
Parse Tools Application
(PARSETOOLS)

version 1.4

Typeset in LATEX from SGML source using the DocBuilder-0.9.8 Document System.

Contents

1 Parsetools Reference Manual 1

1.1 yecc . 2

iiiParse Tools Application (PARSETOOLS)

iv Parse Tools Application (PARSETOOLS)

Parsetools Reference Manual

Short Summaries

� Erlang Module yecc [page 2] – LALR-1 Parser Generator

yecc

The following functions are exported:

� file(Grammarfile [, Options]) -> YeccRet
[page 2] Give information about resolved and unresolved parse action conflicts.

� format error(Reason) -> Chars
[page 3] Return an English description of a an error tuple.

1Parse Tools Application (PARSETOOLS)

yecc Parsetools Reference Manual

yecc
Erlang Module

An LALR-1 parser generator for Erlang, similar to yacc. Takes a BNF grammar
definition as input, and produces Erlang code for a parser.

To understand this text, you also have to look at the yacc documentation in the
UNIX(TM) manual. This is most probably necessary in order to understand the idea of
a parser generator, and the principle and problems of LALR parsing with finite
look-ahead.

Exports

file(Grammarfile [, Options]) -> YeccRet

Types:

� Grammarfile = filename()
� Options = Option | [Option]
� Option =-see below-
� YeccRet = fok, Parserfileg | fok, Parserfile, Warningsg | error | ferror, Warnings,

Errorsg
� Parserfile = filename()
� Warnings = Errors = [ffilename(), [ErrorInfo]g]
� ErrorInfo = fErrorLine, module(), Reasong
� ErrorLine = integer()
� Reason =-formatable by format error/1-

Grammarfile is the file of declarations and grammar rules. Returns ok upon success, or
error if there are errors. An Erlang file containing the parser is created if there are no
errors. The options are:

fparserfile, Parserfileg. Parserfile is the name of the file that will contain the
Erlang parser code that is generated. The default ("") is to add the extension .erl
to Grammarfile stripped of the .yrl extension.

fincludefile, Includefileg. Indicates a customized prologue file which the user
may want to use instead of the default file
lib/parsetools/include/yeccpre.hrl which is otherwise included at the
beginning of the resulting parser file. N.B. The Includefile is included ’as is’ in
the parser file, so it must not have a module declaration of its own, and it should
not be compiled. It must, however, contain the necessary export declarations. The
default is indicated by "".

freport errors, bool()g. Causes errors to be printed as they occur. Default is true.

2 Parse Tools Application (PARSETOOLS)

Parsetools Reference Manual yecc

freport warnings, bool()g. Causes warnings to be printed as they occur. Default is
true.

freport, bool()g. This is a short form for both report errors and
report warnings.

freturn errors, bool()g. If this flag is set, ferror, Errors, Warningsg is returned
when there are errors. Default is false.

freturn warnings, bool()g. If this flag is set, an extra field containing Warnings is
added to the tuple returned upon success. Default is false.

freturn, bool()g. This is a short form for both return errors and
return warnings.

fverbose, bool()g. Determines whether the parser generator should give full
information about resolved and unresolved parse action conflicts (true), or only
about those conflicts that prevent a parser from being generated from the input
grammar (false, the default).

Any of the Boolean options can be set to true by stating the name of the option. For
example, verbose is equivalent to fverbose, trueg.

The value of the Parserfile option stripped of the .erl extension is used by Yecc as
the module name of the generated parser file.

Yecc will add the extension .yrl to the Grammarfile name, the extension .hrl to the
Includefile name, and the extension .erl to the Parserfile name, unless the
extension is already there.

format error(Reason) -> Chars

Types:

� Reason =-as returned by yecc:file/1,2-
� Chars = [char() | Chars]

Returns a descriptive string in English of an error tuple returned by yecc:file/1,2.
This function is mainly used by the compiler invoking Yecc.

Pre-Processing

A scanner to pre-process the text (program, etc.) to be parsed is not provided in the
yecc module. The scanner serves as a kind of lexicon look-up routine. It is possible to
write a grammar that uses only character tokens as terminal symbols, thereby
eliminating the need for a scanner, but this would make the parser larger and slower.

The user should implement a scanner that segments the input text, and turns it into one
or more lists of tokens. Each token should be a tuple containing information about
syntactic category, position in the text (e.g. line number), and the actual terminal
symbol found in the text: fCategory, LineNumber, Symbolg.

If a terminal symbol is the only member of a category, and the symbol name is identical
to the category name, the token format may be fSymbol, LineNumberg.

