attributes
FrameAttri butes hfa(header->franeAttributes());
hfa. setPen(QPen (@Brush(Q::darkGay), 2));
hf a. set Paddi ng(2);

hfa.setVisible(true);

header - >set FraneAttri butes(hfa);

As we can see the code is straight forward and the process is similar as for setting al others types
of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure 8.8. A Chart with configured Frame Attributes

> EINEacRgrounc] I —N=fix

A Simple Bar Chart

\\\\
| ~
I ‘ N
™~

We recommend you check out the example at the following location: See file: exanpl es/
Backgr ound/ .

Attributes

Grid attributes encapsulates settings that have to do with grids. This includes their pen, step width,
visibility properties ...etc

91

Chapter 8

We recommend you consult KDChart : : Gri dAtt ri but es' interface to find out more in details
what can be done. In this section we will describe quickly its main properties and go through a
commented example that demonstrates how to proceed in order to use and configure those attributes.

The list below gives us an overview about the most used features. We will only list the setters here
and explain them. Of course, each of those setters has a corresponding getter.

» setGridVisible(bool visible): set whether the grid should be painted or not

o setGridStepWidth(greal stepWidth=0.0): set the distance between the lines of the grid

* setGridPen(const QPen & pen): set the main grid pen.

» setSubGridVisible(bool visible): Specify whether the sub-grid should be displayed.

* setSubGridPen(const QPen & pen): set the sub-grid pen.

 setZeroLinePen(const QPen & pen): set the zero line pen.

The process to configure the grid attributes is very simple, and similar to all other kind of attributes:
 Call the grid attributes and configure it.

» Assign the configurated attributes to the plane using one of the setter available, eg
Cart esi anCoor di nat ePl ane: : set Gri dAttri butes (Q::Oientation
orientation, const GidAttributes &). or
Abst ract Coor di nat ePl ane: : set d obal Gri dAttri butes (const
GidAttributes &)

Note

In case you want to set your grid attributes with orientation using the
Car t esi anCoor di nat ePl ane method above you will need to cast the result of
Car t esi anCoor di nat ePl ane: : coor di nat ePl ane() which returns a pointer to
Abst r act Coor di nat ePl ane as shown in the following example.

Otherwise you just need to set the grid attributes globally as follow:

GidAttributes ga = di agram >coordi nat ePl ane()->gl obal Gri dAttri butes();
ga.setd obal GidVisible(false);
di agr am >coor di nat ePl ane- >set 3 obal Gi dAttri butes(ga);

Grid Attributes Sample code

The following lines of code will show how to use grid atttributes. This example is based on the
mai n. cpp fileof theexanpl es/ G'i ds/ Cart esi anG i d/ . We recommend you compile and
run this example and to study its code.

/1 di agram >coordi nat ePl ane returns an abstract plane.
/1 if we want to specify the orientation we need to cast
/1 as follow
Cart esi anCoor di nat ePl ane* pl ane =
static_cast <CartesianCoordi nat ePl ane*>
(di agram >coordi nat ePl ane());

/1 retrieve your grid attributes

92

Chapter 8

/1 display grid and sub-grid

GidAttributes ga (plane->gridAttributes(Q::Vertical));
ga.setGidVisible(true);

ga. set SubGidVisible(true);

/1 Configure a grid pen

QPen gridPen(Q::magenta);
gri dPen.setWdth(3);
ga.setGidPen(gridPen);

/1 Configure a sub-grid pen

QPen subGidPen(Q::darkGay);
subGri dPen. set Styl e(Q:: DotLine);
ga. set SubGi dPen(subGidPen);

/1 Display a blue zero line
ga. set ZeroLi nePen(QPen(Q::blue));

/1 Assign your grid to the plane

pl ane->set Gri dAttributes(Q::Vertical, ga);

As we can see the code is straight forward and the process is similar as for setting al others types
of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

Figure8.9. A Chart with configured Grid Attributes

S TendEr _fiafix
|A Line Chart with Grid Configured|

We recommend you modify, compile and run the example at the following location. See file:
exanpl es/ Grids/ Cartesi anGi d/.

