Efficiency Guide

version 5.6

Typeset in IATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 Efficiency Guide

11

1.2

13

14

15

Introduction
1.1.1 PUIPOSE . . o o e e e
1.1.2 Prerequisites o e
The Eight Myths of Erlang Performance
1.2.1 Myth: Funsareslow
1.2.2 Myth: List comprehensionsareslow
1.2.3 Myth: Tail-recursive functions are MUCH faster than recursive functions
1.2.4 Myth: ++isalwaysbad
1.2.5 Myth: Stringsareslow
1.2.6 Myth: Repairinga Dets fileisveryslow
1.2.7 Myth: BEAM is a stack-based byte-code virtual machine (and therefore slow)

1.2.8 Myth: Use "_’ to speed up your program when a variable isnotused
Common Caveats e e
1.3.1 Theregexpmodule
1.3.2 Thetimermodule e
1.3.3 listtoatom/1 e e
1.3.4 length/1
1.3.5 setelement/3
1.3.6 size/l e e
1.3.7 splittbinary/2
Constructing and matching binaries 0 0
1.4.1 How binariesare implemented oo oo
1.4.2 Constructing binaries
1.4.3 Matching binaries
Listhandling e
151 Creatingalist
1.5.2 Listcomprehensions
153 Deepandflatlists.
1.5.4 Why you should not worry about recursive lists functions

Efficiency Guide

© N oo OOl DDNDMD®WWWNRNNRRPRER PR

1.6 Functions e e 17
1.6.1 Patternmatching e 17

1.6.2 FunctionCalls e 19

1.6.3 Memory usage in reCursion v e e 20

1.7 Tablesand databases 21
171 Ets,Detsand Mnesia 21

1.7.2 Etsspecific 25

1.7.3 Mnesiaspecific 26

1.8 ProCessesS. v vt e e 27
1.8.1 Creationof an Erlang process oo 27

1.8.2 ProCessmesSages v v v vt i e e e e 28

1.8.3 TheSMPemulator e 30

1.9 Advanced e e 30
1.91 Memory o e e 30

1.9.2 Systemlimits 31

1.10 Profiling 32
1.10.1 Do not guess about performance -profile 32
1.10.2 BigSystems e 33
1.10.3 Whatto look for e 33
1.10.4 TOOIS o 33
1.10.5 Benchmarking 34

List of Tables 37

iv Efficiency Guide

Chapter 1

Efficiency Guide

1.1 Introduction

1.1.1 Purpose
Premature optimization is the root of all evil. - D.E. Knuth

Efficient code can be well-structured and clean code, based on on a sound overall architecture and
sound algorithms. Efficient code can be highly implementation-code that bypasses documented
interfaces and takes advantage of obscure quirks in the current implementation.

Ideally, your code should only contain the first kind of efficient code. If that turns out to be too slow,
you should profile the application to find out where the performance bottlenecks are and optimize only
the bottlenecks. Other code should stay as clean as possible.

Fortunately, compiler and run-time optimizations in R12B now makes it easier to write code that is
both clean and efficient. For instance, the ugly workarounds needed in previous releases to get the most
speed out of binary pattern matching are no longer needed in R12B. In fact, the ugly code is how slower
than the clean code (because the clean code has become faster, not because the uglier code has become
slower).

This Efficiency Guide cannot really learn you how to write efficient code. It can give you a few pointers
about what to avoid and what to use, and some understanding of how certain language features are
implemented. We have generally not included general tips about optimization that will work in any
language, such as moving common calculations out of loops.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language and concepts of OTP.

1.2 The Eight Myths of Erlang Performance

Some truths seem to live on well beyond their best-before date, perhaps because “information” spreads
more rapidly from person-to-person faster than a single release note that notes, for instance, that funs
have become faster.

Here we try to kill the old truths (or semi-truths) that have become myths.

Efficiency Guide 1

Chapter 1: Efficiency Guide

1.2.1 Myth: Funs are slow

Yes, funs used to be slow. Very slow. Slower than apply/3. Originally, funs were implemented using
nothing more than compiler trickery, ordinary tuples, apply/3, and a great deal of ingenuity.

But that is ancient history. Funs was given its own data type in the R6B release and was further
optimized in the R7B release. Now the cost for a fun call falls roughly between the cost for a call to
local function and apply/3.

1.2.2 Myth: List comprehensions are slow

List comprehensions used to be implemented using funs, and in the bad old days funs were really slow.

Nowadays the compiler rewrites list comprehensions into an ordinary recursive function. Of course,
using a tail-recursive function with a reverse at the end would be still faster. Or would it? That leads us
to the next myth.

1.2.3 Myth: Tail-recursive functions are MUCH faster than recursive functions

According to the myth, recursive functions leave references to dead terms on the stack and the garbage
collector will have to copy all those dead terms, while tail-recursive functions immediately discard those
terms.

That used to be true before R7B. In R7B, the compiler started to generate code that overwrites
references to terms that will never be used with an empty list, so that the garbage collector would not
keep dead values any longer than necessary.

Even after that optimization, a tail-recursive function would still most of the time be faster than a
body-recursive function. Why?

It has to do with how many words of stack that are used in each recursive call. In most cases, a recursive
function would use more words on the stack for each recursion than the number of words a
tail-recursive would allocate on the heap. Since more memory is used, the garbage collector will be
invoked more frequently, and it will have more work traversing the stack.

In R12B, there is a new optimization that will in many cases reduces the number of words used on the
stack in body-recursive calls, so that a body-recursive list function and tail-recursive function that calls
[lists:reverse/1] at the end will use exactly the same amount of memory. lists:map/2,
lists:filter/2, list comprehensions, and many other recursive functions now use the same amount of
space as their tail-recursive equivalents.

So which is faster?

It depends. On Solaris/Sparc, the body-recursive function seems to be slightly faster, even for lists with
very many elements. On the x86 architecture, tail-recursion was up to about 30 percent faster.

So the choice is now mostly a matter of taste. If you really do need the utmost speed, you must
measure. You can no longer be absolutely sure that the tail-recursive list function will be the fastest in
all circumstances.

Note: A tail-recursive function that does not need to reverse the list at the end is, of course, faster than
a body-recursive function, as are tail-recursive functions that do not construct any terms at all (for
instance, a function that sums all integers in a list).

2 Efficiency Guide

1.2: The Eight Myths of Erlang Performance

1.2.4 Myth: "++’ is always bad

The ++ operator has, somewhat undeservedly, got a very bad reputation. It probably has something to
do with code like

DO NOT

naive_reverse([H|T]) ->
naive_reverse (T)++[H];
naive_reverse([]) ->

1.

which is the most inefficient way there is to reverse a list. Since the ++ operator copies its left operand,
the result will be copied again and again and again... leading to quadratic complexity.

On the other hand, using ++ like this
OK

naive_but_ok_reverse([H|T], Acc) ->
naive_but_ok_reverse(T, [H]++Acc);
naive_but_ok_reverse([], Acc) ->
Acc.

is not bad. Each list element will only be copied once. The growing result Acc is the right operand for
the ++ operator, and it will not be copied.

Of course, experienced Erlang programmers would actually write
DO

vanilla_reverse([H|T], Acc) —>
vanilla_reverse(T, [H|Accl);
vanilla_reverse([], Acc) ->
Acc.

which is slightly more efficient because you don’t build a list element only to directly copy it. (Or it
would be more efficient if the the compiler did not automatically rewrite [H]++Acc to [H|Acc].)

1.2.5 Myth: Strings are slow
Actually, string handling could be slow if done improperly. In Erlang, you’ll have to think a little more

about how the strings are used and choose an appropriate representation and don’t use the regexp
module.

1.2.6 Myth: Repairing a Dets file is very slow

The repair time is still proportional to the number of records in the file, but Dets repairs used to be
much, much slower in the past. Dets has been massively rewritten and improved.

