
SSH

version 0.9

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 SSH Reference Manual 1

1.1 SSH . 5

1.2 ssh cli . 6

1.3 ssh cm . 8

1.4 ssh sftp . 11

1.5 ssh sftpd . 17

1.6 ssh ssh . 18

1.7 ssh sshd . 19

1.8 ssh transport . 20

iiiSSH

iv SSH

SSH Reference Manual

Short Summaries

� Erlang Module ssh [page 5] – Main API of the SSH application

� Erlang Module ssh cli [page 6] – SSH Command Line Interface.

� Erlang Module ssh cm [page 8] – SSH connection layer.

� Erlang Module ssh sftp [page 11] – SFTP client.

� Erlang Module ssh sftpd [page 17] – SSH FTP server.

� Erlang Module ssh ssh [page 18] – SSH client.

� Erlang Module ssh sshd [page 19] – SSH server with erlang shell.

� Erlang Module ssh transport [page 20] – SSH transport layer.

ssh

The following functions are exported:

� start() -> ok | ferror, Reasong
[page 5] Starts the SSH application

� stop() -> ok | ferror, Reasong
[page 5] Stops the SSH application

� stop
[page 5] Stops the SSH application

ssh cli

The following functions are exported:

� listen(Shell)
[page 6] Start an SSH server with a CLI

� listen(Shell, Port)
[page 6] Start an SSH server with a CLI

� listen(Shell, Port, Options)
[page 6] Start an SSH server with a CLI

� listen(Shell, Addr, Port, Options)
[page 6] Start an SSH server with a CLI

� stop(Pid) -> ok | ferror, Reasong
[page 6] Stop the listener

1SSH

SSH Reference Manual

ssh cm

The following functions are exported:

� connect(Host) -> fok, Pidg | ferror, Errorg
[page 8] Connect to an ssh daemon

� connect(Host, Options) -> fok, Pidg | ferror, Errorg
[page 8] Connect to an ssh daemon

� connect(Host, Port, Options) -> fok, Pidg | ferror, Errorg
[page 8] Connect to an ssh daemon

� listen(UserFun, Options) -> ok
[page 9] Start an ssh shell

� listen(UserFun, Port, Options) -> ok
[page 9] Start an ssh shell

� listen(UserFun, Addr, Port, Options) -> ok
[page 9] Start an ssh shell

� stop listener(Pid) -> ok | ferror, Reasong
[page 9] Stop the listener

ssh sftp

The following functions are exported:

� connect(CM) -> fok, Pidg | ferror, Reasong
[page 11] Connect to an SFTP server

� connect(Host, Options) -> fok, Pidg | ferror, Reasong
[page 11] Connect to an SFTP server

� connect(Host, Port, Options) -> fok, Pidg | ferror, Reasong
[page 11] Connect to an SFTP server

� read file(Server, File) -> fok, Datag | ferror, Reasong
[page 11] Read a file

� write file(Server, File, Iolist) -> ok | ferror, Reasong
[page 11] Write a file

� list dir(Server, Path) -> fok, Filenamesg | ferror, Reasong
[page 12] List directory

� open(Server, File, Mode) -> fok, Handleg | ferror, Reasong
[page 12] Open a file and return a handle

� opendir(Server, Path) -> fok, Handleg | ferror, Reasong
[page 12] Open a directory and return a handle

� close(Server, Handle) -> ok | ferror, Reasong
[page 12] Close an open handle

� read(Server, Handle, Len) -> fok, Datag | eof | ferror, Errorg
[page 12] Read from an open file

� pread(Server, Handle, Position, Length) -> fok, Datag | eof |
ferror, Errorg
[page 12] Read from an open file

� aread(Server, Handle, Len) -> fasync, Ng | ferror, Errorg
[page 13] Read asynchronously from an open file

2 SSH

SSH Reference Manual

� apread(Server, Handle, Position, Length) -> fasync, Ng | ferror,
Errorg
[page 13] Read asynchronously from an open file

� write(Server, Handle, Data) -> ok | ferror, Errorg
[page 13] Write to an open file

� pwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg
[page 13] Write to an open file

� awrite(Server, Handle, Data) -> ok | ferror, Errorg
[page 13] Write asynchronously to an open file

� apwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg
[page 13] Write asynchronously to an open file

� position(Server, Handle, Location) -> fok, NewPosition | ferror,
Errorg
[page 14] Seek position in open file

� read file info(Server, Name) -> fok, FileInfog | ferror, Reasong
[page 14] Get information about a file

� get file info(Server, Handle) -> fok, FileInfog | ferror, Reasong
[page 14] Get information about a file

� read link info(Server, Name) -> fok, FileInfog | ferror, Reasong
[page 14] Get information about a symbolic link

� write file info(Server, Name, Info) -> ok | ferror, Reasong
[page 15] Write information for a file

� read link(Server, Name) -> fok, Targetg | ferror, Reasong
[page 15] Read symbolic link