ThreeD Attributes

ThreeDAttributes properties are defined at different levels in the KD Chat 2 API.
We have the properties available to all types of diagram which are defined in the
KDChart: : Abstract ThreeDAttri butes and the ones specific to a type of diagram.
At the moment we support ThreeD for Bar, Lines and Pie diagrams and the ThreeD
attributes for those diagrams types are defined in their own attributes classes. We

93

Chapter 8

have KDChart:: ThreeDBar Attri butes, KDChart:: ThreeDLi neAttri butes and
KDChart:: ThreeDPi eAttri butes

ThreeD attributes encapsulates settings that have to do with 3D display. This includes their depth,
angle, rotation etc ... depending of the chart type we are working with.

We recommend you consult the KDChart : : Thr eeDAt t ri but es' interface to find out more in
details what can be done. In this section we will describe quickly its main properties and go through a
commented example that demonstrates how to proceed in order to use and configure those attributes.

The list below gives us an overview about the most commonly used features. We will only list the
setters here and explain them - Of course each of those setters has a corresponding getter.

1 - Generic (common to all diagrams) ThreeD Attributes

setEnabled(bool enabled): set whether threeD display mode is on or off.

setDepth(double depth): set the depth of the threeD effect (see example below).

2 - ThreeD Bar Attributes - Specific to bar diagrams.

» setAngle(uint threeDAngle): Not implemented yet

3 - ThreeD Line Attributes - Specific to line diagrams.

 setLineXRotation(const uint degrees): rotate the x coordinate.

 setLineY Rotation(const uint degrees): rotate the y coordinate.

4 - ThreeD Pie Attributes - Specific to Pie diagrams.

* setUseShadowColors(bool useShadowColors): Not implemented yet

The process to configure the grid attributes is very simple, and similar to al other kind of attributes:
 Cadl the 3D attributes and configureit.

» Assign the configurated attributes to the diagram by caling the available method
set ThreeDAt t ri but es() method.

ThreeD Attributes Example

Let us make this more concrete by looking at the following lines of code which describe the
above process. This example is based on the mai nwi ndow. cpp file of the exanpl es/ Bar s/
Advanced/ . We recommend you compile and run this example and to study its code.

ThreeDBar Attri butes td(mbars->threeDBarAttributes());

td. set Dept h(dept hSB->val ue());
td. set Enabl ed(true);

/1 Assign to the diagram
m bar s- >set ThreeDBar Attri butes(td);

As we can see the code is straight forward and the process is similar as for setting al others types
of attributes.

See the screenshot below to view the resulting chart displayed by the above code.

94

Chapter 8

Figure8.10. A Three-D Bar Chart
) J:i'- hr‘lih: £ =

[Display Data Values

13
X

Bar Chart Type:

Normal H

Pen Settings
[] Mark Column _E

Paint ThreeD Bars
% ThreeD

[X| Bars Depth |E—_E

Configure Width

[] Bars Width _a

We recommend you modify, compile and run the example at the following location: See file:
exanpl es/ Bar s/ Advanced/ .

Font Sizes and other Measures

Thischapter illustrates how to usethe KDChar t : : Measur e classto specify sizes. Closely related to
Measur e istheKDChart : : Rel ati vePosi ti on classexplained in the section called “ Relative
and Absolute Positions” following this one.

When and how to use the Measure class

KDChart : : Measur e isused to specify absolute values or relative measures to be re-calculated at
runtime according to the size of areference area, e.g. for font sizes or to define the distance between
atext and its anchor point.

» Absolutevaluesare used to set afixed measure, e.g. when the same font sizeisto be used, no matter
how large the chart widget is displayed.

» Relative measures specify values that are multiplied by 1/1000 of their reference area's width (or
height, resp.) at runtime. KD Chart uses thisto link the default legend fonts to the chart's size: The
legend is adjusted when your widget is resized.