Efficiency Guide 3

Chapter 1: Efficiency Guide

1.2.7 Myth: BEAM is a stack-based byte-code virtual machine (and therefore
slow)

BEAM is a register-based virtual machine. It has 1024 virtual registers that are used for holding
temporary values and for passing arguments when calling functions. Variables that need to survive a
function call are saved to the stack.

BEAM is a threaded-code interpreter. Each instruction is word pointing directly to executable C-code,
making instruction dispatching very fast.

1.2.8 Myth: Use ’_’ to speed up your program when a variable is not used

That was once true, but since R6B the BEAM compiler is quite capable of seeing itself that a variable is
not used.

1.3 Common Caveats

Here we list a few modules and BIFs to watch out for, and not only from a performance point of view.

1.3.1 The regexp module

The regular expression functions in the [regexp] module are written in Erlang, not in C, and were
meant for occasional use on small amounts of data, for instance for validation of configuration files
when starting an application.

Don’t use the regexp module in time-critical code.

There will probably be a faster regular expression library in a future release of Erlang/OTP. Until then,
you can do one of the following:

e Rewrite the regular expression in Erlang using pattern matching and recursion.

e Use a driver that interfaces to a regexp library written in C. There are several such drivers
available as open-source. Note that certain regular expressions may run for several seconds even
for modest size of input data, and unless the driver runs the call to the regexp library in a separate
thread, no other Erlang process can run in the scheduler thread that issued the call.

e Use another language, at least for that part of the problem.

1.3.2 The timer module

Creating timers using [erlang:send_after/3] and [erlang:start_timer/3] is much more efficient than using
the timers provided by the [timer] module. The timer module uses a separat process to manage the
timers, and that process can easily become overloaded if many processes create and cancel timers
frequently (especially when using the SMP emulator).

The functions in the timer module that do not manage timers (such as timer:tc/3 or
timer:sleep/1), do not call the timer-server process and are therefore harmless.

4 Efficiency Guide

1.3: Common Caveats

1.3.3 list_to_.atom/1

Atoms are not garbage-collected. Once an atom is created, it will never be removed. The emulator will
terminate if the limit for the number of atoms (1048576) is reached.

Therefore, converting arbitrary input strings to atoms could be dangerous in a system that will run
continuously. If only certain well-defined atoms are allowed as input, you can use
[list_to_existing_atom/1] to guard against a denial-of-service attack. (All atoms that are allowed must
have been created earlier, for instance by simply using all of them in a module and loading that module.)

Using list_to_atom/1 to construct an atom that is passed to apply/3 like this
apply(list_to_atom("some_prefix"++Var), foo, Args)

is quite expensive and is not recommended in time-critical code.

1.3.4 length/l1

The time for calculating the length of a list is proportional to the length of the list, as opposed to
tuple_size/1, byte_size/1, and bit_size/1, which all execute in constant time.

Normally you don’t have to worry about the speed of length/1, because it is efficiently implemented
in C. In time critical-code, though, you might want to avoid it if the input list could potentially be very
long.

Some uses of length/1 can be replaced by matching. For instance, this code

foo(L) when length(L) >= 3 ->

can be rewritten to

foo([_,_,_I1_1=L) ->

(One slight difference is that Length (L) will fail if the L is an improper list, will the pattern in the
second code fragment will accept an improper list.)

1.3.5 setelement/3

[setelement/3] copies the tuple it modifies. Therefore, updating a tuple in a loop using setelement/3
will create a new copy of the tuple every time.

There is one exception to the rule that the tuple is copied. If the compiler clearly can see that
destructively updating the tuple would give exactly the same result as if the tuple was copied, the call
to setelement/3 will be replaced with a special destructive setelement instruction. In the following
code sequence

multiple_setelement (TO) ->
T1 = setelement(9, TO, bar),
T2 = setelement(7, T1, foobar),
setelement (5, T2, new_value).

Efficiency Guide 5

Chapter 1: Efficiency Guide

the first setelement/3 call will copy the tuple and modify the ninth element. The two following
setelement/3 calls will modify the tuple in place.

For the optimization to be applied, all of the followings conditions must be true:

e The indices must be integer literals, not variables or expressions.

e The indices must be given in descending order.

e There must be no calls to other function in between the calls to setelement/3.

e The tuple returned from one setelement/3 call must only be used in the subsequent call to

setelement/3.

If it is not possible to structure the code as in the multiple_setelement/1 example, the best way to
modify multiple elements in a large tuple is to convert the tuple to a list, modify the list, and convert
the list back to a tuple.

1.3.6 size/l

size/1 returns the size for both tuples and binary.

Using the new BIFs tuple_size/1 and byte_size/1 introduced in R12B gives the compiler and
run-time system more opportunities for optimization. A further advantage is that the new BIFs could
help Dialyzer find more bugs in your program.

1.3.7 split_binary/2

It is usually more efficient to split a binary using matching instead of calling the split _binary/2
function. Furthermore, mixing bit syntax matching and split_binary/2 may prevent some
optimizations of bit syntax matching.

DO
<<Binl:Num/binary,Bin2/binary>> = Bin,
DON'T

{Bin1,Bin2} = split_binary(Bin, Num),

1.4 Constructing and matching binaries

In R12B, the most natural way to write binary construction and matching is now significantly faster than
in earlier releases.

To construct at binary, you can simply write
DO (in R12B) / REALLY DO NOT (in earlier releases)

my_list_to_binary(List) ->
my_list_to_binary(List, <<>>).

my_list_to_binary([HI|T], Acc) —->
my_list_to_binary(T, <<Acc/binary,H>>);
my_list_to_binary([], Acc) ->
Acc.

6 Efficiency Guide

1.4: Constructing and matching binaries

In releases before R12B, Acc would be copied in every iteration. In R12B, Acc will be copied only in the
first iteration and extra space will be allocated at the end of the copied binary. In the next iteration, H
will be written in to the extra space. When the extra space runs out, the binary will be reallocated with
more extra space.

The extra space allocated (or reallocated) will be twice the size of the existing binary data, or 256,
whichever is larger.

The most natural way to match binaries is now the fastest:
DO (in R12B)

my_binary_to_list(<<H,T/binary>>) ->
[Hlmy_binary_to_list(T)];
my_binary_to_list(<<>>) -> [].

1.4.1 How binaries are implemented

Internally, binaries and bitstrings are implemented in the same way. In this section, we will call them
binaries since that is what they are called in the emulator source code.

There are four types of binary objects internally. Two of them are containers for binary data and two of
them are merely references to a part of a binary.

The binary containers are called refc binaries (short for reference-counted binaries) and heap binaries.

Refc binaries consist of two parts: an object stored on the process heap, called a ProcBin, and the binary
object itself stored outside all process heaps.

The binary object can be referenced by any number of ProcBins from any number of processes; the
object contains a reference counter to keep track of the number of references, so that it can be removed
when the last reference disappears.

All ProcBin objects in a process are part of a linked list, so that the garbage collector can keep track of
them and decrement the reference counters in the binary when a ProcBin disappears.

Heap binaries are small binaries, up to 64 bytes, that are stored directly on the process heap. They will
be copied when the process is garbage collected and when they are sent as a message. They don’t
require any special handling by the garbage collector.

There are two types of reference objects that can reference part of a refc binary or heap binary. They
are called sub binaries and match contexts.

A sub binary is created by split_binary/2 and when a binary is matched out in a binary pattern. A sub
binary is a reference into a part of another binary (refc or heap binary, never into a another sub binary).
Therefore, matching out a binary is relatively cheap because the actual binary data is never copied.

A match context is similar to a sub binary, but is optimized for binary matching; for instance, it contains
a direct pointer to the binary data. For each field that is matched out of a binary, the position in the
match context will be incremented.

In R11B, a match context was only using during a binary matching operation.

In R12B, the compiler tries to avoid generating code that creates a sub binary, only to shortly afterwards
create a new match context and discard the sub binary. Instead of creating a sub binary, the match
context is kept.

