
Runtime Tools

version 1.7

Typeset in LATEX from SGML source using the DocBuilder-0.9.8 Document System.

Contents

1 Runtime Tools Reference Manual 1

1.1 runtime tools . 5

1.2 dbg . 6

1.3 erts alloc config . 22

iiiRuntime Tools

iv Runtime Tools

Runtime Tools Reference
Manual

Short Summaries

� Application runtime tools [page 5] – The Runtime tools Application

� Erlang Module dbg [page 6] – The Text Based Trace Facility

� Erlang Module erts alloc config [page 22] – Configuration tool for erts alloc

runtime tools

No functions are exported.

dbg

The following functions are exported:

� fun2ms(LiteralFun) -> MatchSpec
[page 6] Pseudo function that transforms fun syntax to match spec.

� h() -> ok
[page 7] Give a list of available help items on standard output.

� h(Item) -> ok
[page 7] Give brief help for an item.

� p(Item) -> fok, MatchDescg | ferror, term()g
[page 7] Trace messages to and from Item.

� p(Item, Flags) -> fok, MatchDescg | ferror, term()g
[page 7] Trace Item according to Flags.

� c(Mod, Fun, Args)
[page 9] Evaluate apply(M,F,Args)with alltrace flags set.

� c(Mod, Fun, Args, Flags)
[page 9] Evaluate apply(M,F,Args)with Flagstrace flags set.

� i() -> ok
[page 9] Display information about all traced processes.

� tp(Module,MatchSpec)
[page 9] Set pattern for traced global function calls

� tp(Module,Function,MatchSpec)
[page 9] Set pattern for traced global function calls

1Runtime Tools

Runtime Tools Reference Manual

� tp(Module, Function, Arity, MatchSpec)
[page 9] Set pattern for traced global function calls

� tp(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg |
ferror, term()g
[page 9] Set pattern for traced global function calls

� tpl(Module,MatchSpec)
[page 10] Set pattern for traced local (as well as global) function calls

� tpl(Module,Function,MatchSpec)
[page 10] Set pattern for traced local (as well as global) function calls

� tpl(Module, Function, Arity, MatchSpec)
[page 10] Set pattern for traced local (as well as global) function calls

� tpl(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg |
ferror, term()g
[page 10] Set pattern for traced local (as well as global) function calls

� ctp()
[page 10] Clear call trace pattern for the specified functions

� ctp(Module)
[page 10] Clear call trace pattern for the specified functions

� ctp(Module, Function)
[page 10] Clear call trace pattern for the specified functions

� ctp(Module, Function, Arity)
[page 10] Clear call trace pattern for the specified functions

� ctp(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g
[page 10] Clear call trace pattern for the specified functions

� ctpl()
[page 11] Clear call trace pattern for the specified functions

� ctpl(Module)
[page 11] Clear call trace pattern for the specified functions

� ctpl(Module, Function)
[page 11] Clear call trace pattern for the specified functions

� ctpl(Module, Function, Arity)
[page 11] Clear call trace pattern for the specified functions

� ctpl(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g
[page 11] Clear call trace pattern for the specified functions

� ctpg()
[page 11] Clear call trace pattern for the specified functions

� ctpg(Module)
[page 11] Clear call trace pattern for the specified functions

� ctpg(Module, Function)
[page 11] >Clear call trace pattern for the specified functions

� ctpg(Module, Function, Arity)
[page 11] >Clear call trace pattern for the specified functions

� ctpg(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g
[page 11] Clear call trace pattern for the specified functions

� ltp() -> ok
[page 11] List saved match specifications on the console.

2 Runtime Tools

Runtime Tools Reference Manual

� dtp() -> ok
[page 12] Delete all saved match specifications.

� dtp(N) -> ok
[page 12] Delete a specific saved match spec.

� wtp(Name) -> ok | ferror, IOErrorg
[page 12] Write all saved match specifications to a file

� rtp(Name) -> ok | ferror, Errorg
[page 12] Read saved match specifications from file.

� n(Nodename) -> fok, Nodenameg | ferror, Reasong
[page 12] Add a remote node to the list of traced nodes

� cn(Nodename) -> ok
[page 13] Clear a node from the list of traced nodes.

� ln() -> ok
[page 13] Show the list of traced nodes on the console.

� tracer() -> fok, pid()g | ferror, already startedg
[page 13] Start a tracer server that handles trace messages.

� tracer(Type, Data) -> fok, pid()g | ferror, Errorg
[page 13] Start a tracer server with additional parameters

� tracer(Nodename, Type, Data) -> fok, Nodenameg | ferror, Reasong
[page 14] Start a tracer server on given node with additional parameters

� trace port(Type, Parameters) -> fun()
[page 14] Create and returns a trace port generatingfun

� flush trace port()
[page 15] Equivalent to flush trace port(node()).

� flush trace port(Nodename) -> ok | ferror, Reasong
[page 15] Flush internal data buffers in a trace driver on the given node.

� trace port control(Operation)
[page 16] Equivalent to trace port control(node(),Operation).

� trace port control(Nodename,Operation) -> ok | fok, Resultg |
ferror, Reasong
[page 16] Perform a control operation on the active trace port driver on the given
node.

� trace client(Type, Parameters) -> pid()
[page 16] Start a trace client that reads messages created by a trace port driver

� trace client(Type, Parameters, HandlerSpec) -> pid()
[page 17] Start a trace client that reads messages created by a trace port driver,
with a user defined handler

� stop trace client(Pid) -> ok
[page 17] Stop a trace client gracefully.

� get tracer()
[page 18] Equivalent to get tracer(node()).

� get tracer(Nodename) -> fok, Tracerg
[page 18] Return the process or port to which all trace messages are sent.

� stop() -> stopped
[page 18] Stop the dbgserver and the tracing of all processes.

� stop clear() -> stopped
[page 18] Stop the dbgserver and the tracing of all processes, and clears trace
patterns.