Tip

TheKDChart :: Text Att ri but es class can handle both kinds of measures at the same
time: Y ou often might wish to specify arelative sizeviaset Font Si ze() and set afixed
valueviaset M ni mal Font Si ze() sothefont will bedynamically calculated according
to the area size but it will never be smaller than that specific minimum.

Being atypical valueclassMeasur e iscommonly initialized by the copy constructor sinceyou should
modify KD Chart's pre-defined settings rather than defining new ones from scratch. Fileexanpl es/
Li nes/ Par anet er s/ mai n. cpp shows how to do that:

/!l Retrieve the data value attrs fromyour diagram and retrieve their text att
Dat aVal ueAttri butes dva(di agram >dataVal ueAttributes());
TextAttributes ta(dva.textAttributes());

/! Retrieve the font size and increase its val ue
Measure nme(ta.fontSize());
ne. set Val ue(ne.value() * 1.25);

95

Chapter 8

/1 Make the data value texts visible
ta.setVisible(true);
dva. setVisible(true);

/1 Set the font size, set the text attrs, set the data value attrs
ta.setFontSize(e);

dva. set Text Attributes(ta);

di agr am >set Dat aVal ueAttri butes(dva);

How to specify absolute values

To specify an absolute value for a Measure that you have initialized via copy constructor please use
theset Absol ut eVal ue() method:

Measure nme(soneTextAttributes.fontSize());
ne. set Absol ut evVal ue(16);
soneText Attri but es. set Font Si ze(ne);

If you want to declare a new Measure from scratch just set the first two constructor parameters:
Measure ne(16, KDChartEnuns:: MeasureCal cul ati onMbdeAbsol ute);

In this case you can ommit the third parameter, since the orientation setting is ignored for absolute
values.

How to specify relative values

To specify arelative value for aMeasure (no matter if initialized via copy constructor or not) you can
useset Val ue() together with either set Rel ati veMode() or both set Ref er enceAr ea()
and/or set Ref erenceOri entati on(). Soif your measure was using a fixed font size before
you could say:

nme. set Val ue(25);
nme. set Rel ati veMbde(m chart, KDChart Enuns:: MeasureOrientati onM ni num) ;

Note that set Rel ati veMode() isaconvenience method that will implicitely enable the relative
calculation mode.

When not using setRel ativeMde() you need to explicitedy cal
set Cal cul ati onMbde(KDChart Enuns: : Measur eCal cul ati onModeRel ative),
if your Measure was not set to this mode before:

nme. set Val ue(25);

nme. set Ref erenceArea(mchart);

ne. set Ref erenceOri entati on(KDChart Enuns: : MeasureOri entati onM ni mum) ;

nme. set Cal cul at i onMode(KDChar t Enuns: : Measur eCal cul ati onModeRel ati ve);

In both casesthe reference areamust be derived from KDChar t : : Abst r act Ar ea or derived from
QW dget . The orientation can be Horizontal, Vertical, Minimum, Maximum, the later ones meaning
the area's gMin(width, height) or its gMax(), resp.

96

Chapter 8

Relative and Absolute Positions

What

This chapter covers the KDChart : : Posi ti on and KDChart: : Rel ati vePosi ti on classes.
For details on the closely related KDChar t : : Measur e class see the preceeding the section called
“Font Sizes and other Measures’.

IS relative positioning all about?

Introduced for floating objects in KD Chart 2.0, relative positioning is defining a point in relation to
areference point, that in turn is specified in relation to areference area.

Thisillustration showsthe nine position points defined for abar. Seethe magnified areafor therelative
positioning of negative/ positive data value texts.

Figure 8.11. Data value text positionsrelative to compass points

- 0E

- 04

How to specify a position

1. If necessary name areference area or define a set of reference points.
2. UseKDChart : : Posi ti on to pick one of the reference area's compass points.

3. Specify padding and alignment in horizontal and vertical direction.

Using Position and RelativePosition

[llustrated on the preceeding page you have seen the most common use of these position classes:
Defining the placement of data value textsin relation to their respective areas.

By default positive and negative data value texts are positioned in different ways: While positive
texts would use the bar's Posi ti on: : Nort hWest their negative counterparts are located next to
the Posi ti on: : Sout hEast point of the bar. Also the positive texts are using another way of
alignment than the negative ones.

