
An Erlang Course
This is the content of the Erlang course. This course usually takes four days to complete. It is divided
into 5 modules and has a number of programming exercises.

This course is available in various formats:

For on-line reading at http://www.erlang.org/course/course.html
A Zip archive that contains the HTML files.
A gzipped TAR archive that contains the HTML files.
A PDF file.

Module 1 - History
A short history of the Erlang language describing how Erlang was developed and why we had to
invent a new language.

Module 2 - Sequential Programming
Symbolic data representation, how pattern matching is used to pack/unpack data, how functions are
combined to form programs etc.

Module 3 - Concurrent Programming
Creating an Erlang process, communication between Erlang processes.

Module 4 - Error handling
Covers error handling and the design of robust systems.

Module 5 - Advanced Topics
All those tricky things like loading code in running systems, exception handling etc.

http://www.erlang.org/course/course.html
http://www.erlang.org/download/course.zip
http://www.erlang.org/download/course.tar.gz
http://www.erlang.org/download/course.pdf

History of Erlang

1982 - 1985
Experiments with programming of telecom using > 20 different languages. Conclusion: The language
must be a very high level symbolic language in order to achive productivity gains ! (Leaves us with:
Lisp , Prolog , Parlog ...)

1985 - 86
Experiments with Lisp,Prolog, Parlog etc. Conclusion: The language must contain primitives for
concurrency and error recovery, and the execution model must not have back-tracking. (Rules out Lisp
and Prolog.) It must also have a granularity of concurrency such that one asyncronous telephony
process is represented by one process in the language. (Rules out Parlog.) We must therefore develop
our own language with the desirable features of Lisp, Prolog and Parlog, but with concurrency and
error recovery built into the language.

1987
The first experiments with Erlang.

1988
ACS/Dunder Phase 1. Prototype construction of PABX functionality by external users Erlang escapes
from the lab!

1989
ACS/Dunder Phase 2. Reconstruction of 1/10 of the complete MD-110 system. Results: >> 10 times
greater gains in efficency at construction compared with construction in PLEX!

Further experiments with a fast implementation of Erlang.

1990
Erlang is presented at ISS’90, which results in several new users, e.g Bellcore.

1991
Fast implementation of Erlang is released to users. Erlang is represented at Telecom’91 . More
functionality such as ASN1 - Compiler , graphical interface etc.

1992
A lot of new users, e.g several RACE projects. Erlang is ported to VxWorks, PC, Macintosh etc.
Three applications using Erlang are presented at ISS’92. The two first product projects using Erlang
are started.

1993
Distribution is added to Erlang, which makes it possible to run a homgeneous Erlang system on a
heterogeneous hardware. Decision to sell implementations Erlang externally. Separate organization in
Ericsson started to maintain and support Erlang implementations and Erlang Tools.

Sequential Programming

Numbers.
Integers
Floats

Atoms
Tuples
Lists
Variables
Complex Data Structures
Pattern Matching
Function Calls
The Module Systems
Starting the system
Built in Functions (BIFs)
Function syntax
An example of function evaluation
Guarded function clauses

Examples of Guards
Traversing Lists
Lists and Accumulators
Shell commands
Special Functions
Special Forms

Numbers
Integers

 10
 -234
 16#AB10F
 2#110111010
 $A

Floats

 17.368
 -56.654
 12.34E-10.

B#Val is used to store numbers in base < B >.
$Char is used for ascii values (example $A instead of 65).

Back to top

Atoms
 abcef
 start_with_a_lower_case_letter
 ’Blanks can be quoted’
 ’Anything inside quotes \n\012’

Indefinite length atoms are allowed.
Any character code is allowed within an atom.

Back to top

Tuples
 {123, bcd}
 {123, def, abc}
 {person, ’Joe’, ’Armstrong’}
 {abc, {def, 123}, jkl}
 {}

Used to store a fixed number of items.
Tuples of any size are allowed.

Back to top

Lists
 [123, xyz]
 [123, def, abc]
 [{person, ’Joe’, ’Armstrong’},
 {person, ’Robert’, ’Virding’},
 {person, ’Mike’, ’Williams’}
]
 "abcdefghi"
 becomes - [97,98,99,100,101,102,103,104,105]
 ""
 becomes - []

Used to store a variable number of items.
Lists are dynamically sized.
"..." is short for the list of integers representing the ascii character codes of the enclosed within
the quotes.

Back to top

Variables
 Abc
 A_long_variable_name
 AnObjectOrientatedVariableName

Start with an Upper Case Letter.
No "funny characters".
Variables are used to store values of data structures.
Variables can only be bound once! The value of a variable can never be changed once it has been
set (bound).

Back to top

Complex Data Structures
 [{{person,’Joe’, ’Armstrong’},
 {telephoneNumber, [3,5,9,7]},
 {shoeSize, 42},
 {pets, [{cat, tubby},{cat, tiger}]},
 {children,[{thomas, 5},{claire,1}]}},
 {{person,’Mike’,’Williams’},
 {shoeSize,41},
 {likes,[boats, beer]},
 ...

Arbitrary complex structures can be cre- ated.
Data structures are created by writing them down (no explicit memory alloca- tion or deallocation
is needed etc.).
Data structures may contain bound vari- ables.