� make symlink(Server, Name, Target) -> ok | ferror, Reasong
[page 15] Create symbolic link

� rename(Server, OldName, NewName) -> ok | ferror, Reasong
[page 15] Rename a file

� delete(Server, Name) -> ok | ferror, Reasong
[page 15] Delete a file

� make dir(Server, Name) -> ok | ferror, Reasong
[page 16] Create a directory

� del dir(Server, Name) -> ok | ferror, Reasong
[page 16] Delete an empty directory

� stop(Server) -> ok
[page 16] Stop sftp session

ssh sftpd

The following functions are exported:

� listen(Port) -> fok, Pidg|ferror, Errorg
[page 17] Starts sftp server

� listen(Port, Options) -> fok, Pidg|ferror, Errorg
[page 17] Starts sftp server

� listen(Addr, Port, Options) -> fok, Pidg|ferror, Errorg
[page 17] Starts sftp server

3SSH

SSH Reference Manual

ssh ssh

The following functions are exported:

� connect(Host) -> ok
[page 18] Start an ssh shell

� connect(Host, Options) -> ok
[page 18] Start an ssh shell

� connect(Host, Port, Options) -> ok
[page 18] Start an ssh shell

ssh sshd

The following functions are exported:

� listen(Port) -> fok, Pidg|ferror, Errorg
[page 19] Connect to an ssh daemon

� listen(Port, Options) -> fok, Pidg|ferror, Errorg
[page 19] Connect to an ssh daemon

� listen(Addr, Port, Options) -> fok, Pidg|ferror, Errorg
[page 19] Connect to an ssh daemon

� stop(Pid) -> ok | ferror, Reasong
[page 19] Stop the listener

ssh transport

No functions are exported.

4 SSH

SSH Reference Manual SSH

SSH
Erlang Module

Interface module for the SSH application

Exports

start() -> ok | ferror, Reasong

Types:

� Reason = term()

Starts the SSH application. Require that the crypto application has been started.

stop() -> ok | ferror, Reasong

stop

Types:

� Reason = term()

Stops the SSH application

5SSH

ssh cli SSH Reference Manual

ssh cli
Erlang Module

This module implements a CLI (Command Line Interface), for an SSH server. It’s used
by ssh sshd to provide an interactive erlang shell as an ssh server.

Since ssh cli uses the group module, the CLI provides full editing just like in the
erlang shell, with history (ctrl-p and ctrl-n), line editing and configurable tab expansion
(completion).

A full example of how to use ssh cli is provided in
ssh/examples/ssh sample cli.erl.

Exports

listen(Shell)

listen(Shell, Port)

listen(Shell, Port, Options)

listen(Shell, Addr, Port, Options)

Types:

� Shell = pid() | fun()
� Port = integer()
� Addr = string()
� Options = [fOption, Valueg]
� Option = atom()
� Value = term()

Starts a daemon listening on Port. The Shell fun is a function spawning a shell process,
containing a read-eval-print-loop using ordinary erlang io (e.g. get line/1 and
fprint).

The daemon’s group leader will be connected to the SSH daemon, so that the io will be
sent to the remote SSH shell client.

An example of how ssh cli can be used can be found in
ssh/examples/ssh cli sample.erl.

The module ssh sshd is implemented using ssh cli.

For options, see ssh cm:listen.

stop(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = atom()

6 SSH

SSH Reference Manual ssh cli

Stops the listener given by Pid, existing connections will stay open.

7SSH

ssh cm SSH Reference Manual

ssh cm
Erlang Module

This module implements the SSH connection layer.

Exports

connect(Host) -> fok, Pidg | ferror, Errorg

connect(Host, Options) -> fok, Pidg | ferror, Errorg

connect(Host, Port, Options) -> fok, Pidg | ferror, Errorg

Types:

� Host = string()
� Port = integer()
� Options = [fOption, Valueg]

Connects to an SSH server. A gen server is started and returned if connection is
successful, but no channel is started, that is done with session open/2. The Host is a
string with the address of a host running an SSH server. The Port is an integer, the port
to connect to. The default is 22, the registered port for SSH.

Options are:

fuser dir, Stringg Sets the user directory, normally ~/.ssh (containing the files
known hosts, id rsa<c>, <c>id dsa, authorized keys).

fsilently accept hosts, Booleang When true, (default is false), hosts are added to
the file known hosts without asking the user.

fuser interaction, Booleang If true, which is the default, password questions and
adding hosts to known hosts will be asked interactively to the user. (This is done
during connection to an SSH server.) If false, both these interactions will throw
and the server will not start.

fpublic key alg, ssh rsa | ssh dsag Sets the preferred public key algorithm to use
for user authentication. If the the preferred algorithm fails of some reason, the
other algorithm is tried. The default is to try ssh rsa first.

fconnect timeout, Milliseconds | infinityg Sets the default timeout when
trying to connect to an SSH server. This timeout will also affect calls later when
using the SSH connection.

fuser, Stringg Provide a username. If this option is not given, ssh reads from the
environment (LOGNAME or USER on unix, USERNAME on Windows).

fpassword, Stringg Provide a password for password authentication. If this option is
not given, the user will be asked for a password.

fuser auth, Fun/3g Provide a fun for password authentication. The fun will be called
as fun(User, Password, Opts) and should return true or false.