Thereason for thisisto makeit easy to specify rotated data value texts: Because of different reference
points and alignment, the texts will look good even when rotated without the need of adjusting other
settings than just the rotation angle itself.

Being atypical value class Rel ati vePosi ti on iscommonly initialized by the copy constructor
since you should modify KD Chart's pre-defined settings rather than defining new ones from scratch,

97

Chapter 8

so you could specify non-rotated, centered texts as shown in the following code, that is using extra
indentation to indicate get/set relationship:

/!l Retrieve the data value attrs from your diagram
Dat aVal ueAttri butes dva(di agram >dataVal ueAttributes());

/1l Set the text rotation to Zero degrees

TextAttributes ta = dva.textAttributes();
ta.setRotation(0);

dva. set Text Attributes(ta);

/!l Retrieve the current position settings
Rel ati vePosi ti on posPositive(dva.position(true));
Rel ati vePosi ti on posNegati ve(dva.position(false));

/1 Choose the centered position points
posPositive. set Ref erencePosition(Position::North);
posNegati ve. set Ref erencePositi on(Position::South);

/1 Adjust the alignment of the texts:

/1 horizontally centered to their respective position points
posPositive.setAlignment(Q::AlignHCenter | Q::AignBottom);
posNegative.set Alignnent(Q::AlignHCenter | Q::AlignTop);

/1 Set the positions
dva. set Posi ti vePosition(posPositive);
dva. set Negati vePosi ti on(posNegative);

/1 NMake the data value texts visible
dva.setVisible(true);

/1l Set the data value attrs
di agr am >set Dat aVal ueAttri butes(dva);

What's next

Advanced charting.

98

Chapter 9. Advanced Charting

In this section we are presenting some examples to demonstrate interesting features offered by the
KD Chart 2 API by displaying the resulting widget and giving you alink to the directory in which you
can study the example code, compile and run it.

Example programs to consult

1-/exanpl es/ Axi s/ Par anet ers

Figure9.1. /examples/Axis/Parameters

VEENIETETETEE

Absclssa axis at the bottom

axis at the right side

2 -/ exanpl es/ Axi s/ Label s

Figure9.2. /examples/Axig/L abels

Line diagram using a custom axis class

Monday Tuesday Wednesdsy Thursday Friday Satrday Sunday Monday

a default Abscissa axis at the bottem

3-/exanpl es/ Bar s/ Advanced

99

Chapter 9

Figure9.3. /examples/Bar Advanced

v BanGhart

%/ Display Data Values

L)

4 - [exanpl es/ Header sFoot er s/ Header sFoot er s/ Advanced

Figure 9.4. /examples/Header sFooter s/Header sFooter Advanced

5-/exanpl es/ Legends/ LegendAdvanced

Figure 9.5. /examples/L egends/L egendAdvanced

L]

G

[Add.][Edt. |[Remove |

6 -/ exanpl es/ Li nes/ Advanced

100

Chapter 9

Figure 9.6. /examples/Lines/Advanced

3 iR Chart: =k
% Display Data Values 3

Line Chart Type:

Show Areas
[Highlight Area (3 [Z]

Animate

[] Highlight 1.5 15

7 -1 exanpl es/ Pl ott er/ Bubbl eChart

Figure 9.7. /examples/Plotter/BubbleChart

S Bubble chart =l

N\ A

N/

Emimran
\

S
~O

8-/ exanpl es/ Model Vi ew Tabl eVi ew

Figure 9.8. /examples/M odel View/T ableView

KD)Chart used|as itemviewer together with|a Qlableview

Quantity | Prod You can edit the table data, or select table cells with keyboard/mouse.