Back to top

Pattern Matching
 A = 10
 Succeeds - binds A to 10

 {B, C, D} = {10, foo, bar}
 Succeeds - binds B to 10, C to foo and D
 to bar

 {A, A, B} = {abc, abc, foo}
 Succeeds - binds A to abc, B to foo

 {A, A, B} = {abc, def, 123}
 Fails

 [A,B,C] = [1,2,3]
 Succeeds - binds A to 1, B to 2, C to 3

 [A,B,C,D] = [1,2,3]
 Fails

Back to top

Pattern Matching (Cont)
 [A,B|C] = [1,2,3,4,5,6,7]
 Succeeds - binds A = 1, B = 2,
 C = [3,4,5,6,7]

 [H|T] = [1,2,3,4]
 Succeeds - binds H = 1, T = [2,3,4]

 [H|T] = [abc]
 Succeeds - binds H = abc, T = []

 [H|T] = []
 Fails

 {A,_, [B|_],{B}} = {abc,23,[22,x],{22}}
 Succeeds - binds A = abc, B = 22

Note the use of "_", the anonymous (don’t care) variable.

Back to top

Function Calls
 module:func(Arg1, Arg2, ... Argn)

 func(Arg1, Arg2, .. Argn)

Arg1 .. Argn are any Erlang data struc- tures.
The function and module names (func and module in the above) must be atoms.
A function can have zero arguments. (e.g. date() - returns the current date).
Functions are defined within Modules.
Functions must be exported before they can be called from outside the module where they are
defined.

Back to top

Module System
 -module(demo).
 -export([double/1]).

 double(X) ->
 times(X, 2).

 times(X, N) ->
 X * N.

double can be called from outside the module, times is local to the module.
double/1 means the function double with one argument (Note that double/1 and double/2 are two
different functions).

Back to top

Starting the system
 unix> erl
 Eshell V2.0
 1> c(demo).
 double/1 times/2 module_info/0
 compilation_succeeded
 2> demo:double(25).
 50
 3> demo:times(4,3).
 ** undefined function:demo:times[4,3] **
 ** exited: {undef,{demo,times,[4,3]}} **
 4> 10 + 25.
 35
 5>

c(File) compiles the file File.erl.
1> , 2> ... are the shell prompts.
The shell sits in a read-eval-print loop.

Back to top

Built In Functions (BIFs)
 date()
 time()
 length([1,2,3,4,5])
 size({a,b,c})
 atom_to_list(an_atom)
 list_to_tuple([1,2,3,4])
 integer_to_list(2234)
 tuple_to_list({})

Are in the module erlang.
Do what you cannot do (or is difficult to do) in Erlang.
Modify the behaviour of the system.
Described in the BIFs manual.

Back to top

Function Syntax
Is defined as a collection of clauses.

 func(Pattern1, Pattern2, ...) ->
 ... ;
 func(Pattern1, Pattern2, ...) ->
 ... ;
 ...
 func(Pattern1, Pattern2, ...) ->

Evaluation Rules

Clauses are scanned sequentially until a match is found.
When a match is found all variables occurring in the head become bound.
Variables are local to each clause, and are allocated and deallocated automatically.
The body is evaluated sequentially.

Back to top

Functions (cont)
 -module(mathStuff).
 -export([factorial/1, area/1]).

 factorial(0) -> 1;
 factorial(N) -> N * factorial(N-1).

 area({square, Side}) ->
 Side * Side;
 area({circle, Radius}) ->
 % almost :-)
 3 * Radius * Radius;
 area({triangle, A, B, C}) ->
 S = (A + B + C)/2,
 math:sqrt(S*(S-A)*(S-B)*(S-C));
 area(Other) ->
 {invalid_object, Other}.

Back to top

Evaluation example
 factorial(0) -> 1;
 factorial(N) ->
 N * factorial(N-1)

 > factorial(3)
 matches N = 3 in clause 2
 == 3 * factorial(3 - 1)
 == 3 * factorial(2)
 matches N =2 in clause 2
 == 3 * 2 * factorial(2 - 1)
 == 3 * 2 * factorial(1)
 matches N = 1 in clause 2
 == 3 * 2 * 1 * factorial(1 - 1)
 == 3 * 2 * 1 * factorial(0)
 == 3 * 2 * 1 * 1 (clause 1)
 == 6

Variables are local to each clause.
Variables are allocated and deallocated automatically.

Back to top

Guarded Function Clauses
 factorial(0) -> 1;
 factorial(N) when N > 0 ->
 N * factorial(N - 1).

The reserved word when introduces a guard.
Fully guarded clauses can be re-ordered.

 factorial(N) when N > 0 ->
 N * factorial(N - 1);
 factorial(0) -> 1.

This is NOT the same as:

 factorial(N) ->
 N * factorial(N - 1);
 factorial(0) -> 1.

(incorrect!!)

Back to top

Examples of Guards
 number(X) - X is a number
 integer(X) - X is an integer
 float(X) - X is a float
 atom(X) - X is an atom
 tuple(X) - X is a tuple
 list(X) - X is a list

 length(X) == 3 - X is a list of length 3
 size(X) == 2 - X is a tuple of size 2.

 X > Y + Z - X is > Y + Z
 X == Y - X is equal to Y
 X =:= Y - X is exactly equal to Y
 (i.e. 1 == 1.0 succeeds but
 1 =:= 1.0 fails)

All variables in a guard must be bound.
See the User Guide for a full list of guards and allowed function calls.

Back to top

Traversing Lists
 average(X) -> sum(X) / len(X).

 sum([H|T]) -> H + sum(T);
 sum([]) -> 0.

 len([_|T]) -> 1 + len(T);
 len([]) -> 0.

Note the pattern of recursion is the same in both cases. This pattern is very common.