The compiler can only do this optimization if it can know for sure that the match context will not be
shared. If it would be shared, the functional properties (also called referential transparency) of Erlang
would break.

Efficiency Guide 7

Chapter 1: Efficiency Guide

1.4.2 Constructing binaries

In R12B, appending to a binary or bitstring

<<Binary/binary, ...>>
<<Binary/bitstring, ...>>

is specially optimized by the run-time system. Because the run-time system handles the optimization
(instead of the compiler), there are very few circumstances in which the optimization will not work.

To explain how it works, we will go through this code

Bin0 = <<0>>, %h 1
Binl = <<BinO/binary,1,2,3>>, %h 2
Bin2 = <<Binl/binary,4,5,6>>, %h 3
Bin3 = <<Bin2/binary,7,8,9>>, hh 4
Bin4 = <<Binl/binary,17>>, %h 5 111
{Bin4,Bin3} %h 6
line by line.

The first line (marked with the %7 1 comment), assigns a heap binary [page 7] to the variable BinO.

The second line is an append operation. Since Bin0 has not been involved in an append operation, a
new refc binary [page 7] will be created and the contents of BinO will be copied into it. The ProcBin
part of the refc binary will have its size set to the size of the data stored in the binary, while the binary
object will have extra space allocated. The size of the binary object will be either twice the size of Bin0
or 256, whichever is larger. In this case it will be 256.

It gets more interesting in the third line. Bin1 has been used in an append operation, and it has 255
bytes of unused storage at the end, so the three new bytes will be stored there.

Same thing in the fourth line. There are 252 bytes left, so there is no problem storing another three
bytes.

But in the fifth line something interesting happens. Note that we don’t append to the previous result in
Bin3, but to Bin1. We expect that Bin4 will be assigned the value <<0,1,2,3,17>>. We also expect
that Bin3 will retain its value (<<0,1,2,3,4,5,6,7,8,9>>). Clearly, the run-time system cannot
write the byte 17 into the binary, because that would change the value of Bin3 to
<<0,1,2,3,4,17,6,7,8,9>>.

What will happen?

The run-time system will see that Bin1 is the result from a previous append operation (not from the
latest append operation), so it will copy the contents of Bin1 to a new binary and reserve extra storage
and so on. (We will not explain here how the run-time system can know that it is not allowed to write
into Bini; it is left as an exercise to the curious reader to figure out how it is done by reading the
emulator sources, primarily erl bits.c.)

8 Efficiency Guide

1.4: Constructing and matching binaries

Circumstances that force copying

The optimization of the binary append operation requires that there is a single ProcBin and a single
reference to the ProcBin for the binary. The reason is that the binary object can be moved (reallocated)
during an append operation, and when that happens the pointer in the ProcBin must be updated. If
there would be more than on ProcBin pointing to the binary object, it would not be possible to find and
update all of them.

Therefore, certain operations on a binary will mark it so that any future append operation will be forced
to copy the binary. In most cases, the binary object will be shrunk at the same time to reclaim the extra
space allocated for growing.

When appending to a binary
Bin = <<BinO,...>>

only the binary returned from the latest append operation will support further cheap append
operations. In the code fragment above, appending to Bin will be cheap, while appending to Bin0 will
force the creation of a new binary and copying of the contents of BinO.

If a binary is sent as a message to a process or port, the binary will be shrunk and any further append
operation will copy the binary data into a new binary. For instance, in the following code fragment

Binl = <<Bin0,...>>,
PortOrPid ! Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

Bin1 will be copied in the third line.

The same thing happens if you insert a binary into an ets table or send it to a port using
erlang:port_command/2.

Matching a binary will also cause it to shrink and the next append operation will copy the binary data:

Binl = <<Bin0,...>>,
<<X,Y,Z,T/binary>> = Binl,
Bin = <<Binl,...>> %% Binl will be COPIED

The reason is that a match context [page 7] contains a direct pointer to the binary data.

If a process simply keeps binaries (either in “loop data” or in the process dictionary), the garbage
collector may eventually shrink the binaries. If only one such binary is kept, it will not be shrunk. If the
process later appends to a binary that has been shrunk, the binary object will be reallocated to make
place for the data to be appended.

Efficiency Guide 9

Chapter 1: Efficiency Guide

1.4.3 Matching binaries

We will revisit the example shown earlier
DO (in R12B)

my_binary_to_list(<<H,T/binary>>) ->
[Hlmy_binary_to_list(T)];
my_binary_to_list(<<>>) -> [].

too see what is happening under the hood.

The very first time my_binary_to_list/1 is called, a match context [page 7] will be created. The match
context will point to the first byte of the binary. One byte will be matched out and the match context
will be updated to point to the second byte in the binary.

In R11B, at this point a sub binary [page 7] would be created. In R12B, the compiler sees that there is
no point in creating a sub binary, because there will soon be a call to a function (in this case, to
my_binary_to_list/1 itself) that will immediately create a new match context and discard the sub
binary.

Therefore, in R12B, my_binary_to_list/1 will call itself with the match context instead of with a sub
binary. The instruction that initializes the matching operation will basically do nothing when it sees that
it was passed a match context instead of a binary.

When the end of the binary is reached and second clause matches, the match context will simply be
discarded (removed in the next garbage collection, since there is no longer any reference to it).

To summarize, my_binary_to_list/1 in R12B only needs to create one match context and no sub
binaries. In R11B, if the binary contains N bytes, N+1 match contexts and N sub binaries will be
created.

In R11B, the fastest way to match binaries is:
DO NOT (in R12B)

my_complicated_binary_to_list(Bin) ->
my_complicated_binary_to_list(Bin, 0).

my_complicated_binary_to_list(Bin, Skip) ->
case Bin of
<<_:Skip/binary,Byte,_/binary>> ->
[Byte|my_complicated_binary_to_list(Bin, Skip+1)];
<<_:8kip/binary>> ->
(]

end.

This function cleverly avoids building sub binaries, but it cannot avoid building a match context in each
recursion step. Therefore, in both R11B and R12B, my_complicated binary_to_list/1 builds N+1
match contexts. (In a future release, the compiler might be able to generate code that reuses the match
context, but don’t hold your breath.)

Returning to my_binary_to_list/1, note that the match context was discarded when the entire binary
had been traversed. What happens if the iteration stops before it has reached the end of the binary?
Will the optimization still work?

10 Efficiency Guide

1.4: Constructing and matching binaries

after_zero(<<0,T/binary>>) ->
T;
after_zero(<<_,T/binary>>) ->
after_zero(T);
after_zero(<<>>) ->
<<>>,

Yes, it will. The compiler will remove the building of the sub binary in the second clause

after_zero(<<_,T/binary>>) ->
after_zero(T);

but will generate code that builds a sub binary in the first clause

after_zero(<<0,T/binary>>) ->
T;

Therefore, after_zero/1 will build one match context and one sub binary (assuming it is passed a
binary that contains a zero byte).

Code like the following will also be optimized:

all_but_zeroes_to_list (Buffer, Acc, 0) ->
{lists:reverse(Acc) ,Buffer};

all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
all_but_zeroes_to_list(T, Acc, Remaining-1);

all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
all_but_zeroes_to_list(T, [BytelAcc], Remaining-1).

The compiler will remove building of sub binaries in the second and third clauses, and it will add an
instruction to the first clause that will convert Buffer from a match context to a sub binary (or do
nothing if Buffer already is a binary).

Before you begin to think that the compiler can optimize any binary patterns, here is a function that the
compiler (currently, at least) is not able to optimize:

non_opt_eq([H|T1], <<H,T2/binary>>) ->
non_opt_eq(T1, T2);

non_opt_eq([_I_], <<_,_/binary>>) ->
false;

non_opt_eq([], <<>>) —>
true.

Efficiency Guide 11

Chapter 1: Efficiency Guide

It was briefly mentioned earlier that the compiler can only delay creation of sub binaries if it can be sure
that the binary will not be shared. In this case, the compiler cannot be sure.