2 13 n
aB
4 13 5
B o
s_ll 3
9_7 8
10/ 2
mn o

\:;I
i
(um

9-/ exanpl es/ Pi e/ Advanced

101

Chapter 9

Figure9.9. /examples/Pie/Advanced

SC_ e i

¢"

Start position: |4.00 H‘

% 3D
foor [i5 %

Explode

Dataset

[] Animate

10-/ exanpl es/ Shar edAbsci ssa

Figure 9.10. /examples/Shar edAbscissa

Sz K Shersdpdeciss —
B ===== j\,f'ji:(— ——— L

11-/ exanpl es/ W dget / Advanced

Figure9.11. /examples’Widget/Advanced

Header West Header Center Header East

Footer West Footer Center Footer East

Leading: Select type: | Widget::Bar H
2538 | Add dataset

12 -/ exanpl es/ Zooni Keyboar d

102

Chapter 9

Figure 9.12. /lexamples/Zoom/K eyboard

S halix
Zoormn Example
Legend|
e __7——____ |
= Bz
.

zoom infout: PageDn / Pagelp

pan around: Left / Right / Up / Down

13-/ exanpl es/ Zoom Scrol | Bars

Figure9.13. /examples/Zoom/ScrollBars

- ~ . Axes
Zooming:

Zoom Factor:

L=li= %]

=

%] auto-adjust the Grid

(%] Enabled Rubberband zooming

Ordinate axis at the left side
i

1001112 13 14 15 15 17 18 19 W

Abscissa axis at the bottorn

.

103

Appendix A. Q&A section

A.l. Building and installing KD Chart

A.1.1.How can | build and install KD Chart from source?

Procedure to follow for building and installing KD Chart is described infilel nstal | . src,
please refer to that file for details.

A.1.2.How can | install the Designer Plug-in?
This can be done either manually or automatically:

e manual installation:

Note

This step is only needed if you did not install KD Chart top-level, as described in
the previous answer:

Go to the pl ugi ns directory of your KD Chart source installation. Run nake
i nstal | (Unix/Linux, Mac, ...), or nnmake i nstal |l (Windows)

Now find the Plug-in file in the | i b/ pl ugi n/ directory of your KD Chart installation
path: For Unix/Linux, Mac: / usr/ | ocal / KDAB/ KDChart - VERSI OV | i b/ pl ugi n
For Windows that is; C: \ KDAB\ KDChar t - VERSI O\\ | i b\ pl ugi n\ From there you
can either copy it into your desired QT'splugin path, e.g. thismight be $QTDI R/ pl ugi ns/
desi gner/, or you can set the QT_PLUG N_PATH environment variable before running
the designer. If set, Qt will look for plugins in the paths (separated by the system path
separator) specified in the variable.

» automatic installation: Thiswill copy the Plug-in into the QT plugin path, e.g. this might be
$QTDI R/ pl ugi ns/ desi gner/

Gotothepl ugi ns directory of your KD Chart sourceinstallation Runmake di st cl ean
(Unix/Linux, Mac, ...), or nmake di st cl ean (if using Windows) Run gmake CONFI G
+=install-qt Run make install (Unix/Linux, Mac, ...), or nmake i nstall

(Windows)

A.2. User interaction
A.2.1.How can | connect adiagram to aQrabl eVi ew?

As KD Chart 2 fully supports the "Interview" model/view paradigm introduced by Qt 4
connecting adiagram to aQTabl eVi ewisaseasy asusingaQ t enSel ect i onModel .

Have alook at the file exanpl es/ Model Vi ew Tabl eVi ew nmai nwi ndow. cpp to see
how this is done in the Mai nW ndow: : set upVi ews() method and/or study the Qt API
Reference documentation.

A.2.2.How can | run my own code on mouse click at diagram data?

As KD Chart 2 fully supports the "Interview" model/view paradigm introduced by Ot
4 having your own Sl ot method invoked on mouse click can be achieved by using a
Q tentel ecti onMbdel and connectingtoitssel ecti onChanged() signal.

Have a look at the file exanpl es/ Model Vi ew Tabl eVi ew mai nwi ndow. cpp
to see how the connection is declared in the constructor. Using information in the

104

Appendix A

signal's Q tenBel ecti on parameters any (de)selected bars are (un)marked in the
Mai nW ndow. : sel ecti onChanged() method.