3Runtime Tools

Runtime Tools Reference Manual

erts alloc config

The following functions are exported:

� save scenario() -> ok | ferror, Errorg
[page 23] Saves information about current runtime scenario

� make config() -> ok | ferror, Errorg
[page 23] Creates an erts alloc configuration

� make config(FileNameOrIODev) -> ok | ferror, Errorg
[page 23] Creates an erts alloc configuration

� stop() -> ok | ferror, Errorg
[page 24]

4 Runtime Tools

Runtime Tools Reference Manual runtime tools

runtime tools
Application

This chapter describes the Runtime Tools application in OTP, which provides low
footprint tracing/debugging tools suitable for inclusion in a production system.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO

application(3)

5Runtime Tools

dbg Runtime Tools Reference Manual

dbg
Erlang Module

This module implements a text based interface to the trace/3 and the
trace pattern/2 BIFs. It makes it possible to trace functions, processes and messages
on text based terminals. It can be used instead of, or as complement to, the pman
module.

For some examples of how to use dbg from the Erlang shell, see the simple example
[page 18] section.

The utilities are also suitable to use in system testing on large systems, where other tools
have too much impact on the system performance. Some primitive support for
sequential tracing is also included, see the advanced topics [page 19] section.

Exports

fun2ms(LiteralFun) -> MatchSpec

Types:

� LiteralFun = fun() literal
� MatchSpec = term()

Pseudo function that by means of a parse transform translates the literalfun() typed
as parameter in the function call to a match specification as described in the match spec
manual of ERTS users guide. (with literal I mean that the fun() needs to textually be
written as the parameter of the function, it cannot be held in a variable which in turn is
passed to the function).

The parse transform is implemented in the module ms transform and the source must
include the file ms transform.hrl in STDLIB for this pseudo function to work. Failing
to include the hrl file in the source will result in a runtime error, not a compile time
ditto. The include file is easiest included by adding the line
-include lib("stdlib/include/ms transform.hrl"). to the source file.

The fun() is very restricted, it can take only a single parameter (the parameter list to
match), a sole variable or a list. It needs to use the is XXX guard tests and one cannot
use language constructs that have no representation in a match spec (like if, case,
receive etc). The return value from the fun will be the return value of the resulting
match spec.

Example:

1> dbg:fun2ms(fun([M,N]) when N > 3 -> return trace() end).
[f[’$1’,’$2’],[f’>’,’$2’,3g],[freturn traceg]g]

Variables from the environment can be imported, so that this works:

6 Runtime Tools

Runtime Tools Reference Manual dbg

2> X=3.
3
3> dbg:fun2ms(fun([M,N]) when N > X -> return trace() end).
[f[’$1’,’$2’],[f’>’,’$2’,fconst,3gg],[freturn traceg]g]

The imported variables will be replaced by match spec const expressions, which is
consistent with the static scoping for Erlang fun()s. Local or global function calls can
not be in the guard or body of the fun however. Calls to builtin match spec functions of
course is allowed:

4> dbg:fun2ms(fun([M,N]) when N > X, is atomm(M) -> return trace() end).
Error: fun containing local erlang function calls (’is atomm’ called in guard) cannot
ferror,transform errorg
5> dbg:fun2ms(fun([M,N]) when N > X, is atom(M) -> return trace() end).
[f[’$1’,’$2’],[f’>’,’$2’,fconst,3gg,fis atom,’$1’g],[freturn traceg]g]

As you can see by the example, the function can be called from the shell too. The fun()
needs to be literally in the call when used from the shell as well. Other means than the
parse transform are used in the shell case, but more or less the same restrictions apply
(the exception being records, as they are not handled by the shell).

Warning:
If the parse transform is not applied to a module which calls this pseudo function,
the call will fail in runtime (with a badarg). The module dbg actually exports a
function with this name, but it should never really be called except for when using
the function in the shell. If the parse transform is properly applied by including the
ms transform.hrl header file, compiled code will never call the function, but the
function call is replaced by a literal match spec.

More information is provided by the ms transform manual page in STDLIB.

h() -> ok

Gives a list of items for brief online help.

h(Item) -> ok

Types:

� Item = atom()

Gives a brief help text for functions in the dbg module. The available items can be
listed with dbg:h/0

p(Item) -> fok, MatchDescg | ferror, term()g

Equivalent to p(Item, [m]).

p(Item, Flags) -> fok, MatchDescg | ferror, term()g

Types:

� MatchDesc = [MatchNum]
� MatchNum = fmatched, node(), integer()g | fmatched, node(), 0, RPCErrorg
� RPCError = term()

7Runtime Tools

dbg Runtime Tools Reference Manual

Traces Item in accordance to the value specified by Flags. The variation of Item is
listed below:

� If the Item is a pid(), the corresponding process is traced. The process may be a
remote process (on another Erlang node). The node must be in the list of traced
nodes (see [page 12]n/1 and tracer/0/2/3).

� If the Item is the atom all, all processes in the system as well as all processes
created hereafter are to be traced. This also affects all nodes added with the n/1 or
tracer/0/2/3 function.

� If the Item is the atom new, no currently existing processes are affected, but every
process created after the call is.This also affects all nodes added with the n/1 or
tracer/0/2/3 function.

� If the Item is the atom existing, all existing processes are traced, but new
processes will not be affected.This also affects all nodes added with the n/1 or
tracer/0/2/3 function.

� If the Item is an atom other than all, new or existing, the process with the
corresponding registered name is traced.The process may be a remote process (on
another Erlang node). The node must be added with the n/1 or tracer/0/2/3
function.

� If the Item is an integer, the process <Item.1> is traced.

� If the Item is a tuple fX, Y, Zg, the process <X.Y.Z> is traced.