We will soon show how to rewrite non_opt_eq/2 so that the delayed sub binary optimization can be
applied, and more importantly, we will show how you can find out whether your code can be
optimized.

The bin_opt_info option

Use the bin_opt_info option to have the compiler print a lot of information about binary
optimizations. It can be given either to the compiler or erlc

erlc +bin_opt_info Mod.erl
or passed via an environment variable
export ERL_COMPILER_OPTIONS=bin_opt_info

Note that the bin_opt_info is not meant to be a permanent option added to your Makefiles, because it
is not possible to eliminate all messages that it generates. Therefore, passing the option through the
environment is in most cases the most practical approach.

The warnings will look like this:

./efficiency_guide.erl:60: Warning: NOT OPTIMIZED: sub binary is used or returned
./efficiency_guide.erl:62: Warning: OPTIMIZED: creation of sub binary delayed

To make it clearer exactly what code the warnings refer to, in the examples that follow, the warnings are
inserted as comments after the clause they refer to:

after_zero(<<0,T/binary>>) ->
%% NOT OPTIMIZED: sub binary is used or returned
T;
after_zero(<<_,T/binary>>) ->
%% OPTIMIZED: creation of sub binary delayed
after_zero(T);
after_zero(K<>>) ->
<<>>,

The warning for the first clause tells us that it is not possible to delay the creation of a sub binary,
because it will be returned. The warning for the second clause tells us that a sub binary will not be
created (yet).

It is time to revisit the earlier example of the code that could not be optimized and find out why:

12 Efficiency Guide

1.4: Constructing and matching binaries

non_opt_eq([HIT1], <<H,T2/binary>>) ->
%% INFO: matching anything else but a plain variable to
Dot the left of binary pattern will prevent delayed
Dot sub binary optimization;
Dot SUGGEST changing argument order
%% NOT OPTIMIZED: called function non_opt_eq/2 does not
hote begin with a suitable binary matching instruction
non_opt_eq(T1, T2);
non_opt_eq([_I_], <<_,_/binary>>) ->
false;
non_opt_eq([], <<>>) —>
true.

The compiler emitted two warnings. The INFO warning refers to the function non_opt_eq/2 as a callee,
indicating that any functions that call non_opt_eq/2 will not be able to make delayed sub binary
optimization. There is also a suggestion to change argument order. The second warning (that happens
to refer to the same line) refers to the construction of the sub binary itself.

We will soon show another example that should make the distinction between INFO and NOT
OPTIMIZED warnings somewhat clearer, but first we will heed the suggestion to change argument order:

opt_eq(<<H,T1/binary>>, [H|T2]) ->
%% OPTIMIZED: creation of sub binary delayed
opt_eq(T1, T2);

opt_eq(<<_,_/binary>>, [_|_]1) ->
false;

opt_eq(<<>>, [1) ->
true.

The compiler gives a warning for the following code fragment:

match_body ([0]|_], <<H,_/binary>>) ->
%% INFO: matching anything else but a plain variable to
Dot the left of binary pattern will prevent delayed
Dot sub binary optimization;
Dot SUGGEST changing argument order
done;

The warning means that if there is a call to match_body/2 (from another clause in match body/2 or
another function), the delayed sub binary optimization will not be possible. There will be additional
warnings for any place where a sub binary is matched out at the end of and passed as the second
argument to match body/2. For instance:

match_head(List, <<_:10,Data/binary>>) ->
%% NOT OPTIMIZED: called function match_body/2 does not
hote begin with a suitable binary matching instruction
match_body(List, Data).

Efficiency Guide 13

Chapter 1: Efficiency Guide

Unused variables

The compiler itself figures out if a variable is unused. The same code is generated for each of the
following functions

count1(<<_,T/binary>>, Count) -> countl(T, Count+1l);
countl(<<>>, Count) -> Count.

count2(<<H,T/binary>>, Count) -> count2(T, Count+l);
count2(<<>>, Count) -> Count.

count3(<<_H,T/binary>>, Count) -> count3(T, Count+1);
count3(<<>>, Count) —-> Count.

In each iteration, the first 8 bits in the binary will be skipped, not matched out.

1.5 List handling

1.5.1 Creating a list

Lists can only be built starting from the end and attaching list elements at the beginning. If you use the
++ operator like this

Listl ++ List2

you will create a new list which is copy of the elements in List1, followed by List2. Looking at how
lists:append/1 or ++ would be implemented in plain Erlang, it can be seen clearly that the first list is
copied:

append([HIT], Tail) ->
[H|append(T, Tail)]l;

append([], Tail) ->
Tail.

So the important thing when recursing and building a list is to make sure that you attach the new
elements to the beginning of the list, so that you build a list, and not hundreds or thousands of copies of
the growing result list.

Let us first look at how it should not be done:
DO NOT

bad_fib(N) ->
bad_fib(N, 0, 1, [1).

bad_fib(0, _Current, _Next, Fibs) ->
Fibs;
bad_fib(N, Current, Next, Fibs) ->
bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

14 Efficiency Guide

1.5: List handling

Here we are not a building a list; in each iteration step we create a new list that is one element longer
than the new previous list.

To avoid copying the result in each iteration, we must build the list in reverse order and reverse the list
when we are done:

DO

tail_recursive_fib(N) ->
tail_recursive_fib(N, 0, 1, [1).

tail_recursive_fib(0, _Current, _Next, Fibs) ->
lists:reverse(Fibs);
tail_recursive_fib(N, Current, Next, Fibs) ->
tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

1.5.2 List comprehensions

Lists comprehensions still have a reputation for being slow. They used to be implemented using funs,
which used to be slow.

In recent Erlang/OTP releases (including R12B), a list comprehension
[Expr(E) || E <- List]
is basically translated to a local function

’1¢~0’ ([E|Tail], Expr) ->
[Expr(E) [’1c”0’(Tail, Expr)];
’1¢~0° (01, _Expr) -> [1.

In R12B, if the result of the list comprehension will obviously not be used, a list will not be constructed.
For instance, in this code

[io:put_chars(E) || E <- List],
ok.

or in this code

case Var of
.=
[io:put_chars(E) || E <- List];
.=
end,
some_function(...),

the value is neither assigned to a variable, nor passed to another function, nor returned, so there is no
need to construct a list and the compiler will simplify the code for the list comprehension to

Efficiency Guide 15

Chapter 1: Efficiency Guide

’1¢~0’ ([E|Taill, Expr) ->
Expr(E),
’1¢~0’ (Tail, Expr);
’1c¢0° ([1, _Expr) -> [I.

1.5.3 Deep and flat lists

[lists:flatten/1] builds an entirely new list. Therefore, it is expensive, and even more expensive than the
++ (which copies its left argument, but not its right argument).

In the following situations, you can easily avoid calling 1ists:flatten/1:

¢ When sending data to a port. Ports understand deep lists so there is no reason to flatten the list
before sending it to the port.

e When calling BIFs that accept deep lists, such as [list_to_binary/1] or [iolist_to_binary/1].
e \When you know that your list is only one level deep, you can can use [lists:append/1].

Port example
DO

port_command (Port, DeepList)
DO NOT

port_command (Port, lists:flatten(DeepList))

A common way to send a zero-terminated string to a port is the following:
DO NOT

TerminatedStr = String ++ [0], % String="foo" => [$f, $o, $o, 0]
port_command (Port, TerminatedStr)

Instead do like this:
DO

TerminatedStr = [String, 0], % String="foo" => [[$f, $o, $o], 0]
port_command (Port, TerminatedStr)

Append example
DO

16 Efficiency Guide

1.6: Functions

> lists:append([[1], [2], [3]11).
[1,2,3]
>

DO NOT

> lists:flatten([[1], [2], [311).
[1,2,3]
>

1.5.4 Why you should not worry about recursive lists functions

In the performance myth chapter, the following myth was exposed: Tail-recursive functions are MUCH
faster than recursive functions [page 2].