Two other common patterns:

 double([H|T]) -> [2*H|double(T)];
 double([]) -> [].

 member(H, [H|_]) -> true;
 member(H, [_|T]) -> member(H, T);
 member(_, []) -> false.

Back to top

Lists and Accumulators
 average(X) -> average(X, 0, 0).

 average([H|T], Length, Sum) ->
 average(T, Length + 1, Sum + H);
 average([], Length, Sum) ->
 Sum / Length.

Only traverses the list ONCE
Executes in constant space (tail recursive)
The variables Length and Sum play the role of accumulators
N.B. average([]) is not defined - (you cannot have the average of zero elements) - evaluating
average([]) would cause a run-time error - we discuss what happens when run time errors occur
in the section on error handling .

Back to top

Shell Commands
 h() - history . Print the last 20 commands.

 b() - bindings. See all variable bindings.

 f() - forget. Forget all variable bindings.

 f(Var) - forget. Forget the binding of variable
 X. This can ONLY be used as a command to
 the shell - NOT in the body of a function!

 e(n) - evaluate. Evaluate the n:th command
 in history.

 e(-1) - Evaluate the previous command.

Edit the command line as in Emacs
See the User Guide for more details and examples of use of the shell.

Back to top

Special Functions
 apply(Mod, Func, Args)

Apply the function Func in the module Mod to the arguments in the list Args.
Mod and Func must be atoms (or expressions which evaluate to atoms).

 1> apply(lists1,min_max,[[4,1,7,3,9,10]]).
 {1, 10}

Any Erlang expression can be used in the arguments to apply.

Back to top

Special Forms
 case lists:member(a, X) of
 true ->
 ... ;
 false ->
 ...
 end,
 ...

 if
 integer(X) -> ... ;
 tuple(X) -> ...
 end,
 ...

Not really needed - but useful.

Back to top

Concurrent Programming

Definitions
Creating a new process
Simple message passing
An Echo Process
Selective Message Reception
Selection of Any Message
A Telephony Example
Pids can be sent in messages
Registered Processes
The Client Server Model
Timeouts

Definitions
Process - A concurrent activity. A complete virtual machine. The system may have many
concurrent processes executing at the same time.
Message - A method of communication between processes.
Timeout - Mechanism for waiting for a given time period.
Registered Process - Process which has been registered under a name.
Client/Server Model - Standard model used in building concurrent systems.

back to top

Creating a New Process
Before:

Code in Pid1

Pid2 = spawn(Mod, Func, Args)
After

Pid2 is process identifier of the new process - this is known only to process Pid1.

back to top

Simple Message Passing

self() - returns the Process Identity (Pid) of the process executing this function.

From and Msg become bound when the message is received. Messages can carry data.

Messages can carry data and be selectively unpacked.
The variables A and D become bound when receiving the message.
If A is bound before receiving a message then only data from this process is accepted.

back to top

An Echo process
-module(echo).
-export([go/0, loop/0]).

go() ->
 Pid2 = spawn(echo, loop, []),
 Pid2 ! {self(), hello},
 receive
 {Pid2, Msg} ->
 io:format("P1 ~w~n",[Msg])
 end,
 Pid2 ! stop.

loop() ->
 receive
 {From, Msg} ->
 From ! {self(), Msg},
 loop();
 stop ->
 true
 end.

back to top

Selective Message Reception

The message foo is received - then the message bar - irrespective of the order in which they were sent.

back to top

Selection of any message

The first message to arrive at the process C will be processed - the variable Msg in the process C will
be bound to one of the atoms foo or bar depending on which arrives first.

back to top

A Telephony Example

ringing_a(A, B) ->
 receive
 {A, on_hook} ->
 A ! {stop_tone, ring},
 B ! terminate,
 idle(A);
 {B, answered} ->
 A ! {stop_tone, ring},
 switch ! {connect, A, B},
 conversation_a(A, B)
 end.

This is the code in the process ‘Call . A andB are local bound variables in the process Call.

back to top

Pids can be sent in messages

A sends a message to B containing the Pid of A.
B sends a transfer message to C.
C replies directly to A.

back to top

Registered Processes
register(Alias, Pid) Registers the process Pid with the name Alias.

start() ->
 Pid = spawn(num_anal, server, [])
 register(analyser, Pid).

analyse(Seq) ->
 analyser ! {self(),{analyse,Seq}},
 receive
 {analysis_result,R} ->
 R
 end.

Any process can send a message to a registered process.

back to top

Client Server Model

Protocol

Server code
-module(myserver).

server(Data) ->
 receive
 {From,{request,X}} ->
 {R, Data1} = fn(X, Data),
 From ! {myserver,{reply, R}},
 server(Data1)
 end.

Interface Library
-export([request/1]).

request(Req) ->
 myserver ! {self(),{request,Req}},
 receive
 {myserver,{reply,Rep}} ->
 Rep
 end.

back to top

Timeouts

If the message foo is received from A within the time Time perform Actions1 otherwise
performActions2.

Uses of Timeouts
sleep(T)- process suspends for T ms.

sleep(T) ->
 receive
 after
 T ->
 true
 end.

suspend() - process suspends indefinitely.

suspend() ->
 receive
 after
 infinity ->
 true
 end.

alarm(T, What) - The message What is sent to the current process iin T miliseconds from now

set_alarm(T, What) ->
 spawn(timer, set, [self(),T,What]).

set(Pid, T, Alarm) ->
 receive
 after
 T ->
 Pid ! Alarm
 end.
receive
 Msg ->
 ... ;
end

flush() - flushes the message buffer

flush() ->
 receive
 Any ->
 flush()
 after
 0 ->
 true
 end.