Flags can be a single atom, or a list of flags. The available flags are:

s (send) Traces the messages the process sends.

r (receive) Traces the messages the process receives.

m (messages) Traces the messages the process receives and sends.

c (call) Traces global function calls for the process according to the trace patterns set
in the system (see tp/2).

p (procs) Traces process related events to the process.

sos (set on spawn) Lets all processes created by the traced process inherit the trace
flags of the traced process.

sol (set on link) Lets another process, P2, inherit the trace flags of the traced
process whenever the traced process links to P2.

sofs (set on first spawn) This is the same as sos, but only for the first process
spawned by the traced process.

sofl (set on first link) This is the same as sol, but only for the first call to
link/1 by the traced process.

all Sets all flags.

clear Clears all flags.

The list can also include any of the flags allowed in erlang:trace/3

The function returns either an error tuple or a tuple fok, Listg. The List consists of
specifications of how many processes that matched (in the case of a pure pid() exactly
1). The specification of matched processes is fmatched, Node, Ng. If the remote
processor call,rpc, to a remote node fails, the rpc error message is delivered as a fourth
argument and the number of matched processes are 0. Note that the result fok, Listg
may contain a list where rpc calls to one, several or even all nodes failed.

8 Runtime Tools

Runtime Tools Reference Manual dbg

c(Mod, Fun, Args)

Equivalent to c(Mod, Fun, Args, all).

c(Mod, Fun, Args, Flags)

Evaluates the expression apply(Mod, Fun, Args) with the trace flags in Flags set.
This is a convenient way to trace processes from the Erlang shell.

i() -> ok

Displays information about all traced processes.

tp(Module,MatchSpec)

Same as tp(fModule, ’ ’, ’ ’g, MatchSpec)

tp(Module,Function,MatchSpec)

Same as tp(fModule, Function, ’ ’g, MatchSpec)

tp(Module, Function, Arity, MatchSpec)

Same as tp(fModule, Function, Arityg, MatchSpec)

tp(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg | ferror, term()g

Types:

� Module = atom() | ’ ’
� Function = atom() | ’ ’
� Arity = integer() |’ ’
� MatchSpec = integer() | [] | match spec()
� MatchDesc = [MatchInfo]
� MatchInfo = fsaved, integer()g | MatchNum
� MatchNum = fmatched, node(), integer()g | fmatched, node(), 0, RPCErrorg

This function enables call trace for one or more functions. All exported functions
matching the fModule, Function, Arityg argument will be concerned, but the
match spec() may further narrow down the set of function calls generating trace
messages.

For a description of the match spec() syntax, please turn to the User’s guide part of the
online documentation for the runtime system (erts). The chapter Match Specification in
Erlang explains the general match specification “language”.

The Module, Function and/or Arity parts of the tuple may be specified as the atom ’ ’
which is a “wild-card” matching all modules/functions/arities. Note, if the Module is
specified as ’ ’, the Function and Arity parts have to be specified as ’ ’ too. The same
holds for the Functions relation to the Arity.

All nodes added with n/1 or tracer/0/2/3 will be affected by this call, and if Module
is not ’ ’ the module will be loaded on all nodes.

The function returns either an error tuple or a tuple fok, Listg. The List consists of
specifications of how many functions that matched, in the same way as the processes
are presented in the return value of p/2.

9Runtime Tools

dbg Runtime Tools Reference Manual

There may be a tuple fsaved, Ng in the return value, if the MatchSpec is other than [].
The integer N may then be used in subsequent calls to this function and will stand as an
“alias” for the given expression (see also ltp/0 below).

If an error is returned, it can be due to errors in compilation of the match specification.
Such errors are presented as a list of tuples ferror, string()g where the string is a
textual explanation of the compilation error. An example:

(x@y)4> dbg:tp(fdbg,ltp,0g,[f[],[],[fmessage, two, argumentsg, fnoexistg]g]).
ferror,
[ferror,"Special form ’message’ called with wrong number of

arguments in fmessage,two,argumentsg."g,
ferror,"Function noexist/1 does not exist."g]g

tpl(Module,MatchSpec)

Same as tpl(fModule, ’ ’, ’ ’g, MatchSpec)

tpl(Module,Function,MatchSpec)

Same as tpl(fModule, Function, ’ ’g, MatchSpec)

tpl(Module, Function, Arity, MatchSpec)

Same as tpl(fModule, Function, Arityg, MatchSpec)

tpl(fModule, Function, Arityg, MatchSpec) -> fok, MatchDescg | ferror, term()g

This function works as tp/2, but enables tracing for local calls (and local functions) as
well as for global calls (and functions).

ctp()

Same as ctp(f’ ’, ’ ’, ’ ’g)

ctp(Module)

Same as ctp(fModule, ’ ’, ’ ’g)

ctp(Module, Function)

Same as ctp(fModule, Function, ’ ’g)

ctp(Module, Function, Arity)

Same as ctp(fModule, Function, Arityg)

ctp(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g

Types:

� Module = atom() | ’ ’
� Function = atom() | ’ ’
� Arity = integer() | ’ ’
� MatchDesc = [MatchNum]
� MatchNum = fmatched, node(), integer()g | fmatched, node(), 0, RPCErrorg

10 Runtime Tools

Runtime Tools Reference Manual dbg

This function disables call tracing on the specified functions. The semantics of the
parameter is the same as for the corresponding function specification in tp/2 or tpl/2.
Both local and global call trace is disabled.