To summarize, in R12B there is usually not much difference between a body-recursive list function and
tail-recursive function that reverses the list at the end. Therefore, concentrate on writing beautiful code
and forget about the performance of your list functions. In the time-critical parts of your code (and only
there), measure before rewriting your code.

Important note: This section talks about lists functions that construct lists. A tail-recursive function that
does not construct a list runs in constant space, while the corresponding body-recursive function uses
stack space proportional to the length of the list. For instance, a function that sums a list of integers,
should not be written like this

DO NOT

recursive_sum([H|T]) -> H+recursive_sum(T);
recursive_sum([]) -> 0.

but like this
DO

sum(L) -> sum(L, 0).

sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

1.6 Functions

1.6.1 Pattern matching

Pattern matching in function head and in case and receive clauses are optimized by the compiler.
With a few exceptions, there is nothing to gain by rearranging clauses.

One exception is pattern matching of binaries. The compiler will not rearrange clauses that match
binaries. Placing the clause that matches against the empty binary last will usually be slightly faster than
placing it first.

Here is a rather contrived example to show another exception:
DO NOT

Efficiency Guide 17

Chapter 1: Efficiency Guide

atom_mapl(one) -> 1;

atom_mapl(two) -> 2;

atom_mapl(three) -> 3;

atom_mapl(Int) when is_integer(Int) -> Int;
atom_mapl(four) -> 4;

atom_mapl(five) -> 5;

atom_mapl(six) -> 6.

The problem is the clause with the variable Int. Since a variable can match anything, including the
atoms four, five, and six that the following clauses also will match, the compiler must generate
sub-optimal code that will execute as follows:

First the input value is compared to one, two, and three (using a single instruction that does a binary
search; thus, quite efficient even if there are many values) to select which one of the first three clauses
to execute (if any).

If none of the first three clauses matched, the fourth clause will match since a variable always matches.
If the guard test is_integer (Int) succeeds, the fourth clause will be executed.

If the guard test failed, the input value is compared to four, five, and six, and the appropriate clause
is selected. (There will be a function_clause exception if none of the values matched.)

Rewriting to either
DO

atom_map2(one) -> 1;

atom_map2(two) -> 2;

atom_map2(three) -> 3;

atom_map2(four) -> 4;

atom_map2(five) -> 5;

atom_map2(six) -> 6;

atom_map2(Int) when is_integer(Int) -> Int.

or
DO

atom_map3(Int) when is_integer(Int) -> Int;
atom_map3(one) -> 1;

atom_map3(two) -> 2;

atom_map3(three) -> 3;

atom_map3(four) -> 4;

atom_map3(five) -> 5;

atom_map3(six) -> 6.

will give slightly more efficient matching code.
Here is a less contrived example:
DO NOT

map_pairs1(_Map, [], Ys) ->
Ys;
map_pairsi(_Map, Xs, [1) ->
Xs;
map_pairsl(Map, [XIXs], [YIYs]) ->
[Map (X, Y) Imap_pairsi(Map, Xs, Ys)].

18 Efficiency Guide

1.6: Functions

The first argument is not a problem. It is variable, but it is a variable in all clauses. The problem is the
variable in the second argument, Xs, in the middle clause. Because the variable can match anything, the
compiler is not allowed to rearrange the clauses, but must generate code that matches them in the order
written.

If the function is rewritten like this
DO

map_pairs2(_Map, [1, Ys) ->
Ys;
map_pairs2(_Map, [_|_]1=Xs, [1) —>
Xs;
map_pairs2(Map, [X|Xs], [YIYs]) —>
[Map (X, Y) Imap_pairs2(Map, Xs, Ys)].

the compiler is free rearrange the clauses. It will generate code similar to this
DO NOT (already done by the compiler)

explicit_map_pairs(Map, XsO, YsO) ->
case XsO of

[XIXs] ->
case YsO of
[Ylys] ->
[Map(X, Y) |explicit_map_pairs(Map, Xs, Ys)];
-
Xs0
end;
-
YsO

end.

which should be slightly faster for presumably the most common case that the input lists are not empty
or very short. (Another advantage is that Dialyzer is able to deduce a better type for the variable Xs.)

1.6.2 Function Calls

Here is an intentionally rough guide to the relative costs of different kinds of calls. It is based on
benchmark figures run on Solaris/Sparc:
e Calls to local or external functions (foo (), m:foo()) are the fastest kind of calls.

e Calling or applying a fun (Fun(), apply (Fun, [1)) is about three times as expensive as calling a
local function.

¢ Applying an exported function (Mod:Name (), apply (Mod, Name, [])) isabout twice as
expensive as calling a fun, or about six times as expensive as calling a local function.

Efficiency Guide 19

Chapter 1: Efficiency Guide

Notes and implementation details

Calling and applying a fun does not involve any hash-table lookup. A fun contains an (indirect) pointer
to the function that implements the fun.

Warning:

Tuples are not fun(s). A “tuple fun”, {Module,Function}, is not a fun. The cost for calling a “tuple
fun” is similar to that of apply/3 or worse. Using “tuple funs” is strongly discouraged, as they may not
be supported in a future release.

apply/3 must look up the code for the function to execute in a hash table. Therefore, it will always be
slower than a direct call or a fun call.

It no longer matters (from a performance point of view) whether you write
Module:Function(Argl, Arg2)

or

apply (Module, Function, [Argl,Arg2])

(The compiler internally rewrites the latter code into the former.)
The following code

apply (Module, Function, Arguments)

is slightly slower because the shape of the list of arguments is not known at compile time.

1.6.3 Memory usage in recursion

When writing recursive functions it is preferable to make them tail-recursive so that they can execute in
constant memory space.

DO

list_length(List) ->
list_length(List, 0).

list_length([], AccLen) ->
Acclen; 7 Base case

list_length([_|Taill, Acclen) ->
list_length(Tail, AccLen + 1). % Tail-recursive

DO NOT

list_length([]) —>
0. % Base case
list_length([_ | Taill]) ->
list_length(Tail) + 1. % Not tail-recursive

20 Efficiency Guide

1.7: Tables and databases

1.7 Tables and databases

1.7.1 Ets, Dets and Mnesia

Every example using Ets has a corresponding example in Mnesia. In general all Ets examples also apply
to Dets tables.

Select/Match operations

Select/Match operations on Ets and Mnesia tables can become very expensive operations. They usually
need to scan the complete table. You should try to structure your data so that you minimize the need
for select/match operations. However, if you really need a select/match operation, it will still be more
efficient than using tab2list. Examples of this and also of ways to avoid select/match will be provided
in some of the following sections. The functions ets:select/2 and mnesia:select/3 should be
preferred over ets:match/2,ets:match object/2, and mnesia:match object/3.

Note:

There are exceptions when the complete table is not scanned, for instance if part of the key is bound
when searching an ordered set table, or if it is a Mnesia table and there is a secondary index on the
field that is selected/matched. If the key is fully bound there will, of course, be no point in doing a
select/match, unless you have a bag table and you are only interested in a sub-set of the elements
with the specific key.

When creating a record to be used in a select/match operation you want most of the fields to have the
value ’_’. The easiest and fastest way to do that is as follows:

#person{age = 42, _ = ’_’}.

Deleting an element

The delete operation is considered successful if the element was not present in the table. Hence all
attempts to check that the element is present in the Ets/Mnesia table before deletion are unnecessary.
Here follows an example for Ets tables.

DO
ets:delete(Tab, Key),
DO NOT

case ets:lookup(Tab, Key) of
0 ->
ok;
11 >
ets:delete(Tab, Key)
end,

Efficiency Guide 21

Chapter 1: Efficiency Guide

Data fetching

Do not fetch data that you already have! Consider that you have a module that handles the abstract
data type Person. You export the interface function print_person/1 that uses the internal functions
print_name/1, print_age/1, print_occupation/1

Note:

If the functions print_name/1 and so on, had been interface functions the matter comes in to a
whole new light, as you do not want the user of the interface to know about the internal data
representation.