Of course you could aso show adialog there to display additional datato the user, or you might
want to fill some QLabel withinformation onitemsclicked ...

A.2.3.How can | let the user zoom at diagram data by rubberbanding?

As rubberbanding is explicitely supported by the
KDChart: : Abstract Coordi nat ePl ane class you can just cal its method
set Rubber BandZoomi ngEnabl ed(bool). The plane will transparently use a
(QRubber Band initsmousePr essEvent () for the left button and it will adjust its zoom
factor setting automatically too, aswell as call its parent'supdat e() method.

Have alook at the file exanpl es/ Zoont Scr ol | Bar s/ mai nwi ndow. cpp making use
of thisfeature.

A.3. Storing / loading of KD Chart settings
A.3.1.How can | store KD Chart settingsto afile?
Thiscan bedone by usingthe KDChart : : Seri al i zer class.

Note that KDChart:: Seri al i zer isdependent on your Qt library containing the @ Xm
module which provides C++ implementations of SAX and DOM so having the serializer in a
library of its own allows you to build KD Chart even if your version of Qt does not include
the XML module.

To build the serializer library, just run

cd kdchartserializer
gmake
make (or nnake, for W ndows, resp.)

The examplesin kdchart seri al i zer/ exanpl es/ show how to use the serializer and
how to connect your diagram(s) to the data model(s) after the serializer has finished loading
the settings.

A.4. Dynamic data/ Look and Feel

A.4.1.How can | change (or add, resp.) data of an existing chart?

As KD Chart 2 fully supports the "Interview" model/view framework introduced by Qt 4
modifying your data model is automatically reflected by your views, i.e. your LineDiagram is
updated and axes re-calculated if necessary.

Have a look a exanpl es/ Real Ti ne/ mai n. cpp where this is done by the
sl ot Ti meout () methodjust callingm nodel . set Dat a() . Of courseyou could also use
thei nsert Rows() method of the model to add new data cells, or you could remove some
data ... For details see the APl Reference of the Qt QSt andar dl t emvbdel class.

A.4.2.How do | use fixed bar width so the chart gets wider when data are added?

The new method set Fi xedDat aCoor di nat eSpaceRel ati on(bool) provided by
theKDChart : : Cart esi anAxi s class can be used to lock the currently active bar width, it
disables the default width adjusting so you can no longer expect all of the data to fit into the
available space.

105

Appendix A

Adding more data will then keep the same bar width: The coordinate plane will grow wider,
so you might consider embedding your KDChart : : Chart (or your KDChart : : W dget
resp.) inaQScr ol | Ar ea to make sure all of it will fit into your application's window without
that growing too large.

A.4.3.How can | make the axes arealook like a contiguous region?

By using the same Br ush withset Backgr oundAt t ri but es() of both of the axesyou
make KD Chart show their areas as one region: An additional rectangular areawill be inserted
inthe axes' corner to make the axesform an'L' shaped region, asshowninexanpl es/ Axi s/
Label s/.

A.5. Contacting KD Chart Support

A.5.1.How can | get help (or report issues, resp.) on KD Chart?

To report issues/problems, or ask for help on KD Chart please send your mail with adescription
of your problem/question/wishes to the support address given to you with your license. Please
include adescription of your setup: CPU type, operating system with release number, compiler
(version) used, any changes you made on libraries that are linked to ... Just include every detail
that might help us set up a comparable test environment in our labs.

In most casesit will make senseto include asmall sample program showing the problemyou are
describing: We will then reproduce the issue on our machines and either fix your sample code
or adjust our own code (in case your reported issue might turn out to result from sub-optimal
implementation in KD Chart).

Note

Providing us with a compilable sample program file will help us find a good solution
for the problem reported, as we will be using the same code that you have been trying
to use yourself.

Often the easiest way to create such a sample program could be to modify one of our programs
and send the source file, e.g. if you have modified exanpl es/ Bar s/ Si npl e/ mai n. cpp
to show what you are trying to achieve you can just send usthe mai n. cpp file and state that
itisatobeusedinexanpl es/ Bar s/ Si npl e/ .

106