The return value reflects how many functions that matched, and is constructed as
described in tp/2. No tuple fsaved, Ng is however ever returned (for obvious reasons).

ctpl()

Same as ctpl(f’ ’, ’ ’, ’ ’g)

ctpl(Module)

Same as ctpl(fModule, ’ ’, ’ ’g)

ctpl(Module, Function)

Same as ctpl(fModule, Function, ’ ’g)

ctpl(Module, Function, Arity)

Same as ctpl(fModule, Function, Arityg)

ctpl(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g

This function works as ctp/1, but only disables tracing set up with tpl/2 (not with
tp/2).

ctpg()

Same as ctpg(f’ ’, ’ ’, ’ ’g)

ctpg(Module)

Same as ctpg(fModule, ’ ’, ’ ’g)

ctpg(Module, Function)

Same as ctpg(fModule, Function, ’ ’g)

ctpg(Module, Function, Arity)

Same as ctpg(fModule, Function, Arityg)

ctpg(fModule, Function, Arityg) -> fok, MatchDescg | ferror, term()g

This function works as ctp/1, but only disables tracing set up with tp/2 (not with
tpl/2).

ltp() -> ok

11Runtime Tools

dbg Runtime Tools Reference Manual

Use this function to recall all match specifications previously used in the session (i. e.
previously saved during calls to tp/2. This is very useful, as a complicated match spec
can be quite awkward to write. Note that the match specifications are lost if stop/0 is
called.

Match specifications used can be saved in a file (if a read-write file system is present) for
use in later debugging sessions, see wtp/1 and rtp/1

dtp() -> ok

Use this function to “forget” all match specifications saved during calls to tp/2. This is
useful when one wants to restore other match specifications from a file with rtp/1. Use
dtp/1 to delete specific saved match specifications.

dtp(N) -> ok

Types:

� N = integer()

Use this function to “forget” a specific match specification saved during calls to tp/2.

wtp(Name) -> ok | ferror, IOErrorg

Types:

� Name = string()
� IOError = term()

This function will save all match specifications saved during the session (during calls to
tp/2) in a text file with the name designated by Name. The format of the file is textual,
why it can be edited with an ordinary text editor, and then restored with rtp/1.

Each match spec in the file ends with a full stop (.) and new (syntactically correct)
match specifications can be added to the file manually.

The function returns ok or an error tuple where the second element contains the I/O
error that made the writing impossible.

rtp(Name) -> ok | ferror, Errorg

Types:

� Name = string()
� Error = term()

This function reads match specifications from a file (possibly) generated by the wtp/1
function. It checks the syntax of all match specifications and verifies that they are
correct. The error handling principle is “all or nothing”, i. e. if some of the match
specifications are wrong, none of the specifications are added to the list of saved match
specifications for the running system.

The match specifications in the file are merged with the current match specifications, so
that no duplicates are generated. Use ltp/0 to see what numbers were assigned to the
specifications from the file.

The function will return an error, either due to I/O problems (like a non existing or non
readable file) or due to file format problems. The errors from a bad format file are in a
more or less textual format, which will give a hint to what’s causing the problem.

n(Nodename) -> fok, Nodenameg | ferror, Reasong

12 Runtime Tools

Runtime Tools Reference Manual dbg

Types:

� Nodename = atom()
� Reason = term()

The dbg server keeps a list of nodes where tracing should be performed. Whenever a
tp/2 call or a p/2 call is made, it is executed for all nodes in this list including the local
node (except for p/2 with a specific pid() as first argument, in which case the
command is executed only on the node where the designated process resides).

This function adds a remote node (Nodename) to the list of nodes where tracing is
performed. It starts a tracer process on the remote node, which will send all trace
messages to the tracer process on the local node (via the Erlang distribution). If no
tracer process is running on the local node, the error reason no local tracer is
returned. The tracer process on the local node must be started with the tracer/0/2
function.

If Nodename is the local node, the error reason cant add local node is returned.

If a trace port (see [page 14]trace port/2) is running on the local node, remote nodes
can not be traced with a tracer process. The error reason
cant trace remote pid to local port is returned. A trace port can however be
started on the remote node with the tracer/3 function.

The function will also return an error if the node Nodename is not reachable.

cn(Nodename) -> ok

Types:

� Nodename = atom()

Clears a node from the list of traced nodes. Subsequent calls to tp/2 and p/2 will not
consider that node, but tracing already activated on the node will continue to be in
effect.

Returns ok, cannot fail.

ln() -> ok

Shows the list of traced nodes on the console.

tracer() -> fok, pid()g | ferror, already startedg

This function starts a server on the local node that will be the recipient of all trace
messages. All subsequent calls to p/2 will result in messages sent to the newly started
trace server.

A trace server started in this way will simply display the trace messages in a formatted
way in the Erlang shell (i. e. use io:format). See tracer/2 for a description of how the
trace message handler can be customized.

To start a similar tracer on a remote node, use n/1.

tracer(Type, Data) -> fok, pid()g | ferror, Errorg

Types:

� Type = port | process
� Data = PortGenerator | HandlerSpec
� HandlerSpec = fHandlerFun, InitialDatag

13Runtime Tools

dbg Runtime Tools Reference Manual

� HandlerFun = fun() (two arguments)
� InitialData = term()
� PortGenerator = fun() (no arguments)
� Error = term()

This function starts a tracer server with additional parameters on the local node. The
first parameter, the Type, indicates if trace messages should be handled by a receiving
process (process) or by a tracer port (port). For a description about tracer ports see
trace port/2.

If Type is a process, a message handler function can be specified (HandlerSpec). The
handler function, which should be a fun taking two arguments, will be called for each
trace message, with the first argument containing the message as it is and the second
argument containing the return value from the last invocation of the fun. The initial
value of the second parameter is specified in the InitialData part of the HandlerSpec.
The HandlerFun may chose any appropriate action to take when invoked, and can save
a state for the next invocation by returning it.

If Type is a port, then the second parameter should be a fun which takes no arguments
and returns a newly opened trace port when called. Such a fun is preferably generated
by calling trace port/2.

If an error is returned, it can either be due to a tracer server already running
(ferror,already startedg) or due to the HandlerFun throwing an exception.

To start a similar tracer on a remote node, use tracer/3.

tracer(Nodename, Type, Data) -> fok, Nodenameg | ferror, Reasong

Types:

� Nodename = atom()

This function is equivalent to tracer/2, but acts on the given node. A tracer is started
on the node (Nodename) and the node is added to the list of traced nodes.