A value of 0 in the timeout means check the message buffer first and if it is empty execute the
following code.

back to top

Error Handling

Definitions
Exit signals are sent when processes crash
Exit Signals propagate through Links
Processes can trap exit signals
Complex Exit signal Propagation
Robust Systems can be made by Layering
Primitives For Exit Signal Handling
A Robust Server
Allocator with Error Recovery
Allocator Utilities

Definitions
Link A bi-directional propagation path for exit signals.
Exit Signal - Transmit process termination information.
Error trapping - The ability of a process to process exit signals as if they were messages.

back to top

Exit Signals are Sent when Processes Crash
When a process crashes (e.g. failure of a BIF or a pattern match) Exit Signals are sent to all processes
to which the failing process is currently linked.

back to top

Exit Signals propagate through Links
Suppose we have a number of processes which are linked together, as in the following diagram.
Process A is linked to B, B is linked to C (The links are shown by the arrows).

Now suppose process A fails - exit signals start to propogate through the links:

These exit signals eventuall reach all the processes which are linked together.

The rule for propagating errors is: If the process which receives an exit signal, caused by an error, is
not trapping exits then the process dies and sends exit signals to all its linked processes.

back to top

Processes can trap exit signals
In the following diagram P1 is linked to P2 and P2 is linked to P3. An error occurs in P1 - the error
propagates to P2. P2 traps the error and the error is not propagated to P3.

P2 has the following code:

receive
 {’EXIT’, P1, Why} ->
 ... exit signals ...
 {P3, Msg} ->
 ... normal messages ...
end

back to top

Complex Exit signal Propagation
Suppose we have the following set of processes and links:

The process marked with a double ring is an error trapping process.

If an error occurs in any of A, B, or C then All of these process will die (through propagation of
errors). Process D will be unaffected.

back to top

Exit Signal Propagation Semantics
When a process terminates it sends an exit signal, either normal or non-normal, to the processes
in its link set.
A process which is not trapping exit signals (a normal process) dies if it receives a non-normal
exit signal. When it dies it sends a non-normal exit signal to the processes in its link set.
A process which is trapping exit signals converts all incoming exit signals to conventional
messages which it can receive in a receive statement.

Errors in BIFs or pattern matching errors send automatic exit signals to the link set of the process
where the error occured.

back to top

Robust Systems can be made by Layering
By building a system in layers we can make a robust system. Level1 traps and corrects errors occuring
in Level2. Level2 traps and corrects errors ocuring in the application level.

In a well designed system we can arrange that application programers will not have to write any error
handling code since all error handling is isolated to deper levels in the system.

back to top

Primitives For Exit Signal Handling
link(Pid) - Set a bi-directional link between the current process and the process Pid
process_flag(trap_exit, true) - Set the current process to convert exit signals to exit messages,
these messages can then be received in a normal receive statement.
exit(Reason) - Terminates the process and generates an exit signal where the process termination
information is Reason.

What really happens is as follows: Each process has an associated mailbox - Pid ! Msg sends the
message Msg to the mailbox associated with the process Pid.

The receive .. end construct attempts to remove messages from the mailbox of the current process.
Exit signals which arrive at a process either cause the process to crash (if the process is not trapping
exit signals) or are treated as normal messages and placed in the process mailbox (if the process is
trapping exit signals). Exit signals are sent implicitly (as a result of evaluating a BIF with incorrect
arguments) or explicitly (using exit(Pid, Reason), or exit(Reason)).

If Reason is the atom normal - the receiving process ignores the signal (if it is not trapping exits).
When a process terminates without an error it sends normal exit signals to all linked processes. Don’t
say you didn’t ask!

back to top

A Robust Server
The following server assumes that a client process will send an alloc message to allocate a resource
and then send a release message to deallocate the resource.

This is unreliable - What happens if the client crashes before it sends the release message?

top(Free, Allocated) ->
 receive
 {Pid, alloc} ->
 top_alloc(Free, Allocated, Pid);
 {Pid ,{release, Resource}} ->
 Allocated1 = delete({Resource,Pid}, Allocated),
 top([Resource|Free], Allocated1)
 end.

top_alloc([], Allocated, Pid) ->
 Pid ! no,
 top([], Allocated);

top_alloc([Resource|Free], Allocated, Pid) ->
 Pid ! {yes, Resource},
 top(Free, [{Resource,Pid}|Allocated]).

This is the top loop of an allocator with no error recovery. Free is a list of unreserved resources.
Allocated is a list of pairs {Resource, Pid} - showing which resource has been allocated to which
process.

back to top

Allocator with Error Recovery
The following is a reliable server. If a client craches after it has allocated a resource and before it has
released the resource, then the server will automatically release the resource.

The server is linked to the client during the time interval when the resource is allocted. If an exit
message comes from the client during this time the resource is released.

top_recover_alloc([], Allocated, Pid) ->
 Pid ! no,
 top_recover([], Allocated);

top_recover_alloc([Resource|Free], Allocated, Pid) ->
 %% No need to unlink.
 Pid ! {yes, Resource},
 link(Pid),
 top_recover(Free, [{Resource,Pid}|Allocated]).

top_recover(Free, Allocated) ->
 receive
 {Pid , alloc} ->
 top_recover_alloc(Free, Allocated, Pid);
 {Pid, {release, Resource}} ->
 unlink(Pid),
 Allocated1 = delete({Resource, Pid}, Allocated),
 top_recover([Resource|Free], Allocated1);
 {’EXIT’, Pid, Reason} ->
 %% No need to unlink.
 Resource = lookup(Pid, Allocated),
 Allocated1 = delete({Resource, Pid}, Allocated),
 top_recover([Resource|Free], Allocated1)
 end.

