
OAM Principles

version 5.6

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 OAM Principles 1

1.1 Introduction . 1

1.1.1 Terminology . 1

1.1.2 Model . 2

1.1.3 SNMP based OAM . 5

List of Figures 7

Glossary 9

iiiOAM Principles

iv OAM Principles

Chapter 1

OAM Principles

1.1 Introduction

The operation and maintenance support in OTP consists of a generic model for management subsystems
in OTP, and some components to be used in these subsystems. This document describes the model.

The main idea in the model is that it is management protocol independent. Thus, it is not tied to any
specific management protocol. An API is defined which can be used to write adaptations for specific
management protocols.

Each OAM component in OTP is implemented as one sub application, which can be included in a
management application for the system. Note that such a complete management application is not in
the scope of this generic functionality. Examples illustrating how such an application can be built are
included however.

1.1.1 Terminology

The protocol independent architectural model on the network level is the well-known Manager-Agent
model . This model is based on the client-server principle, where the manager (client) sends requests to
the agent (server), the agent sends replies back to the manager. There are two main differences to the
normal client-server model. First, there are usually a few managers that communicate with many
agents; and second, the agent may spontaneously send notifications to the manager. The picture below
illustrates the idea.

1OAM Principles

Chapter 1: OAM Principles

sees

NMS

NET

NE

sees

MIB

Res1 Res2

Agent

Manager

Figure 1.1: Terminology

The manager is often referred to as the NMS , to emphasize that it usually is realized as a program that
presents data to an operator.

The agent is an entity that executes within a NE . In OTP, the network element may be a distributed
system, meaning that the distributed system is managed as one entity. Of course, the agent may be
configured to be able to run on one of several nodes, making it a distributed OTP application.

The management information is defined in an MIB . It is a formal definition of which information the
agent makes available to the manager. The manager accesses the MIB through a management protocol,
such as SNMP, CMIP, HTTP or CORBA. Each of these protocols have their own MIB definition
language. In SNMP, it is a subset of ASN.1, in CMIP it is GDMO, in HTTP it is implicit, and using
CORBA, it is IDL. Usually, the entities defined in the MIB are called MO , although these objects do
not have to be objects in the OO way,for example, a simple scalar variable defined in an MIB is called a
Managed Object. The Managed Objects are logical objects, not necessarily with a one-to-one mapping
to the resources.

1.1.2 Model

In this section, the generic protocol independent model for use within an OTP based network element
is presented. This model is used by all operation and maintenance components, and may be used by the
applications. The advantage of the model is that it clearly separates the resources from the management
protocol. The resources do not need to be aware of which management protocol is used to manage the
system. This makes it possible to manage the same resources with different protocols.

The different entities involved in this model are the agent which terminates the management protocol,
and the resources which is to be managed, i.e. the actual application entities. The resources should in
general have no knowledge of the management protocol used, and the agent should have no knowledge
of the managed resources. This implies that some sort of translation mechanism must be used, to
translate the management operations to operations on the resources. This translation mechanism is
usually called instrumentation, and the function that implements it is called instrumentation function .
The instrumentation functions are written for each combination of management protocol and resource
to be managed. For example, if an application is to be managed by SNMP and HTTP, two sets of

2 OAM Principles

1.1: Introduction

instrumentation functions are defined; one that maps SNMP requests to the resources, and one that e.g.
generates an HTML page for some resources.

When a manager makes a request to the agent, we have the following picture:

Instrumentation Instrumentation

Res1

NET

Agent

flow

Res2 Res3

NE

Figure 1.2: Request to an agent by a manager

Note that the mapping between instrumentation function and resource is not necessarily 1-1. It is also
possible to write one instrumentation function for each resource, and use that function from different
protocols.

The agent receives a request and maps this request to calls to one or several instrumentation functions.
The instrumentation functions perform operations on the resources to implement the semantics
associated with the managed object.

For example, a system that is managed with SNMP and HTTP may be structured in the following way:

3OAM Principles

Chapter 1: OAM Principles

SNMP HTTP
ServerServer

Instrumentation Instrumentation

Res1 Res2 Res3

flow

Figure 1.3: Structure of a system managed with SNMP and HTTP

The resources may send notifications to the manager as well. Examples of notifications are events and
alarms. There is a need for the resource to generate protocol independent notifications. The following
picture illustrates how this is achieved:

4 OAM Principles

1.1: Introduction

Server
SNMP HTTP

Server

InstrumentationInstrumentation

gen_event

Res2 Res3Res1

flow

Figure 1.4: Notification handling

The main idea is that the resource sends the notfications as Erlang terms to a dedicated gen event
process. Into this process, handlers for the different management protocols are installed. When an event
is received by this process, it is forwarded to each installed handler. The handlers are responsible for
translating the event into a notification to be sent over the management protocol. For example, a
handler for SNMP would translate each event into an SNMP trap.