Note:
This function is not equivalent to n/1. While n/1 starts a process tracer which
redirects all trace information to a process tracer on the local node (i.e. the trace
control node), tracer/3 starts a tracer of any type which is independent of the tracer
on the trace control node.

For details, see [page 13]tracer/2.

trace port(Type, Parameters) -> fun()

Types:

� Type = ip | file
� Parameters = Filename | WrapFilesSpec | IPPortSpec
� Filename = string() | [string()] | atom()
� WrapFilesSpec = fFilename, wrap, Suffixg | fFilename, wrap, Suffix, WrapSizeg |
fFilename, wrap, Suffix, WrapSize, WrapCntg

� Suffix = string()
� WrapSize = integer() >= 0 | ftime, WrapTimeg

14 Runtime Tools

Runtime Tools Reference Manual dbg

� WrapTime = integer() >= 1
� WrapCnt = integer() >= 1
� IpPortSpec = PortNumber | fPortNumber, QueSizeg
� PortNumber = integer()
� QueSize = integer()

This function creates a trace port generating fun. The fun takes no arguments and
returns a newly opened trace port. The return value from this function is suitable as a
second parameter to tracer/2, i. e. dbg:tracer(port, dbg:trace port(ip, 4711)).

A trace port is an Erlang port to a dynamically linked in driver that handles trace
messages directly, without the overhead of sending them as messages in the Erlang
virtual machine.

Two trace drivers are currently implemented, the file and the ip trace drivers. The file
driver sends all trace messages into one or several binary files, from where they later can
be fetched and processed with the trace client/2 function. The ip driver opens a
TCP/IP port where it listens for connections. When a client (preferably started by
calling trace client/2 on another Erlang node) connects, all trace messages are sent
over the IP network for further processing by the remote client.

Using a trace port significantly lowers the overhead imposed by using tracing.

The file trace driver expects a filename or a wrap files specification as parameter. A file
is written with a high degree of buffering, why all trace messages are not guaranteed to
be saved in the file in case of a system crash. That is the price to pay for low tracing
overhead.

A wrap files specification is used to limit the disk space consumed by the trace. The
trace is written to a limited number of files each with a limited size. The actual
filenames are Filename ++ SeqCnt ++ Suffix, where SeqCnt counts as a decimal
string from 0 to WrapCnt and then around again from 0. When a trace term written to
the current file makes it longer than WrapSize, that file is closed, if the number of files
in this wrap trace is as many as WrapCnt the oldest file is deleted then a new file is
opened to become the current. Thus, when a wrap trace has been stopped, there are at
most WrapCnt trace files saved with a size of at least WrapSize (but not much bigger),
except for the last file that might even be empty. The default values are WrapSize =
128*1024 and WrapCnt = 8.

The SeqCnt values in the filenames are all in the range 0 through WrapCnt with a gap in
the circular sequence. The gap is needed to find the end of the trace.

If the WrapSize is specified as ftime, WrapTimeg, the current file is closed when it has
been open more than WrapTime milliseconds, regardless of it being empty or not.

The ip trace driver has a queue of QueSize messages waiting to be delivered. If the
driver cannot deliver messages as fast as they are produced by the runtime system, a
special message is sent, which indicates how many messages that are dropped. That
message will arrive at the handler function specified in trace client/3 as the tuple
fdrop, Ng where N is the number of consecutive messages dropped. In case of heavy
tracing, drop’s are likely to occur, and they surely occur if no client is reading the trace
messages.

flush trace port()

Equivalent to flush trace port(node()).

flush trace port(Nodename) -> ok | ferror, Reasong

15Runtime Tools

dbg Runtime Tools Reference Manual

Equivalent to trace port control(Nodename,flush).

trace port control(Operation)

Equivalent to trace port control(node(),Operation).

trace port control(Nodename,Operation) -> ok | fok, Resultg | ferror, Reasong

Types:

� Nodename = atom()

This function is used to do a control operation on the active trace port driver on the
given node (Nodename). Which operations that are allowed as well as their return values
are depending on which trace driver that is used.

Returns either ok or fok, Resultg if the operation was successful, or ferror, Reasong
if the current tracer is a process or if it is a port not supporting the operation.

The allowed values for Operation are:

flush This function is used to flush the internal buffers held by a trace port driver.
Currently only the file trace driver supports this operation. Returns ok.

get listen port Returns fok, IpPortg where IpPortis the IP port number used by
the driver listen socket. Only the ip trace driver supports this operation.

trace client(Type, Parameters) -> pid()

Types:

� Type = ip | file | follow file
� Parameters = Filename | WrapFilesSpec | IPClientPortSpec
� Filename = string() | [string()] | atom()
� WrapFilesSpec = see trace port/2
� Suffix = string()
� IpClientPortSpec = PortNumber | fHostname, PortNumberg
� PortNumber = integer()
� Hostname = string()

This function starts a trace client that reads the output created by a trace port driver and
handles it in mostly the same way as a tracer process created by the tracer/0 function.

If Type is file, the client reads all trace messages stored in the file named Filename or
specified by WrapFilesSpec (must be the same as used when creating the trace, see
trace port/2) and let’s the default handler function format the messages on the console.
This is one way to interpret the data stored in a file by the file trace port driver.

If Type is follow file, the client behaves as in the file case, but keeps trying to read
(and process) more data from the file until stopped by stop trace client/1.
WrapFilesSpec is not allowed as second argument for this Type.

If Type is ip, the client connects to the TCP/IP port PortNumber on the host Hostname,
from where it reads trace messages until the TCP/IP connection is closed. If no
Hostname is specified, the local host is assumed.