DO

%%% Interface function
print_person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print_name (Person),
print_age(Person),
print_occupation(Person) ;
a1 -
io:format("No person with ID = “p~™n", [PersonID])
end.

%%% Internal functions
print_name(Person) ->
io:format("No person “p~“n", [Person#person.name]).

print_age(Person) ->
io:format("No person “p™n", [Person#person.agel).

print_occupation(Person) ->
io:format("No person “p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
print_person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, Personld) of
[Person] ->
print_name (PersonID),
print_age (PersonID),
print_occupation(PersonID);
a -
io:format("No person with ID = “p~n", [PersonID])
end.

%h% Internal functions

22 Efficiency Guide

1.7: Tables and databases

print_name(PersonID) ->
[Person] = ets:lookup(person, Personld),
io:format ("No person “p~n", [Personi#tperson.name]).

print_age(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person “p~n", [Person#person.age]).

print_occupation(PersonID) ->

[Person] = ets:lookup(person, PersonId),
io:format("No person “p~n", [Person#person.occupation]).

Non-persistent data storage
For non-persistent database storage, prefer Ets tables over Mnesia local_content tables. Even the Mnesia
dirty_write operations carry a fixed overhead compared to Ets writes. Mnesia must check if the table

is replicated or has indices, this involves at least one Ets lookup for each dirty_write. Thus, Ets writes
will always be faster than Mnesia writes.

tab2list

Assume we have an Ets-table, which uses idno as key, and contains:

[#person{idno = 1, name = "Adam", age = 31, occupation = "mailman"},
#person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
#person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
#person{idno = 4, name = "Carl", age = 25, occupation = "mailman"}]

If we must return all data stored in the Ets-table we can use ets:tab2list/1. However, usually we are
only interested in a subset of the information in which case ets:tab21list/1 is expensive. If we only
want to extract one field from each record, e.g., the age of every person, we should use:

DO

ets:select(Tab, [{ #person{idno=’_",

name=’_",
age="$1’,
occupation = ’_’},
(1,
08111,

DO NOT

TabList = ets:tab2list(Tab),
lists:map(fun(X) -> X#person.age end, TabList),

If we are only interested in the age of all persons named Bryan, we should:
DO

Efficiency Guide 23

Chapter 1: Efficiency Guide

ets:select(Tab, [{ #person{idno="_",
name="Bryan",

age="$1’,
occupation = ’_’},
1,
[°$1°1}1D),

DO NOT

TabList = ets:tab2list(Tab),
lists:foldl(fun(X, Acc) -> case X#person.name of

"Bryan" ->
[X#person.agel|Acc];
- >
Acc
end
end, [], TabList),
REALLY DO NOT
TabList = ets:tab2list(Tab),
BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end,
TabList),

lists:map(fun(X) -> X#person.age end, BryanList),

If we need all information stored in the Ets table about persons named Bryan we should:
DO

ets:select(Tab, [{#person{idno=’_",
name="Bryan",
age=’_",
occupation = ’_’}, [1, [’$°1}1D),

DO NOT

TabList = ets:tab2list(Tab),
lists:filter (fun(X) -> X#person.name == "Bryan" end, TabList),

24 Efficiency Guide

1.7: Tables and databases

Ordered_set tables

If the data in the table should be accessed so that the order of the keys in the table is significant, the
table type ordered_set could be used instead of the more usual set table type. An ordered_set is
always traversed in Erlang term order with regard to the key field so that return values from functions
such as select, match_object, and foldl are ordered by the key values. Traversing an ordered_set
with the first and next operations also returns the keys ordered.

Note:
An ordered _set only guarantees that objects are processed in key order. Results from functions as
ets:select/2 appear in the key order even if the key is not included in the result.

1.7.2 Ets specific
Utilizing the keys of the Ets table

An Ets table is a single key table (either a hash table or a tree ordered by the key) and should be used as
one. In other words, use the key to look up things whenever possible. A lookup by a known key in a set
Ets table is constant and for a ordered_set Ets table it is O(logN). A key lookup is always preferable to a
call where the whole table has to be scanned. In the examples above, the field idno is the key of the
table and all lookups where only the name is known will result in a complete scan of the (possibly large)
table for a matching result.

A simple solution would be to use the name field as the key instead of the idno field, but that would
cause problems if the names were not unique. A more general solution would be create a second table
with name as key and idno as data, i.e. to index (invert) the table with regards to the name field. The
second table would of course have to be kept consistent with the master table. Mnesia could do this for
you, but a home brew index table could be very efficient compared to the overhead involved in using
Mnesia.

An index table for the table in the previous examples would have to be a bag (as keys would appear
more than once) and could have the following contents:

[#index_entry{name="Adam", idno=1},
#index_entry{name="Bryan", idno=2},
#index_entry{name="Bryan", idno=3},
#index_entry{name="Carl", idno=4}]

Given this index table a lookup of the age fields for all persons named “Bryan” could be done like this:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
lists:map(fun(#index_entry{idno = ID}) ->
[#person{age = Age}] = ets:lookup(PersonTable, ID),
Age
end,
MatchingIDs),

Efficiency Guide 25

Chapter 1: Efficiency Guide

Note that the code above never uses ets:match/2 but instead utilizes the ets:1lookup/2 call. The
lists:map/2 call is only used to traverse the idnos matching the name “Bryan” in the table; therefore
the number of lookups in the master table is minimized.

Keeping an index table introduces some overhead when inserting records in the table, therefore the
number of operations gained from the table has to be weighted against the number of operations
inserting objects in the table. However, note that the gain when the key can be used to lookup elements
is significant.

1.7.3 Mnesia specific
Secondary index

If you frequently do a lookup on a field that is not the key of the table, you will lose performance using
“mnesia:select/match_object” as this function will traverse the whole table. You may create a secondary
index instead and use “mnesia:index_read” to get faster access, however this will require more memory.
Example:

-record(person, {idno, name, age, occupation}).

{atomic, ok} =
mnesia:create_table(person, [{index, [#person.agel},
{attributes,
record_info(fields, person)}l),
mnesia:add_table_index(person, age),

{atomic, ok}

PersonsAge42
mnesia:dirty_index read(person, 42, #person.age),

Transactions

Transactions is a way to guarantee that the distributed Mnesia database remains consistent, even when
many different processes update it in parallel. However if you have real time requirements it is
recommended to use dirty operations instead of transactions. When using the dirty operations you lose
the consistency guarantee, this is usually solved by only letting one process update the table. Other
processes have to send update requests to that process.

% Using transaction

Fun = fun() ->
[mnesia:read({Table, Key}),
mnesia:read({Table2, Key2})]

end,

{atomic, [Resultl, Result2]} = mnesia:transaction(Fun),

% Same thing using dirty operations

26 Efficiency Guide

1.8: Processes

Resultl = mnesia:dirtyread({Table, Key}),
Result2 = mnesia:dirty.read({Table2, Key2}),

1.8 Processes

1.8.1 Creation of an Erlang process

An Erlang process is lightweight compared to operating systems threads and processes.

A newly spawned Erlang process uses 309 words of memory in the non-SMP emulator without HiPE
support. (SMP support and HiPE support will both add to this size.) The size can be found out like this:

Erlang (BEAM) emulator version 5.6 [async-threads:0] [kernel-poll:false]

Eshell V5.6 (abort with ~G)

1> Fun = fun() -> receive after infinity -> ok end end.
#Fun<...>

2> {_,Bytes} = process_info(spawn(Fun), memory).
{memory, 1232}

3> Bytes div erlang:system_info(wordsize).

309

The size includes 233 words for the heap area (which includes the stack). The garbage collector will
increase the heap as needed.

The main (outer) loop for a process must be tail-recursive. If not, the stack will grow until the process
terminates.

DO NOT
loop() —>
receive
{sys, Msg} —>
handle_sys_msg(Msg),
loop();

{From, Msg} ->
Reply = handle_msg(Msg),
From ! Reply,
loop()
end,
io:format("Message is processed™n", []).

