OpenFOAM logo
Open Source CFD Toolkit

nonLinearWallFunctionsI.H

Go to the documentation of this file.
00001 /*---------------------------------------------------------------------------*\
00002   =========                 |
00003   \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
00004    \\    /   O peration     |
00005     \\  /    A nd           | Copyright (C) 1991-2005 OpenCFD Ltd.
00006      \\/     M anipulation  |
00007 -------------------------------------------------------------------------------
00008 License
00009     This file is part of OpenFOAM.
00010 
00011     OpenFOAM is free software; you can redistribute it and/or modify it
00012     under the terms of the GNU General Public License as published by the
00013     Free Software Foundation; either version 2 of the License, or (at your
00014     option) any later version.
00015 
00016     OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
00017     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
00019     for more details.
00020 
00021     You should have received a copy of the GNU General Public License
00022     along with OpenFOAM; if not, write to the Free Software Foundation,
00023     Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
00024 
00025 Global
00026     nonlinearwallFunctions
00027 
00028 Description
00029     Calculate wall dissipation for non-linear models.
00030 
00031 \*---------------------------------------------------------------------------*/
00032 
00033 {
00034     labelList cellBoundaryFaceCount(epsilon_.size(), 0);
00035 
00036     const fvPatchList& patches = mesh_.boundary();
00037 
00038     //- Initialise the near-wall G and epsilon fields to zero
00039     forAll(patches, patchi)
00040     {
00041         const fvPatch& curPatch = patches[patchi];
00042 
00043         if (isType<wallFvPatch>(curPatch))
00044         {
00045             forAll(curPatch, facei)
00046             {
00047                 label faceCelli = curPatch.faceCells()[facei];
00048 
00049                 epsilon_[faceCelli] = 0.0;
00050                 G[faceCelli] = 0.0;
00051             }
00052         }
00053     }
00054 
00055     //- Accumulate the wall face contributions to epsilon and G
00056     //  Increment cellBoundaryFaceCount for each face for averaging
00057     forAll(patches, patchi)
00058     {
00059         const fvPatch& curPatch = patches[patchi];
00060 
00061         if (isType<wallFvPatch>(curPatch))
00062         {
00063 #           include "checkPatchFieldTypes.H"
00064 
00065             const scalarField& nuw = nu().boundaryField()[patchi];
00066             const scalarField& nutw = nut_.boundaryField()[patchi];
00067 
00068             scalarField magFaceGradU = mag(U_.boundaryField()[patchi].snGrad());
00069 
00070             forAll(curPatch, facei)
00071             {
00072                 label faceCelli = curPatch.faceCells()[facei];
00073 
00074                 //- using local Cmu !
00075                 scalar Cmu25 = pow(Cmu[faceCelli], 0.25);
00076                 scalar Cmu75 = pow(Cmu[faceCelli], 0.75);
00077 
00078                 scalar yPlus =
00079                     Cmu25*y_[patchi][facei]
00080                     *sqrt(k_[faceCelli])
00081                     /nuw[facei];
00082 
00083                 // For corner cells (with two boundary or more faces),
00084                 // epsilon and G in the near-wall cell are calculated
00085                 // as an average
00086 
00087                 cellBoundaryFaceCount[faceCelli]++;
00088 
00089                 epsilon_[faceCelli] +=
00090                      Cmu75*pow(k_[faceCelli], 1.5)
00091                     /(kappa_*y_[patchi][facei]);
00092 
00093                 if (yPlus > yPlusLam_)
00094                 {
00095                     G[faceCelli] +=
00096                         nutw[facei]*magFaceGradU[facei]
00097                         //-*0.5*log(2.0*yPlus/yPlusLam_)    //  UMIST correction
00098                         *Cmu25*sqrt(k_[faceCelli])
00099                         /(kappa_*y_[patchi][facei])
00100                       - (nonlinearStress[faceCelli] && gradU[faceCelli]);
00101 
00102                     // N.B. non - linear stress term added on to wall functions
00103                 }
00104             }
00105         }
00106     }
00107 
00108     // Perform the averaging
00109 
00110     forAll(patches, patchi)
00111     {
00112         const fvPatch& curPatch = patches[patchi];
00113 
00114         if (isType<wallFvPatch>(curPatch))
00115         {
00116             forAll(curPatch, facei)
00117             {
00118                 label faceCelli = curPatch.faceCells()[facei];
00119 
00120                 epsilon_[faceCelli] /= cellBoundaryFaceCount[faceCelli];
00121                 G[faceCelli] /= cellBoundaryFaceCount[faceCelli];
00122             }
00123         }
00124     }
00125 }
00126 
00127 
00128 // ************************************************************************* //
For further information go to www.openfoam.org