As an example, one can let trace messages be sent over the network to another Erlang
node (preferably not distributed), where the formatting occurs:

On the node stack there’s an Erlang node ant@stack, in the shell, type the following:

16 Runtime Tools

Runtime Tools Reference Manual dbg

ant@stack> dbg:tracer(port, dbg:trace port(ip,4711)).
<0.17.0>
ant@stack> dbg:p(self(), send).
fok,1g

All trace messages are now sent to the trace port driver, which in turn listens for
connections on the TCP/IP port 4711. If we want to see the messages on another node,
preferably on another host, we do like this:

-> dbg:trace client(ip, f"stack", 4711g).
<0.42.0>

If we now send a message from the shell on the node ant@stack, where all sends from
the shell are traced:

ant@stack> self() ! hello.
hello

The following will appear at the console on the node that started the trace client:

(<0.23.0>) <0.23.0> ! hello
(<0.23.0>) <0.22.0> ! fshell rep,<0.23.0>,fvalue,hello,[],[]gg

The last line is generated due to internal message passing in the Erlang shell. The
process id’s will vary.

trace client(Type, Parameters, HandlerSpec) -> pid()

Types:

� Type = ip | file | follow file
� Parameters = Filename | WrapFilesSpec | IPClientPortSpec
� Filename = string() | [string()] | atom()
� WrapFilesSpec = see trace port/2
� Suffix = string()
� IpClientPortSpec = PortNumber | fHostname, PortNumberg
� PortNumber = integer()
� Hostname = string()
� HandlerSpec = fHandlerFun, InitialDatag
� HandlerFun = fun() (two arguments)
� InitialData = term()

This function works exactly as trace client/2, but allows you to write your own
handler function. The handler function works mostly as the one described in tracer/2,
but will also have to be prepared to handle trace messages of the form fdrop, Ng,
where N is the number of dropped messages. This pseudo trace message will only occur
if the ip trace driver is used.

For trace type file, the pseudo trace message end of trace will appear at the end of
the trace. The return value from the handler function is in this case ignored.

stop trace client(Pid) -> ok

Types:

� Pid = pid()

17Runtime Tools

dbg Runtime Tools Reference Manual

This function shuts down a previously started trace client. The Pid argument is the
process id returned from the trace client/2 or trace client/3 call.

get tracer()

Equivalent to get tracer(node()).

get tracer(Nodename) -> fok, Tracerg

Types:

� Nodename = atom()
� Tracer = port() | pid()

Returns the process or port to which all trace messages are sent.

stop() -> stopped

Stops the dbg server and clears all trace flags for all processes and all trace patterns for
all functions. Also shuts down all trace clients and closes all trace ports.

Note that no trace patterns are affected by this function.

stop clear() -> stopped

Same as stop/0, but also clears all trace patterns on local and global functions calls.

Simple examples - tracing from the shell

The simplest way of tracing from the Erlang shell is to use dbg:c/3 or dbg:c/4, e.g.
tracing the function dbg:get tracer/0:

(tiger@durin)84> dbg:c(dbg,get tracer,[]).
(<0.154.0>) <0.152.0> ! f<0.154.0>,fget tracer,tiger@duringg
(<0.154.0>) out fdbg,req,1g
(<0.154.0>) << fdbg,fok,<0.153.0>gg
(<0.154.0>) in fdbg,req,1g
(<0.154.0>) << timeout
fok,<0.153.0>g
(tiger@durin)85>

Another way of tracing from the shell is to explicitly start a tracer and then set the trace
flags of your choice on the processes you want to trace, e.g. trace messages and process
events:

(tiger@durin)66> Pid = spawn(fun() -> receive fFrom,Msgg -> From ! Msg end end).
<0.126.0>
(tiger@durin)67> dbg:tracer().
fok,<0.128.0>g
(tiger@durin)68> dbg:p(Pid,[m,procs]).
fok,[fmatched,tiger@durin,1g]g
(tiger@durin)69> Pid ! fself(),hellog.
(<0.126.0>) << f<0.116.0>,hellog
f<0.116.0>,hellog
(<0.126.0>) << timeout
(<0.126.0>) <0.116.0> ! hello

18 Runtime Tools

Runtime Tools Reference Manual dbg

(<0.126.0>) exit normal
(tiger@durin)70> flush().
Shell got hello
ok
(tiger@durin)71>

If you set the call trace flag, you also have to set a trace pattern for the functions you
want to trace:

(tiger@durin)77> dbg:tracer().
fok,<0.142.0>g
(tiger@durin)78> dbg:p(all,call).
fok,[fmatched,tiger@durin,3g]g
(tiger@durin)79> dbg:tp(dbg,get tracer,0,[]).
fok,[fmatched,tiger@durin,1g]g
(tiger@durin)80> dbg:get tracer().
(<0.116.0>) call dbg:get tracer()
fok,<0.143.0>g
(tiger@durin)81> dbg:tp(dbg,get tracer,0,[f’ ’,[],[freturn traceg]g]).
fok,[fmatched,tiger@durin,1g,fsaved,1g]g
(tiger@durin)82> dbg:get tracer().
(<0.116.0>) call dbg:get tracer()
(<0.116.0>) returned from dbg:get tracer/0 -> fok,<0.143.0>g
fok,<0.143.0>g
(tiger@durin)83>

Advanced topics - combining with seq trace

The dbg module is primarily targeted towards tracing through the erlang:trace/3
function. It is sometimes desired to trace messages in a more delicate way, which can be
done with the help of the seq trace module.

seq trace implements sequential tracing (known in the AXE10 world, and sometimes
called “forlopp tracing”). dbg can interpret messages generated from seq trace and the
same tracer function for both types of tracing can be used. The seq trace messages can
even be sent to a trace port for further analysis.