The call to io:format/2 will never be executed, but a return address will still be pushed to the stack
each time loop/0 is called recursively. The correct tail-recursive version of the function looks like this:

DO

Efficiency Guide 27

Chapter 1: Efficiency Guide

loop() —>
receive

{sys, Msg} —>
handle_sys_msg(Msg),
loop();

{From, Msg} ->
Reply = handle_msg(Msg),
From ! Reply,
loop()

end.

Initial heap size

The default initial heap size of 233 words is quite conservative in order to support Erlang systems with
hundreds of thousands or even millions of processes. The garbage collector will grow and shrink the
heap as needed.

In a system that use comparatively few processes, performance might be improved by increasing the
minimum heap size using either the +h option for [erl] or on a process-per-process basis using the
min_heap_size option for [spawn_opt/4].

The gain is twofold: Firstly, although the garbage collector will grow the heap, it will it grow it step by
step, which will be more costly than directly establishing a larger heap when the process is spawned.
Secondly, the garbage collector may also shrink the heap if it is much larger than the amount of data
stored on it; setting the minimum heap size will prevent that.

Warning:
The emulator will probably use more memory, and because garbage collections occur less frequently,
huge binaries could be kept much longer.

In systems with many processes, computation tasks that run for a short time could be spawned off into
a new process with a higher minimum heap size. When the process is done, it will send the result of the
computation to another process and terminate. If the minimum heap size is calculated properly, the
process may not have to do any garbage collections at all. This optimization should not be attempted
without proper measurements.

1.8.2 Process messages

All data in messages between Erlang processes is copied, with the exception of refc binaries [page 7] on
the same Erlang node.

When a message is sent to a process on another Erlang node, it will first be encoded to the Erlang
External Format before being sent via an TCP/IP socket. The receiving Erlang node decodes the
message and distributes it to the right process.

28 Efficiency Guide

1.8: Processes

The constant pool

Constant Erlang terms (also called literals) are now kept in constant pools; each loaded module has its
own pool. The following function

DO (in R12B)

days_in_month(M) ->
element (M, {31,28,31,30,31,30,31,31,30,31,30,31}).

will no longer build the tuple every time it is called (only to have it discarded the next time the garbage
collector was run), but the tuple will be located in the module’s constant pool.

But if a constant is sent to another process (or stored in an ETS table), it will be copied. The reason is
that the run-time system must be able to keep track of all references to constants in order to properly
unload code containing constants. (When the code is unloaded, the constants will be copied to the heap
of the processes that refer to them.) The copying of constants will probably be eliminated in a future
release, possibly even in an R12B-X release.

Loss of sharing

Shared sub-terms are not preserved when a term is sent to another process, passed as the initial process
arguments in the spawn call, or stored in an ETS table. That is an optimization. Most applications do
not send message with shared sub-terms.

Here is an example of how a shared sub-term can be created:

kilo_byte() ->
kilo_byte(10, [42]).

kilo_byte(0, Acc) —>
Acc;

kilo_byte(N, Acc) ->
kilo_byte(N-1, [AcclAccl).

kilo_byte/1 creates a deep list. If we call 1ist_to_binary/1, we can convert the deep list to a binary
of 1024 bytes:

1> byte_size(list_to_binary(efficiency guide:kilo byte())).
1024

Using the erts_debug:size/1 BIF we can see that the deep list only requires 22 words of heap space:

2> erts_debug:size(efficiency guide:kilo byte()).
22

Using the erts_debug:flat_size/1 BIF, we can calculate the size of the deep list if sharing is ignored.
It will be the size of the list when it has been sent to another process or stored in an ETS table:

3> erts_debug:flat_size(efficiency guide:kilo byte()).
4094

We can verify that sharing will be lost if we insert the data into an ETS table:

Efficiency Guide 29

Chapter 1: Efficiency Guide

4> T = ets:new(tab, []).

17

5> ets:insert(T, {key,efficiency guide:kilo byte()}).

true

6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
4094

7> erts_debug:flat_size(element (2, hd(ets:lookup(T, key)))).
4094

When the data has passed through an ETS table, erts_debug:size/1 and erts_debug:flat size/1
return the same value. Sharing has been lost.

In a future release of Erlang/OTP, we might implement a way to (optionally) preserve sharing. We have
no plans to make preserving of sharing the default behaviour, since that would penalize the vast
majority of Erlang applications.

1.8.3 The SMP emulator

The SMP emulator (introduced in R11B) will take advantage of multi-core or multi-CPU computer by
running several Erlang schedulers threads (typically, the same as the number of cores). Each scheduler
thread schedules Erlang processes in the same way as the Erlang scheduler in the non-SMP emulator.

To gain performance by using the SMP emulator, your application must have more than one runnable
Erlang process most of the time. Otherwise, the Erlang emulator can still only run one Erlang process at
the time, but you must still pay the overhead for locking. Although we try to reduce the locking
overhead as much as possible, it will never become exactly zero.

Benchmarks that may seem to be concurrent are often sequential. The estone benchmark, for instance,
is entirely sequential. So is also the most common implementation of the “ring benchmark”; usually one
process is active, while the others wait in a receive statement.

The [percept] application can be used to profile your application to see how much potential (or lack
thereof) it has for concurrency.

1.9 Advanced

1.9.1 Memory

A good start when programming efficiently is to have knowledge about how much memory different
data types and operations require. It is implementation-dependent how much memory the Erlang data
types and other items consume, but here are some figures for erts-5.2 system (OTP release R9B).
(There have been no significant changes in R12B.)

The unit of measurement is memory words. There exists both a 32-bit and a 64-bit implementation,
and a word is therefore, 4 bytes or 8 bytes, respectively.

Data type Memory size

Integer (-16#7FFFFFF < i <16#7FFFFFF) 1 word

Integer (big numbers) 3..N words

Atom 1 word. Note: an atom refers into an atom table

which also consumes memory. The atom text is
stored once for each unique atom in this table.
The atom table is not garbage-collected.

continued ...

30 Efficiency Guide

1.9: Advanced

... continued

Float

On 32-bit architectures: 4 words On 64-bit ar-
chitectures: 3 words

Binary

3..6 + data (can be shared)

List

1 word per element + the size of each element

String (is the same as a list of integers)

2 words per character

Tuple

2 words + the size of each element

Pid

1 word for a process identifier from the current
local node, and 5 words for a process identifier
from another node. Note: a process identifier
refersinto a process table and a node table which
also consumes memory.

Port

1 word for a port identifier from the current lo-
cal node, and 5 words for a port identifier from
another node. Note: a port identifier refers into
a port table and a node table which also con-
sumes memory.

Reference

On 32-bit architectures: 5 words for a reference
from the current local node, and 7 words for a
reference from another node. On 64-bit archi-
tectures: 4 words for a reference from the cur-
rent local node, and 6 words for a reference from
another node. Note: a reference refers into a
node table which also consumes memory.

Fun

9..13 words + size of environment. Note: a
fun refers into a fun table which also consumes
memory.

Ets table

Initially 768 words + the size of each element (6
words + size of Erlang data). The table will grow
when necessary.

Erlang process

327 words when spawned including a heap of
233 words.

Table 1.1: Memory size of different data types

1.9.2 System limits

The Erlang language specification puts no limits on number of processes, length of atoms etc., but for

performance and memory saving reasons, there will always be limits in a practical implementation of
the Erlang language and execution environment.

Processes The maximum number of simultaneously alive Erlang processes is by default 32768. This
limit can be raised up to at most 268435456 processes at startup (see documentation of the
system flag [+P] in the [erl(1)] documentation). The maximum limit of 268435456 processes

will at least on a 32-bit architecture be impossible to reach due to memory shortage.