Not done -- multiple allocation to same process. i.e. before doing the unlink(Pid) we should check to
see that the process has not allocated more than one device.

back to top

Allocator Utilities
delete(H, [H|T]) ->
 T;
delete(X, [H|T]) ->
 [H|delete(X, T)].

lookup(Pid, [{Resource,Pid}|_]) ->
 Resource;
lookup(Pid, [_|Allocated]) ->
 lookup(Pid, Allocated).

back to top

Advanced Topics

Scope of variables
Catch/throw
Use of Catch and Throw
The module error_handler
The Code loading mechanism
Ports
Port Protocols
Binaries
References
Space saving optimisations
Last Call Optimisation
Process Dictionary
Obtaining System Information

Scope of Variables
Variables in a clause exist between the point where the variable is first bound and the last textual
reference to the variable.

Consider the following code:

1... f(X) ->
2... Y = g(X),
3... h(Y, X),
4... p(Y),
5... f(12).

line 1 - the variable X is defined (i.e. it becomes bound when the function is entered).
line 2 - X is used, Y is defined (first occurrence).
line 3 - X and Y are used.
line 4 - Y is used. The space used by the system for storing X can be reclaimed.
line 5 - the space used for Y can be reclaimed.

Scope of variables in if/case/receive
The set of variables introduced in the different branches of an if/case/receive form must be the same
for all branches in the form except if the missing variables are not referred to after the form.

f(X) ->
 case g(X) of
 true -> A = h(X), B = 7;
 false -> B = 6
 end,
 ...,
 h(A),
 ...

If the true branch of the form is evaluated, the variables A and B become defined, whereas in the false
branch only B is defined.

Whether or not this an error depends upon what happens after the case function. In this example it is
an error, a future reference is made to A in the call h(A) - if the false branch of the case form had been
evaluated then A would have been undefined.

back to top

Catch and Throw
Suppose we have defined the following:

-module(try).
-export([foo/1]).

foo(1) -> hello;
foo(2) -> throw({myerror, abc});
foo(3) -> tuple_to_list(a);
foo(4) -> exit({myExit, 222}).

try:foo(1) evaluates to hello.

try:foo(2) tries to evaluate throw({myerror, abc}) but no catch exists. The process evaluating foo(2)
exits and the signal {‘EXIT’,Pid,nocatch} is broadcast to the link set of the process.

try:foo(3) broadcasts {‘EXIT’, Pid, badarg} signals to all linked processes.

try:foo(4) since no catch is set the signal {‘EXIT’,Pid,{myexit, 222}} is broadcast to all linked
processes.

try:foo(5) broadcasts the signal {‘EXIT’,Pid,function_clause} to all linked processes.

catch try:foo(1) evaluates to hello.
catch try:foo(2) evaluates to {myError,abc} .
catch try:foo(3) evaluates to {‘EXIT’,badarg}.
catch try:foo(4) evaluates to {‘EXIT’,{myExit,222}} .
catch try:foo(5) evaluates to {‘EXIT’,function_clause} .

back to top

Use of Catch and Throw
Catch and throw can be used to:

Protect from bad code
Cause non-local return from a function

Example:

f(X) ->
 case catch func(X) of
 {‘EXIT’, Why} ->
 ... error in BIF
 BUG............
 {exception1, Args} ->
 ... planned exception
 Normal ->
 normal case
 end.

func(X) ->
 ...

func(X) ->
 bar(X),
 ...
...

bar(X) ->
 throw({exception1, ...}).
...

back to top

The module error_handler
The module error_handler is called when an undefined function is called.

If a call is made to Mod:Func(Arg0,...,ArgN) and no code exists for this function then
undefined_call(Mod, Func,[Arg0,...,ArgN]) in the module error_handler will be called. The code in
error_handler is almost like this:

-module(error_handler).
-export([undefined_call/3]).

undefined_call(Module, Func, Args) ->
 case code:if_loaded(Module) of
 true ->
 %% Module is loaded but not the function
 ...
 exit({undefined_function, {Mod, Func, Args}});
 false ->
 case code:load(Module) of
 {module, _} ->

 apply(Module, Func, Args);
 false ->

 end.

By evaluating process_flag(error_handler, MyMod) the user can define a private error handler. In
this case the function:MyMod:undefined_function will be called instead of
error_handler:undefined_function.

Note:This is extremely dangerous

back to top

The Code loading mechanism
Consider the following:

-module(m).
-export([start/0,server/0]).

start() ->
 spawn(m,server,[]).

server() ->
 receive
 Message ->
 do_something(Message),
 m:server()
 end.

When the function m:server() is called then a call is made to the latest version of code for this
module.

If the call had been written as follows:

server() ->
 receive
 Message ->
 do_something(Message),
 server()
 end.

Then a call would have been made to the current version of the code for this module.

Prefixing the module name (i.e. using the : form of call allows the user to change the executing code
on the fly.