As a match specification can turn on sequential tracing, the combination of dbg and
seq trace can be quite powerful. This brief example shows a session where sequential
tracing is used:

1> dbg:tracer().
fok,<0.30.0>g
2> fok, Tracerg = dbg:get tracer().
fok,<0.31.0>g
3> seq trace:set system tracer(Tracer).
false
4> dbg:tp(dbg, get tracer, 0, [f[],[],[fset seq token, send, trueg]g]).
fok,[fmatched,nonode@nohost,1g,fsaved,1g]g
5> dbg:p(all,call).
fok,[fmatched,nonode@nohost,22g]g
6> dbg:get tracer(), seq trace:set token([]).
(<0.25.0>) call dbg:get tracer()
SeqTrace [0]: (<0.25.0>) <0.30.0> ! f<0.25.0>,get tracerg [Serial: f2,4g]

19Runtime Tools

dbg Runtime Tools Reference Manual

SeqTrace [0]: (<0.30.0>) <0.25.0> ! fdbg,fok,<0.31.0>gg [Serial: f4,5g]
f1,0,5,<0.30.0>,4g

This session sets the system tracer to the same process as the ordinary tracer process (i.
e. <0.31.0>) and sets the trace pattern for the function dbg:get tracer to one that
has the action of setting a sequential token. When the function is called by a traced
process (all processes are traced in this case), the process gets “contaminated” by the
token and seq trace messages are sent both for the server request and the response.
The seq trace:set token([]) after the call clears the seq trace token, why no
messages are sent when the answer propagates via the shell to the console port. The
output would otherwise have been more noisy.

Note of caution

When tracing function calls on a group leader process (an IO process), there is risk of
causing a deadlock. This will happen if a group leader process generates a trace message
and the tracer process, by calling the trace handler function, sends an IO request to the
same group leader. The problem can only occur if the trace handler prints to tty using
an io function such as format/2. Note that when dbg:p(all,call) is called, IO
processes are also traced. Here’s an example:

%% Using a default line editing shell
1> dbg:tracer(process, ffun(Msg,) -> io:format("~p~n", [Msg]), 0 end, 0g).
fok,<0.37.0>g
2> dbg:p(all, [call]).
fok,[fmatched,nonode@nohost,25g]g
3> dbg:tp(mymod,[f’ ’,[],[]g]).
fok,[fmatched,nonode@nohost,0g,fsaved,1g]g
4> mymod: % TAB pressed here
%% -- Deadlock --

Here’s another example:

%% Using a shell without line editing (oldshell)
1> dbg:tracer(process).
fok,<0.31.0>g
2> dbg:p(all, [call]).
fok,[fmatched,nonode@nohost,25g]g
3> dbg:tp(lists,[f’ ’,[],[]g]).
fok,[fmatched,nonode@nohost,0g,fsaved,1g]g
% -- Deadlock --

The reason we get a deadlock in the first example is because when TAB is pressed to
expand the function name, the group leader (which handles character input) calls
mymod:module info(). This generates a trace message which, in turn, causes the tracer
process to send an IO request to the group leader (by calling io:format/2). We end up
in a deadlock.

In the second example we use the default trace handler function. This handler prints to
tty by sending IO requests to the user process. When Erlang is started in oldshell mode,
the shell process will have user as its group leader and so will the tracer process in this
example. Since user calls functions in lists we end up in a deadlock as soon as the
first IO request is sent.

Here are a few suggestions for how to avoid deadlock:

20 Runtime Tools

Runtime Tools Reference Manual dbg

� Don’t trace the group leader of the tracer process. If tracing has been switched on
for all processes, call dbg:p(TracerGLPid,clear) to stop tracing the group leader
(TracerGLPid). process info(TracerPid,group leader) tells you which
process this is (TracerPid is returned from dbg:get tracer/0).

� Don’t trace the user process if using the default trace handler function.

� In your own trace handler function, call erlang:display/1 instead of an io
function or, if user is not used as group leader, print to user instead of the default
group leader. Example: io:format(user,Str,Args).

21Runtime Tools

erts alloc config Runtime Tools Reference Manual

erts alloc config
Erlang Module

Note:
erts alloc config is currently an experimental tool and might be subject to
backward incompatible changes.

[erts alloc(3)] is an Erlang Run-Time System internal memory allocator library.
erts alloc config is intended to be used to aid creation of an [erts alloc(3)]
configuration that is suitable for a limited number of runtime scenarios. The
configuration that erts alloc config produce is intended as a suggestion, and may
need to be adjusted manually.

The configuration is created based on information about a number of runtime scenarios.
It is obviously impossible to forsee every runtime scenario that can occur. The
important scenarios are those that cause maximum or minimum load on specific
memory allocators. Load in this context is total size of memory blocks allocated.

The current implementation of erts alloc config concentrate on configuration of
multi-block carriers. Information gathered when a runtime scenario is saved is mainly
current and maximum use of multi-block carriers. If a parameter that change the use of
multi-block carriers is changed, a previously generated configuration is invalid and
erts alloc config needs to be run again. It is mainly the single block carrier threshold
that effects the use of multi-block carriers, but other single-block carrier parameters
might as well. If another value of a single block carrier parameter than the default is
desired, use the desired value when running erts alloc config.

A configuration is created in the following way:

� Pass the [+Mea config] command-line flag to the Erlang runtime system you are
going to use for creation of the allocator configuration. It will disable features that
prevent erts alloc config from doing it’s job. Note, you should not use this flag
when using the created configuration. Also note that it is important that you use
the same [amount of schedulers] when creating the configuration as you are going
the use on the system using the configuration.

� Run your applications with different scenarios (the more the better) and save
information about each scenario by calling save scenario/0 [page 23]. It may be
hard to know when the applications are at an (for erts alloc config) important
runtime scenario. A good approach may therefore be to call save scenario/0 [page
23] repeatedly, e.g. once every tenth second. Note that it is important that your
applications reach the runtime scenarios that are important for erts alloc config
when you are saving scenarios; otherwise, the configuration may perform bad.