A list of tokens produced by the scanner should end with a special end of input tuple
which the parser is looking for. The format of this tuple should be fEndsymbol,
LastLineNumberg, where Endsymbol is an identifier that is distinguished from all the
terminal and non-terminal categories of the syntax rules. The Endsymbol may be
declared in the grammar file (see below).

3Parse Tools Application (PARSETOOLS)

yecc Parsetools Reference Manual

The simplest case is to segment the input string into a list of identifiers (atoms) and use
those atoms both as categories and values of the tokens. For example, the input string
aaa bbb 777, X may be scanned (tokenized) as:

[{aaa, 1}, {bbb, 1}, {777, 1}, {’,’ , 1}, {’X’, 1},
{’$end’, 1}].

This assumes that this is the first line of the input text, and that ’$end’ is the
distinguished end of input symbol.

The Erlang scanner in the io module can be used as a starting point when writing a new
scanner. Study yeccscan.erl in order to see how a filter can be added on top of
io:scan erl form/3 to provide a scanner for Yecc that tokenizes grammar files before
parsing them with the Yecc parser. A more general approach to scanner implementation
is to use a scanner generator. A scanner generator in Erlang called leex is under
development.

Grammar Definition Format

Erlang style comments, starting with a ’%’, are allowed in grammar files.

Each declaration or rule ends with a dot (the character ’.’).

The grammar starts with a declaration of the nonterminal categories to be used in
the rules. For example:

Nonterminals sentence nounphrase verbphrase.

A non-terminal category can be used at the left hand side (= lhs, or head) of a grammar
rule. It can also appear at the right hand side of rules.

Next comes a declaration of the terminal categories, which are the categories of
tokens produced by the scanner. For example:

Terminals article adjective noun verb.

Terminal categories may only appear in the right hand sides (= rhs) of grammar rules.

Next comes a declaration of the rootsymbol, or start category of the grammar. For
example:

Rootsymbol sentence.

This symbol should appear in the lhs of at least one grammar rule. This is the most
general syntactic category which the parser ultimately will parse every input string into.

After the rootsymbol declaration comes an optional declaration of the end of input
symbol that your scanner is expected to use. For example:

Endsymbol ’$end’.

Next comes one or more declarations of operator precedences, if needed. These are
used to resolve shift/reduce conflicts (see yacc documentation).

Examples of operator declarations:

Right 100 ’=’.
Nonassoc 200 ’==’ ’=/=’.
Left 300 ’+’.
Left 400 ’*’.
Unary 500 ’-’.

4 Parse Tools Application (PARSETOOLS)

Parsetools Reference Manual yecc

These declarations mean that ’=’ is defined as a right associative binary operator
with precedence 100, ’==’ and ’=/=’ are operators with no associativity, ’+’ and
’*’ are left associative binary operators, where ’*’ takes precedence over ’+’
(the normal case), and ’-’ is a unary operator of higher precedence than ’*’. The fact
that ’==’ has no associativity means that an expression like a == b == c is considered a
syntax error.

Certain rules are assigned precedence: each rule gets its precedence from the last
terminal symbol mentioned in the right hand side of the rule. It is also possible to
declare precedence for non-terminals, “one level up”. This is practical when an operator
is overloaded (see also example 3 below).

Next come the grammar rules. Each rule has the general form

Left_hand_side -> Right_hand_side : Associated_code.

The left hand side is a non-terminal category. The right hand side is a sequence of one
or more non-terminal or terminal symbols with spaces between. The associated code is
a sequence of zero or more Erlang expressions (with commas ’,’ as separators). If the
associated code is empty, the separating colon ’:’ is also omitted. A final dot marks the
end of the rule.

Symbols such as ’f’, ’.’, etc., have to be enclosed in single quotes when used as
terminal or non-terminal symbols in grammar rules. The use of the symbols ’$empty’,
’$end’, and ’$undefined’ should be avoided.

The last part of the grammar file is an optional section with Erlang code (= function
definitions) which is included ’as is’ in the resulting parser file. This section must start
with the pseudo declaration, or key words

Erlang code.

No syntax rule definitions or other declarations may follow this section. To avoid
conflicts with internal variables, do not use variable names beginning with two
underscore characters (’ ’) in the Erlang code in this section, or in the code associated
with the individual syntax rules.

The optional expect declaration can be placed anywhere before the last optional
section with Erlang code. It is used for suppressing the warning about conflicts that is
ordinarily given if the grammar is ambiguous. An example:

Expect 2.

The warning is given if the number of shift/reduce conflicts differs from 2, or if there
are reduce/reduce conflicts.