The rules for evaluation are as follows:

Must have the module prefix in the recursive call (m:server()) if we want to change the
executing code on the fly.
Without prefix, the executing code will not be exchanged with the new one.
We can’t have more than two versions of the same module in the system at the same time.

back to top

Ports
Ports:

Provide byte stream interfaces to external UNIX processes.
Look like normal Erlang processes, that are not trapping exits, with a specific protocol. That is,
they can be linked to, and send out/react to exit signals.
Communicates with a single Erlang process, this process is said to be connected.

The command:

Port = open_port ({spawn,Process} , {packet,2})

Starts an external UNIX process - this process reads commands from Erlang on file descriptor 0 and
sends commands to Erlang by writing to file descriptor 1.

back to top

Port Protocols
Data is passed as a sequence of bytes between the Erlang processes and the external UNIX processes.
he number of bytes passed is given in a 2 bytes length field.

"C" should check return value from read. See p.259 in the book for more info.

back to top

Binaries
A binary is a reference to a chunk of untyped memory.
Binaries are primarily used for code loading over the network.
Also useful when applications wants to shuffle around large amount of raw data.
Several BIF’s exist for manipulating binaries, such as: binary_to_term/1, term_to_binary/1,
binary_to_list/1, split_binary/2 concat_binary/1 , etc..
open_port/2 can produce and send binaries.
There is also a guard called binary(B) which succeeds if its argument is a Binary

back to top

References
References are erlang objects with exactly two properties:

They can be created by a program (using make_ref/0), and,
They can be compared for equality.

Erlang references are unique, the system guarantees that no two references created by different calls to
make_ref will ever match. The guarantee is not 100% - but differs from 100% by an insignificantly
small amount :-).

References can be used for writing a safe remote procedure call interface, for example:

ask(Server, Question) ->
 Ref = make_ref(),
 Server ! {self(), Ref, Question},
 receive
 {Ref, Answer} ->
 Answer
 end.

server(Data) ->
 receive
 {From, Ref, Question} ->
 Reply = func(Question, Data),
 From ! {Ref, Reply},
 server(Data);
 ...
 end.

back to top

Space Saving Optimisations
Here are two ways of computing the sum of a set of numbers contained in a list. The first is a recursive
routine:

sum([H|T]) ->
 H + sum(T);
sum([]) ->
 0.

Note that we canot Evaluate ’+’ until both its arguments are known. This formulation of sum(X)
evaluates in space O(length(X)).

The second is a tail recursive which makes use of an accumulator Acc:

sum(X) ->
 sum(X, 0).

sum([H|T], Acc) ->
 sum(T, H + Acc);
sum([], Acc) ->
 Acc.

The tail recursive formulation of sum(X). Evaluates in constant space.

Tail recursive = the last thing the function does is to call itself.

back to top

Last Call Optimisation
The last call optimisation must be used in persistant servers.

For example:

server(Date) ->
 receive
 {From, Info} ->
 Data1 = process_info(From, Info, Data),
 server(Data1);
 {From, Ref, Query} ->
 {Reply, Data} = process_query(From, Query,Data),
 From ! {Ref, Reply},
 server(Data1)
 end.

Note that the last thing to be done in any thread of computation must be to call the server.

back to top

Process Dictionary
Each process has a local store called the "Process Dictionary". The following BIFs are used to
manipulate the process dictionary:

get() returns the entire process dictionary.
get(Key) returns the item associated with Key (Key is any Erlang data structure), or, returns the
special atom undefined if no value is associated with Key.
put(Key, Value) associate Value with Key. Returns the old value associated with Key, or,
undefined if no such association exists.
erase() erases the entire process dictionary. Returns the entire process diction before it was
erased.
erase(Key) erases the value associated with Key. Returns the old value associated with Key, or,
undefined if no such association exists.
get_keys(Value) returns a list of all keys whose associated value is Value.

Note that using the Process Dictionary:

Destroys referencial transparency
Makes debugging difficult
Survives Catch/Throw

So:

Use with care
Do not over use - try the clean version first

back to top

Obtaining System Information
The following calls exist to access system information:

processes() returns a list of all processes currently know to the system.
process_info(Pid) returns a dictionary containing information about Pid.
Module:module_info() returns a dic tionary containing information about the code in module
Module.

If you use these BIFs remember:

Use with extreme care
Don’t assume fixed positions for items in the dictionaries.

But you can do some fun things like:

Writing real filthy programs, e.g. message sending by remote polling of dictionaries Why should
anybody want to do this?
Killing random processes
Write Metasystem programs
Poll system regularly for zomby processes
Poll system to detect or break deadlock
Analyse system performance

back to top

Erlang Programming Exercises

Entering a program
Simple sequential programs
Simple recursive programs
Interaction between processes, Concurrency
Master and Slaves, error handling
Robustness in Erlang, and use of a graphics package
Erlang using UNIX sockets
The use of open_port/1
Socket comunication between Erlang and C
Implementing Talk with Distributed Erlang
Generating a parser for Datalog

Entering a program
Type the demo:double example into a file called demo.erl. Use your favourite text editor.

Start Erlang.

Give the command c:c(demo). to compile the file.

Try running the query:

 demo:double(12).

This is just to test if you can get the system started and can use the editor together with the Erlang
system.

Back to top

Simple sequential programs
1. Write functions temp:f2c(F) and temp:c2f(C) which convert between centigrade and Fahrenheit
scales. (hint 5(F-32) = 9C)

2. Write a function temp:convert(Temperature) which combines the functionality of f2c and c2f.
Example:

 > temp:convert({c,100}).
 => {f,212}
 > temp:convert({f,32}).
 => {c,0}

3. Write a function mathStuff:perimeter(Form) which computes the perimeter of different forms.
Form can be one of:

 {square,Side}
 {circle,Radius}
 {triangle,A,B,C}

Back to top

Simple recursive programs
1. Write a function lists1:min(L) which returns the mini- mum element of the list L.