22 Runtime Tools

Runtime Tools Reference Manual erts alloc config

� When you have covered all scenarios, call make config/1 [page 23] in order to
create a configuration. The configuration is written to a file that you have chosen.
This configuration file can later be read by an Erlang runtime-system at startup.
Pass the command line argument [-args file FileName] to the [erl(1)] command.

� The configuration produced by erts alloc config may need to be manually
adjusted as already stated. Do not modify the file produced by
erts alloc config; instead, put your modifications in another file and load this
file after the file produced by erts alloc config. That is, put the [-args file
FileName] argument that reads your modification file later on the command-line
than the [-args file FileName] argument that reads the configuration file produced
by erts alloc config. If a memory allocation parameter appear multiple times,
the last version of will be used, i.e., you can override parameters in the
configuration file produced by erts alloc config. Doing it this way simplifies
things when you want to rerun erts alloc config.

Note:
The configuration created by erts alloc config may perform bad, ever horrible, for
runtime scenarios that are very different from the ones saved when creating the
configuration. You are, therefore, advised to rerun erts alloc config if the
applications run when the configuration was made are changed, or if the load on the
applications have changed since the configuration was made. You are also advised to
rerun erts alloc config if the Erlang runtime system used is changed.

erts alloc config saves information about runtime scenarios and performs
computations in a server that is automatically started. The server register itself under
the name ’ erts alloc config ’.

Exports

save scenario() -> ok | ferror, Errorg

Types:

� Error = term()

save scenario/0 saves information about the current runtime scenario. This
information will later be used when make config/0 [page 23], or make config/1 [page
23] is called.

The first time save scenario/0 is called a server will be started. This server will save
runtime scenarios. All saved scenarios can be removed by calling stop/0 [page 23].

make config() -> ok | ferror, Errorg

Types:

� Error = term()

This is the same as calling make config(group leader()) [page 23].

make config(FileNameOrIODev) -> ok | ferror, Errorg

23Runtime Tools

erts alloc config Runtime Tools Reference Manual

Types:

� FileNameOrIODev = string() | io device()
� Error = term()

make config/1 uses the information previously saved by save scenario/0 [page 23] in
order to produce an erts alloc configuration. At least one scenario have had to be
saved. All scenarios previously saved will be used when creating the configuration.

If FileNameOrIODev is a string(), make config/1 will use FileNameOrIODev as a
filename. A file named FileNameOrIODev is created and the configuration will be
written to that file. If FileNameOrIODev is an [io device()] (see the documentation of
the module [io]), the configuration will be written to the io device.

stop() -> ok | ferror, Errorg

Types:

� Error = term()

Stops the server that saves runtime scenarios.

See Also

[erts alloc(3)], [erl(1)], [io(3)]

24 Runtime Tools

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

c/3
dbg , 9

c/4
dbg , 9

cn/1
dbg , 13

ctp/0
dbg , 10

ctp/1
dbg , 10

ctp/2
dbg , 10

ctp/3
dbg , 10

ctpg/0
dbg , 11

ctpg/1
dbg , 11

ctpg/2
dbg , 11

ctpg/3
dbg , 11

ctpl/0
dbg , 11

ctpl/1
dbg , 11

ctpl/2
dbg , 11

ctpl/3
dbg , 11

dbg
c/3, 9
c/4, 9

cn/1, 13
ctp/0, 10
ctp/1, 10
ctp/2, 10
ctp/3, 10
ctpg/0, 11
ctpg/1, 11
ctpg/2, 11
ctpg/3, 11
ctpl/0, 11
ctpl/1, 11
ctpl/2, 11
ctpl/3, 11
dtp/0, 12
dtp/1, 12
flush_trace_port/0, 15
flush_trace_port/1, 15
fun2ms/1, 6
get_tracer/0, 18
get_tracer/1, 18
h/0, 7
h/1, 7
i/0, 9
ln/0, 13
ltp/0, 11
n/1, 12
p/1, 7
p/2, 7
rtp/1, 12
stop/0, 18
stop_clear/0, 18
stop_trace_client/1, 17
tp/2, 9
tp/3, 9
tp/4, 9
tpl/2, 10
tpl/3, 10
tpl/4, 10
trace_client/2, 16
trace_client/3, 17
trace_port/2, 14

25Runtime Tools

trace_port_control/1, 16
trace_port_control/2, 16
tracer/0, 13
tracer/2, 13
tracer/3, 14
wtp/1, 12

dtp/0
dbg , 12

dtp/1
dbg , 12

erts alloc config
make_config/0, 23
make_config/1, 23
save_scenario/0, 23
stop/0, 24

flush_trace_port/0
dbg , 15

flush_trace_port/1
dbg , 15

fun2ms/1
dbg , 6

get_tracer/0
dbg , 18

get_tracer/1
dbg , 18

h/0
dbg , 7

h/1
dbg , 7

i/0
dbg , 9

ln/0
dbg , 13

ltp/0
dbg , 11

make_config/0
erts alloc config , 23

make_config/1
erts alloc config , 23

n/1
dbg , 12

p/1
dbg , 7

p/2
dbg , 7

rtp/1
dbg , 12

save_scenario/0
erts alloc config , 23

stop/0
dbg , 18
erts alloc config , 24

stop_clear/0
dbg , 18

stop_trace_client/1
dbg , 17

tp/2
dbg , 9

tp/3
dbg , 9

tp/4
dbg , 9

tpl/2
dbg , 10

tpl/3
dbg , 10

tpl/4
dbg , 10

trace_client/2
dbg , 16

trace_client/3
dbg , 17

trace_port/2
dbg , 14

trace_port_control/1
dbg , 16

trace_port_control/2
dbg , 16

tracer/0
dbg , 13

26 Runtime Tools

tracer/2
dbg , 13

tracer/3
dbg , 14

wtp/1
dbg , 12

27Runtime Tools

28 Runtime Tools