Distributed nodes Known nodes A remote node Y has to be known to node X if there exist any pids,
ports, references, or funs (Erlang data types) from Y on X, or if X and Y are connected. The
maximum number of remote nodes simultaneously/ever known to a node is limited by the
maximum number of atoms [page 32] available for node names. All data concerning remote
nodes, except for the node name atom, are garbage-collected.

Efficiency Guide

31

Chapter 1: Efficiency Guide

Connected nodes The maximum number of simultaneously connected nodes is limited by either
the maximum number of simultaneously known remote nodes, the maximum number of
(Erlang) ports [page 32] available, or the maximum number of sockets [page 32] available.

Characters in an atom 255
Atoms The maximum number of atoms is 1048576.
Ets-tables The default is 1400, can be changed with the environment variable ERL_MAX_ETS_TABLES.

Elements in a tuple The maximum number of elements in a tuple is 67108863 (26 bit unsigned
integer). Other factors such as the available memory can of course make it hard to create a tuple
of that size.

Size of binary In the 32-bit implementation of Erlang, 536870911 bytes is the largest binary that can
be constructed or matched using the bit syntax. (In the 64-bit implementation, the maximum
size is 2305843009213693951 bytes.) If the limit is exceeded, bit syntax construction will fail
with a system_1limit exception, while any attempt to match a binary that is too large will fail.
This limit is enforced starting with the R11B-4 release; in earlier releases, operations on too large
binaries would in general either fail or give incorrect results. In future releases of Erlang/OTP,
other operations that create binaries (such as 1ist_to_binary/1) will probably also enforce the
same limit.

Total amount of data allocated by an Erlang node The Erlang runtime system can use the complete
32 (or 64) bit address space, but the operating system often limits a single process to use less than
that.

length of a node name An Erlang node name has the form host@shortname or host@longname. The
node name is used as an atom within the system so the maximum size of 255 holds for the node
name too.

Open ports The maximum number of simultaneously open Erlang ports is by default 1024. This limit
can be raised up to at most 268435456 at startup (see environment variable [ERL_MAX_PORTS]
in [erlang(3)]) The maximum limit of 268435456 open ports will at least on a 32-bit architecture
be impossible to reach due to memory shortage.

Open files, and sockets The maximum number of simultaneously open files and sockets depend on the
maximum number of Erlang ports [page 32] available, and operating system specific settings and
limits.

Number of arguments to a function or fun 256

1.10 Profiling

1.10.1 Do not guess about performance - profile

Even experienced software developers often guess wrong about where the performance bottlenecks are
in their programs.

Therefore, profile your program to see where the performance bottlenecks are and concentrate on
optimizing them.

Erlang/OTP contains several tools to help finding bottlenecks.

fprof and eprof provide the most detailed information about where the time is spent, but they
significantly slow downs the programs they profile.

If the program is too big to be profiled by fprof or eprof, cover and cprof could be used to locate
parts of the code that should be more thoroughly profiled using fprof or eprof.

cover provides execution counts per line per process, with less overhead than fprof/eprof. Execution
counts can with some caution be used to locate potential performance bottlenecks. The most

32 Efficiency Guide

1.10: Profiling

lightweight tool is cprof, but it only provides execution counts on a function basis (for all processes,
not per process).

1.10.2 Big systems

If you have a big system it might be interesting to run profiling on a simulated and limited scenario to
start with. But bottlenecks have a tendency to only appear or cause problems when there are many
things going on at the same time, and when there are many nodes involved. Therefore it is desirable to
also run profiling in a system test plant on a real target system.

When your system is big you do not want to run the profiling tools on the whole system. You want to
concentrate on processes and modules that you know are central and stand for a big part of the
execution.

1.10.3 What to look for

When analyzing the result file from the profiling activity you should look for functions that are called
many times and have a long “own” execution time (time excluded calls to other functions). Functions
that just are called very many times can also be interesting, as even small things can add up to quite a
bit if they are repeated often. Then you need to ask yourself what can | do to reduce this time.
Appropriate types of questions to ask yourself are:

e Can I reduce the number of times the function is called?
e Are there tests that can be run less often if | change the order of tests?

e Are there redundant tests that can be removed?
Is there some expression calculated giving the same result each time?

Is there other ways of doing this that are equivalent and more efficient?
e Can | use another internal data representation to make things more efficient?

These questions are not always trivial to answer. You might need to do some benchmarks to back up
your theory, to avoid making things slower if your theory is wrong. See benchmarking [page 34].

1.10.4 Tools
fprof

fprof measures the execution time for each function, both own time i.e how much time a function has
used for its own execution, and accumulated time i.e. including called functions. The values are
displayed per process. You also get to know how many times each function has been called. fprof is
based on trace to file in order to minimize runtime performance impact. Using fprof is just a matter of
calling a few library functions, see fprof manual page under the application tools.

fprof was introduced in version R8 of Erlang/OTP. Its predecessor eprof that is based on the Erlang
trace BIFs, is still available, see eprof manual page under the application tools. Eprof shows how much
time has been used by each process, and in which function calls this time has been spent. Time is
shown as percentage of total time, not as absolute time.

Efficiency Guide 33

Chapter 1: Efficiency Guide

cover

cover’s primary use is coverage analysis to verify test cases, making sure all relevant code is covered.
cover counts how many times each executable line of code is executed when a program is run. This is
done on a per module basis. Of course this information can be used to determine what code is run very
frequently and could therefore be subject for optimization. Using cover is just a matter of calling a few
library functions, see cover manual page under the application tools.

cprof

cprof is something in between fprof and cover regarding features. It counts how many times each
function is called when the program is run, on a per module basis. cprof has a low performance
degradation (versus fprof and eprof) and does not need to recompile any modules to profile (versus
cover).

Tool summarization

Tool Results Size of result Effects on | Records Records Records called | Records
program number of | Execution by garbage
execution calls time collection
time

fprof per pro- | large significant yes total and | yes yes

cess to slowdown own
screen/file

eprof per pro- | medium significant yes only total no no

cess/function slowdown
to
screen/file
cover per mod- | small moderate yes, per | no no no
ule to slowdown line
screen/file

cprof per module | small small slow- | yes no no no

to caller down
Table 1.2:

1.10.5 Benchmarking

The main purpose of benchmarking is to find out which implementation of a given algorithm or
function is the fastest. Benchmarking is far from an exact science. Today’s operating systems generally
run background tasks that are difficult to turn off. Caches and multiple code doesn’t make it any easier.
It would be best to run Unix-computers in single-user mode when benchmarking, but that is
inconvenient to say the least for casual testing.

Benchmarks can measure wall-clock time or CPU time.

[timer:tc/3] measures wall-clock time. The advantage with wall-clock time is that 1/0, swapping, and
other activities in the operating-system kernel are included in the measurements. The disadvantage is
that the the measurements will vary wildly. Usually it is best to run the benchmark several times and
note the shortest time - that time should be the minimum time that is possible to achieve under the
best of circumstances.

34 Efficiency Guide

1.10: Profiling

[statistics/1] with the argument runtime measures CPU time spent in the Erlang virtual machine. The
advantage is that the results are more consistent from run to run. The disadvantage is that the time
spent in the operating system kernel (such as swapping and 1/O) are not included. Therefore, measuring
CPU time is misleading if any I/O (file or sockets) are involved.

It is probably a good idea to do both wall-clock measurements and CPU time measurements.
Some additional advice:

e The granularity of both types measurement could be quite high so you should make sure that
each individual measurement lasts for at least several seconds.

e To make the test fair, each new test run should run in its own, newly created Erlang process.
Otherwise, if all tests runs in the same process, the later tests would start out with larger heap
sizes and therefore probably does less garbage collections. You could also consider restarting the
Erlang emulator between each test.

e Do not assume that the fastest implementation of a given algorithm on computer architecture X
also is the fast on computer architecture Y.

Efficiency Guide 35

Chapter 1: Efficiency Guide

36 Efficiency Guide

List of Tables

1.1 Memory size of differentdatatypes o L
L2

Efficiency Guide

37