2. Write a function lists1:max(L) which returns the maximum element of the list L.

3. Write a function lists1:min_max(L) which returns a tuple containing the min and max of the list L .

 > lists1:min_max([4,1,7,3,9,10])
 {1, 10}

4. Write the function time:swedish_date() which returns an atom containing the date in swedish
YYMMDD format:

 > time:swedish_date()
 ’901114’

Hints: trying looking up date() and time() in the manual, You may also need number_to_list/1,
list_to_atom/1. Try giving the shell queries to see what these BIF’s do.)

Back to top

Interaction between processes, Concurrency
1. Write a function which starts 2 processes, and sends a message M times forewards and backwards
between them. After the messages have been sent the processes should terminate gracefully.

2) Write a function which starts N processes in a ring, and sends a message M times around all the
processes in the ring. After the messages have been sent the processes should terminate gracefully.

3) Write a function which starts N processes in a star, and sends a message to each of them M times.
After the messages have been sent the processes should terminate gracefully.

Back to top

Master and Slaves, error handling
This problem illustrates a situation where we have a process (the master) which supervises other
processes (the slaves). In a real example the slave could, for example, be controlling different
hardware units. The master’s job is to ensure that all the slave processes are alive. If a slave crashes
(maybe because of a software fault), the master is to recreate the failed slave.

Write a module ms with the following interface:

start(N) - Start the master and tell it to start N slave proc- esses. Register the master as the registered
process master.

to_slave(Message, N) - Send a message to the master and tell it to relay the message to slave N. The
slave should exit (and be restarted by the master) if the message is die.

The master should detect the fact that a slave processe diea nd restart it and print a message that it has
done so.

The slave should print all messages it recieves except the message die

Hints:
The master should trap exit messages and create links to all the slave processes.

The master should keep a list of the process id’s (pid’s) of the slave processes and their associated
numbers.

Example:

 > ms:start(4).
 => true
 > ms:to_slave(hello, 2).
 => {hello,2}
 Slave 2 got message hello
 > ms:to_slave(die, 3).
 => {die,3}
 master restarting dead slave3

Back to top

Robustness in Erlang, and use of a graphics package
A robust system makes it possible to survive partial failure, i.e if some parts of the system crashes, it
should be possible to recover instead of having a total system crash. In this exercise we will build a
tree-like hierachy of processes that can recover if any of the tree-branches should crash.

To illustrate this we are going to use the Interviews interface and having each process represented by a
window on the screen.

Excercise: Create a window containing three buttons: Quit , Spawn , Error.

The Spawn button shall create a child process which displays an identical window.

The Quit button should kill the window and its child windows.

The Error button should cause a runtime error that kills the window (and its children), this window
shall then be restarted by its parent.

Example: When we start our program, a window like this should appear:

Let us now press the Spawn button twice and as result, two child windows will pop up on our screen.
Our screen will now look something like this:

As you can see the windows are tagged with a number so it is easier for us to refer to them. The parent
window has the number 84654 and its two childs number 8473 and 84735. Each child may have childs
of its own, e.g press the Spawn button on window 84735 and we will have the following picture:

The window 8494 is a child to window 84735.

Now lets press the Error button in window 84735. Now a runtime error will occur in the process for
that window and the process (and the window) will die. This shall cause the child 8494 also to die and
the parent 84654 to start up a new child window.

The result will look something like this:

The new child got number 85435.

Back to top

Erlang using UNIX sockets
Do you want to talk with a friend on another machine? Shouldn’t it be nice to have a shell connected
to your friend and transfer messages in between?

This can be implemented using the client/server concept with a process on each side listening to a
socket for messages.

Write a distributed (client/server) message passing system. The system shall be built upon the
Erlang interface to the BSD unix sockets.
The server host name will be given as input argument in order to start the client.
A prompt shall be displayed both on the server and the client side. The user shall give a string
followed by a RETURN as a message. The message will be transfered and displayed to the user
on the other side.
An empty input string (on either side) will end the session.

(Hints: read the man-page for the socket interface, also in order to read the command line, use
io:get_line/1)

Back to top

The use of open_port/1
Use the open_port({spawn,Name}) BIF in order to start an external UNIX process.

The Erlang program shall open a port, sending some data through the port, have the data echoed
back and then printout the received data.
The C program that will run in the UNIX process shall consist of an eternal loop starting with a
read from file descriptor 0 (stdin) and end with a write on file descriptor 1 (stdout) before it
iterates again.

Note: The first two bytes read in the C program contains the length in bytes of the data to follow
(Make sure that you are reading as much as the length indicates).

(Hints: read the User’s Guide p.37 and the BIF Guide p.11)

Back to top

Socket comunication between Erlang and C
Write Erlang and C programs which no the following:

The Erlang program shall create a socket, waiting for accept, sending some data through the
socket, have the data echoed back, printout the received data, and then close the socket.
The C program that will run in the UNIX process shall take the hostname of the host you are
going to commu- nicate with as a parameter. Set up a socket to that host and then echo data as in
the previous exercise.