1.1.3 SNMP based OAM

For all OAM components, SNMP adaptations are provided. Other adaptations may be defined in the
future.

The OAM components, and some other OTP applications, define SNMP MIBs. All these MIBs are
written in SNMPv2 SMI syntax, as defined in RFC1902. For convenience we also deliver the SNMPv1
SMI equivalent. All MIBs are designed to be v1/v2 compatible, i.e. the v2 MIBs do not use any
construct not available in v1.

5OAM Principles

Chapter 1: OAM Principles

MIB structure

The top-level OTP MIB is called OTP-REG, and it is included in the sasl application. All other OTP
mibs import some objects from this MIB.

Each MIB is contained in one application. The MIB text files are stored under mibs/<MIB>.mib in the
application directory. The generated .hrl files with constant declarations are stored under
include/<MIB>.hrl, and the compiled MIBs are stored under priv/mibs/<MIB>.bin. For example,
the OTP-MIB is included in the sasl application:

sasl-1.3/mibs/OTP-MIB.mib
include/OTP-MIB.hrl
priv/mibs/OTP-MIB.bin

An application that needs to IMPORT this mib into another MIB, should use the il option to the snmp
mib compiler:

snmp:c("MY-MIB", [{il, ["sasl/priv/mibs"]}]).

If the application needs to include the generated .hrl file, it should use the -include lib directive to
the Erlang compiler.

-module(my_mib).

-include_lib("sasl/include/OTP-MIB.hrl").

The following MIBs are defined in the OTP system:

OTP-REG (sasl) This MIB contains the top-level OTP registration objects, used by all other MIBs.

OTP-TC (sasl) This MIB contains the general Textual Conventions, which can be used by any other
MIB.

OTP-MIB (sasl) This MIB contains objects for instrumentation of the Erlang nodes, the Erlang
machines and the applications in the system.

OTP-OS-MON-MIB (os mon) This MIB contains objects for instrumentation of disk, memory and cpu
usage of the nodes in the system.

OTP-SNMPEA-MIB (snmp) This MIB contains objects for instrumentation and control of the
extensible snmp agent itself. Note that the agent also implements the standard SNMPv2-MIB (or
v1 part of MIB-II, if SNMPv1 is used).

OTP-EVA-MIB (eva) This MIB contains objects for instrumentation and control of the events and
alarms in the system.

OTP-LOG-MIB (eva) This MIB contains objects for instrumentation and control of the logs and FTP
transfer of logs.

OTP-EVA-LOG-MIB (eva) This MIB contains objects for instrumentation and control of the events
and alarm logs in the system.

OTP-SNMPEA-LOG-MIB (eva) This MIB contains objects for instrumentation and control of the
snmp audit trail log in the system.

The different applications use different strategies for loading the MIBs into the agent. Some MIB
implementations are code-only, while others need a server. One way, used by the code-only mib
implementations, is for the user to call a function such as otp mib:init(Agent) to load the MIB, and
otp mib:stop(Agent) to unload the MIB. See the application manual page for each application for a
description of how to load each MIB.

6 OAM Principles

List of Figures

1.1 Terminology . 2

1.2 Request to an agent by a manager . 3

1.3 Structure of a system managed with SNMP and HTTP . 4

1.4 Notification handling . 5

7OAM Principles

List of Figures

8 OAM Principles

Glossary

agent

An entity that terminates a management protocol in the Network Element.

instrumentation function

A function used to implement a Managed Object, i.e. give access to the real resources behind an MO.

Manager-Agent model

Client-Server model for management operations
Local for chapter 1.

MIB

An abstract definition of the management information available through a management interface in a
system.

MO

Managed Object; The abstract management information defined in a MIB.

NE

Network Element; In OTP, the Network Element is the entire distributed OTP system, meaning that
the distributed OTP system is managed as one entity.

NMS

Network Management Station; The place where the operator manages the network.

notifications

A notification is sent spontaneously from an agent to a manager, e.g. an alarm.
Local for chapter 1.

9OAM Principles

Glossary

replies

A reply is sent from the agent as a response to a request from a manager.
Local for chapter 1.

requests

A request is sent from a manager to an agent when it accesses management information.
Local for chapter 1.

resources

The actual resources to be managed. A resource is represented by a Managed Object. Each resource is
mapped to one or several resources.

10 OAM Principles