Examples

A grammar to parse list expressions (with empty associated code):

Nonterminals list elements element.
Terminals atom ’(’ ’)’.
Rootsymbol list.
list -> ’(’ ’)’.
list -> ’(’ elements ’)’.
elements -> element.
elements -> element elements.
element -> atom.
element -> list.

5Parse Tools Application (PARSETOOLS)

yecc Parsetools Reference Manual

This grammar can be used to generate a parser which parses list expressions, such as (),
(a), (peter charles), (a (b c) d (())), ... provided that your scanner
tokenizes, for example, the input (peter charles) as follows:

[{’(’, 1} , {atom, 1, peter}, {atom, 1, charles}, {’)’, 1},
{’$end’, 1}]

When a grammar rule is used by the parser to parse (part of) the input string as a
grammatical phrase, the associated code is evaluated, and the value of the last
expression becomes the value of the parsed phrase. This value may be used by the
parser later to build structures that are values of higher phrases of which the current
phrase is a part. The values initially associated with terminal category phrases, i.e. input
tokens, are the token tuples themselves.

Below is an example of the grammar above with structure building code added:

list -> ’(’ ’)’ : nil.
list -> ’(’ elements ’)’ : ’$2’.
elements -> element : {cons, ’$1’, nil}.
elements -> element elements : {cons, ’$1’, ’$2’}.
element -> atom : ’$1’.
element -> list : ’$1’.

With this code added to the grammar rules, the parser produces the following value
(structure) when parsing the input string (a b c).. This still assumes that this was the
first input line that the scanner tokenized:

{cons, {atom, 1, a,} {cons, {atom, 1, b},
{cons, {atom, 1, c}, nil}}}

The associated code contains pseudo variables’$1’, ’$2’, ’$3’, etc. which refer to
(are bound to) the values associated previously by the parser with the symbols of the
right hand side of the rule. When these symbols are terminal categories, the values are
token tuples of the input string (see above).

The associated code may not only be used to build structures associated with phrases,
but may also be used for syntactic and semantic tests, printout actions (for example for
tracing), etc. during the parsing process. Since tokens contain positional (line number)
information, it is possible to produce error messages which contain line numbers. If
there is no associated code after the right hand side of the rule, the value ’$undefined’
is associated with the phrase.

The right hand side of a grammar rule may be empty. This is indicated by using the
special symbol ’$empty’ as rhs. Then the list grammar above may be simplified to:

list -> ’(’ elements ’)’ : ’$2’.
elements -> element elements : {cons, ’$1’, ’$2’}.
elements -> ’$empty’ : nil.
element -> atom : ’$1’.
element -> list : ’$1’.

6 Parse Tools Application (PARSETOOLS)

Parsetools Reference Manual yecc

Generating a Parser

To call the parser generator, use the following command:

yecc:file(Grammarfile).

An error message from Yecc will be shown if the grammar is not of the LALR type (for
example too ambiguous). Shift/reduce conflicts are resolved in favor of shifting if there
are no operator precedence declarations. Refer to the yacc documentation on the use of
operator precedence.

The output file contains Erlang source code for a parser module with module name
equal to the Parserfile parameter. After compilation, the parser can be called as
follows (the module name is assumed to be myparser):

myparser:parse(myscanner:scan(Inport))

The call format may be different if a customized prologue file has been included when
generating the parser instead of the default file
lib/parsetools/include/yeccpre.hrl.

With the standard prologue, this call will return either fok, Resultg, where Result is
a structure that the Erlang code of the grammar file has built, or ferror,
fLine number, Module, Messagegg if there was a syntax error in the input.

Message is something which may be converted into a string by calling
Module:format error(Message) and printed with io:format/3.

Note:
By default, the parser that was generated will not print out error messages to the
screen. The user will have to do this either by printing the returned error messages,
or by inserting tests and print instructions in the Erlang code associated with the
syntax rules of the grammar file.

It is also possible to make the parser ask for more input tokens when needed if the
following call format is used:

myparser:parse_and_scan({Function, Args})
myparser:parse_and_scan({Mod, Tokenizer, Args})

The tokenizer Function is either a fun or a tuple fMod, Tokenizerg. The call
apply(Function, Args) or apply(fMod, Tokenizerg, Args) is executed whenever a
new token is needed. This, for example, makes it possible to parse from a file, token by
token.

The tokenizer used above has to be implemented so as to return one of the following:

{ok, Tokens, Endline}
{eof, Endline}
{error, Error_description, Endline}

This conforms to the format used by the scanner in the Erlang io library module.