(Hints: Include the files listed below. The main routine will look much the same as in the previous
example. The code to setup the socket is found on the next page

#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <errno.h>

/*--- Setup a socket to Host using Port , return the filedesc. ---*/

static int setup_socket(hostname , port)
 char *hostname;
 int port;
{
 struct sockaddr_in serv_addr;
 int sockfd;
 struct hostent *hp;

 /*--- Get the address of the host ---*/

 if ((hp = gethostbyname(hostname)) == (struct hostent*) 0) {
 perror("From gethostbyname \n");
 exit(-1);
 }

 /*--- Fill in the address to the remote system ---*/

 bzero((char *) &serv_addr , sizeof(serv_addr));
 serv_addr.sin_family = AF_INET; /* Protocol family */
 serv_addr.sin_port = htons(port); /* The port number */
 bcopy(hp->h_addr_list[0] , /* The net address to the host */
 (char *) &serv_addr.sin_addr.s_addr ,
 hp->h_length);

 /*--- Create the socket ---*/

 if ((sockfd = socket(AF_INET , SOCK_STREAM , 0)) < 0) {
 perror("setup_socket: socket");
 exit(-1);
 }

 /*--- Connect to the other system ---*/

 if (connect(sockfd, &serv_addr, sizeof(serv_addr)) < 0) {
 perror("setup_socket: connect");
 exit(-1);
 }
 else
 return sockfd;

}; /* setup_socket */

Back to top

Implementing Talk with Distributed Erlang
Make a simple Talk program that makes it possible to chat with friends at other nodes/hosts.

First you and your friend must create identical .erlang.cookie files, e.g:

 echo -n "dh32d8yhd8" > ~/.erlang.cookie

Make sure nobody else can read it:

 chmod 400 ~/.erlang/cookie).

Then start a distributed Erlang node:

 erl -name bill -cookie

Now start your program. It should begin with promting for the other node name, and then
promting for messages that will be sent to your friend for each carriage-return.

Hints: Your program should consist of two registered processes one for reading from the terminal and
the other one for recieving messages from the other node then writing them to the terminal.

Back to top

Generating a parser for Datalog
By using the Yecc parser generator we will generate a parser that will accept Datalog programs
according to the specified grammar below. We will also have to use/modify a scanner (lexical
analyser) to suit our purpose.

The syntax for Datalog can be described by the following grammar:

 PGM -> e
 PGM -> CLAUSE PGM
 CLAUSE -> LITERAL TAIL .
 LITERAL -> predsym PARLIST
 PARLIST -> e
 PARLIST -> (ARGLIST)
 ARGLIST -> TERM ARGTAIL
 ARGTAIL -> e
 ARGTAIL -> , ARGLIST
 TERM -> csym
 TERM -> varsym
 TAIL -> e
 TAIL -> :- LITLIST
 LITLIST -> LITERAL LITTAIL
 LITTAIL -> e
 LITTAIL -> , LITLIST

This grammar will accept Datalog programs, for example:

 path(stockholm,uppsala).

or:

 route(X,Y) :- path(X,Z),path(Z,Y).

The tokens produced by the scanner are defined as:

 predsym = lc(lc + uc +digit)* | digit*
 csym = lc(lc + uc + digit)* | digit*
 varsym = uc(lc + uc + digit)*
 lc = any lowercase letter
 uc = any uppercase letter
 digit = any digit

To be able to solve this exercise you will have to read the man-page for Yecc (erl -man yecc). Good

Luck !!

Back to top

	An Erlang Course
	Module 1 - History
	Module 2 - Sequential Programming
	Module 3 - Concurrent Programming
	Module 4 - Error handling
	Module 5 - Advanced Topics

	History of Erlang
	1982 - 1985
	1985 - 86
	1987
	1988
	1989
	1990
	1991
	1992
	1993
	Sequential Programming
	Numbers
	 Atoms
	 Tuples
	 Lists
	Variables
	Complex Data Structures
	Pattern Matching
	Pattern Matching †Cont‡
	Function Calls
	Module System
	Starting the system
	Built In Functions †BIFs‡
	Function Syntax
	Functions †cont‡
	Evaluation example
	Guarded Function Clauses
	Examples of Guards
	Traversing Lists
	Lists and Accumulators
	Shell Commands
	Special Functions
	Special Forms

	Concurrent Programming
	Definitions
	Creating a New Process
	Simple Message Passing
	An Echo process
	Selective Message Reception
	Selection of any message
	A Telephony Example
	Pids can be sent in messages
	Registered Processes
	Client Server Model
	Server code
	Interface Library

	Timeouts
	Uses of Timeouts

	Error Handling
	Definitions
	Exit Signals are Sent when Processes Crash
	Exit Signals propagate through Links
	Processes can trap exit signals
	Complex Exit signal Propagation
	Exit Signal Propagation Semantics
	Robust Systems can be made by Layering
	Primitives For Exit Signal Handling
	A Robust Server
	Allocator with Error Recovery
	Allocator Utilities
	Advanced Topics
	Scope of Variables
	Scope of variables in if/case/receive

	Catch and Throw
	Use of Catch and Throw
	The module error_handler
	The Code loading mechanism
	Ports
	Port Protocols
	Binaries
	References
	Space Saving Optimisations
	Last Call Optimisation
	Process Dictionary
	Obtaining System Information
	Erlang Programming Exercises
	Entering a program
	Simple sequential programs
	Simple recursive programs
	Interaction between processes, Concurrency
	Master and Slaves, error handling
	Robustness in Erlang, and use of a graphics package
	Erlang using UNIX sockets
	The use of open_port/1
	Socket comunication between Erlang and C
	Implementing Talk with Distributed Erlang
	Generating a parser for Datalog