If feof, Endlineg is returned immediately, the call to parse and scan/1 returns fok,
eofg. If feof, Endlineg is returned before the parser expects end of input,
parse and scan/1 will, of course, return an error message (see above). Otherwise fok,
Resultg is returned.

7Parse Tools Application (PARSETOOLS)

yecc Parsetools Reference Manual

More Examples

1. A grammar for parsing infix arithmetic expressions into prefix notation, without
operator precedence:

Nonterminals E T F.
Terminals ’+’ ’*’ ’(’ ’)’ number.
Rootsymbol E.
E -> E ’+’ T: [’$1’, ’$2’, ’$3’].
E -> T : ’$1’.
T -> T ’*’ F: [’$1’, ’$2’, ’$3’].
T -> F : ’$1’.
F -> ’(’ E ’)’ : ’$2’.
F -> number : ’$1’.

2. The same with operator precedence becomes simpler:

Nonterminals E.
Terminals ’+’ ’*’ ’(’ ’)’ number.
Rootsymbol E.
Left 100 ’+’.
Left 200 ’*’.
E -> E ’+’ E : [’$1’, ’$2’, ’$3’].
E -> E ’*’ E : [’$1’, ’$2’, ’$3’].
E -> ’(’ E ’)’ : ’$2’.
E -> number : ’$1’.

3. An overloaded minus operator:

Nonterminals E uminus.
Terminals ’*’ ’-’ number.
Rootsymbol E.

Left 100 ’-’.
Left 200 ’*’.
Unary 300 uminus.

E -> E ’-’ E.
E -> E ’*’ E.
E -> uminus.
E -> number.

uminus -> ’-’ E.

4. The Yecc grammar that is used for parsing grammar files, including itself:

Nonterminals
grammar declaration rule head symbol symbols attached_code
token tokens.
Terminals
atom float integer reserved_symbol reserved_word string char var
’->’ ’:’ ’dot’.
Rootsymbol grammar.
Endsymbol ’$end’.
grammar -> declaration : ’$1’.
grammar -> rule : ’$1’.

8 Parse Tools Application (PARSETOOLS)

Parsetools Reference Manual yecc

declaration -> symbol symbols ’dot’: {’$1’, ’$2’}.
rule -> head ’->’ symbols attached_code ’dot’: {rule, [’$1’ | ’$3’],

’$4’}.
head -> symbol : ’$1’.
symbols -> symbol : [’$1’].
symbols -> symbol symbols : [’$1’ | ’$2’].
attached_code -> ’:’ tokens : {erlang_code, ’$2’}.
attached_code -> ’$empty’ : {erlang_code,

[{atom, 0, ’$undefined’}]}.
tokens -> token : [’$1’].
tokens -> token tokens : [’$1’ | ’$2’].
symbol -> var : value_of(’$1’).
symbol -> atom : value_of(’$1’).
symbol -> integer : value_of(’$1’).
symbol -> reserved_word : value_of(’$1’).
token -> var : ’$1’.
token -> atom : ’$1’.
token -> float : ’$1’.
token -> integer : ’$1’.
token -> string : ’$1’.
token -> char : ’$1’.
token -> reserved_symbol : {value_of(’$1’), line_of(’$1’)}.
token -> reserved_word : {value_of(’$1’), line_of(’$1’)}.
token -> ’->’ : {’->’, line_of(’$1’)}.
token -> ’:’ : {’:’, line_of(’$1’)}.
Erlang code.
value_of(Token) ->

element(3, Token).
line_of(Token) ->

element(2, Token).

Note:
The symbols ’->’, and ’:’ have to be treated in a special way, as they are meta
symbols of the grammar notation, as well as terminal symbols of the Yecc grammar.

5. The file erl parse.yrl in the lib/stdlib/src directory contains the grammar for
Erlang.

Note:
Syntactic tests are used in the code associated with some rules, and an error is thrown
(and caught by the generated parser to produce an error message) when a test fails.
The same effect can be achieved with a call to return error(Error line,
Message string), which is defined in the yeccpre.hrl default header file.

9Parse Tools Application (PARSETOOLS)

yecc Parsetools Reference Manual

Files

lib/parsetools/include/yeccpre.hrl

See Also

Aho & Johnson: ’LR Parsing’, ACM Computing Surveys, vol. 6:2, 1974.

10 Parse Tools Application (PARSETOOLS)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

file/2
yecc , 2

format_error/1
yecc , 3

yecc
file/2, 2
format_error/1, 3

11Parse Tools Application (PARSETOOLS)

12 Parse Tools Application (PARSETOOLS)