8 SSH

SSH Reference Manual ssh cm

fkey cb, KeyCallbackModuleg Provide a special call-back module for key handling.
The call-back module should be modeled after the ssh file module. The function
that must be exported are: private host rsa key/2, private host dsa key/2,
lookup host key/3 and add host key/3.

ffd, FDg Allow an existing file-descriptor to be used, given in FD. (Simply passed on
to gen tcp:listen.)

As usual, boolean options that should be true can be given as an atom instead of a
tuple, e.g. silently accept hosts instead of fsilently accept hosts, trueg.

listen(UserFun, Options) -> ok

listen(UserFun, Port, Options) -> ok

listen(UserFun, Addr, Port, Options) -> ok

Types:

� UserFun = fun() -> Pid
� Port = integer()
� Addr = string() | any
� Options = [fOption, Valueg]
� Option = atom()
� Value = term()

Starts a server listening for SSH connections on the given port.

UserFun is a function that should spawn and return a server upon incoming connections
on the given port (and address).

Port is the port that the server should listen on. Everytime a connection is made on
that port, the UserFun is called, and the returned process is used as a user process for
the server.

Options are:

fsystem dir, Stringg Sets the system directory, containing the host files that
identifies the host for ssh. The default is /etc/ssh, but note that SSH normally
requires the host files there to be readable only by root.

fuser passwords, [fUser, Passwordg]g Provide passwords for password
authentication.They will be used when someone tries to connect to the server and
public key user autentication fails. The option provides a list of valid user names
and the corresponding password. User and Password are strings.

fpassword, Stringg Provide a global password that will authenticate any user (use
with caution!).
If neither of these options is given, the server will be unable to authenticate with
password.

fpwdfun, fun/2g Provide a function for password validation. This is called with user
and password as strings, and should return true if the password is valid and false
otherwise.

ffd, FDg Allow an existing file-descriptor to be used, given in FD. (Simply passed on
to gen tcp:listen.)

stop listener(Pid) -> ok | ferror, Reasong

Types:

9SSH

ssh cm SSH Reference Manual

� Pid = pid()
� Reason = atom()

Stops the listener, given by Pid, existing connections will stay open.

10 SSH

SSH Reference Manual ssh sftp

ssh sftp
Erlang Module

This module implements an SFTP (SSH FTP) client. SFTP is a secure, encrypted file
transfer service available for SSH.

The errors returned are from the SFTP server, and are often not posix error codes.

Exports

connect(CM) -> fok, Pidg | ferror, Reasong

connect(Host, Options) -> fok, Pidg | ferror, Reasong

connect(Host, Port, Options) -> fok, Pidg | ferror, Reasong

Types:

� Host = string()
� CM = pid()
� Port = integer()
� Options = [fOption, Valueg]
� Option = atom()
� Value = term()
� Reason = term()

Connects to an SFTP server. A gen server is started and returned if connection is
successful. This server is used to perform SFTP commands on the server.

For options, see ssh cm:connect.

read file(Server, File) -> fok, Datag | ferror, Reasong

Types:

� Server = pid()
� File = string()
� Data = binary()
� Reason = term()

Reads a file from the server, and returns the data in a binary, like file:read file/1.

write file(Server, File, Iolist) -> ok | ferror, Reasong

Types:

� Server = pid()
� File = string()
� Data = binary()

11SSH

ssh sftp SSH Reference Manual

� Reason = term()

Writes a file to the server, like file:write file/2. The file is created if it’s not there.

list dir(Server, Path) -> fok, Filenamesg | ferror, Reasong

Types:

� Server = pid()
� Path = string()
� Filenames = [Filename]
� Filename = string()
� Reason = term()

Lists the given directory on the server, returning the filenames as a list of strings.

open(Server, File, Mode) -> fok, Handleg | ferror, Reasong

Types:

� Server = pid()
� File = string()
� Mode = [Modeflag]
� Modeflag = read | write | creat | trunc | append | binary
� Handle = term()
� Reason = term()

Opens a file on the server, and returns a handle that is used for reading or writing.

opendir(Server, Path) -> fok, Handleg | ferror, Reasong

Types:

� Server = pid()
� Path = string()
� Reason = term()

Opens a handle to a directory on the server, the handle is used for reading directory
contents.

close(Server, Handle) -> ok | ferror, Reasong

Types:

� Server = pid()
� Handle = term()
� Reason = term()

Closes a handle to an open file or directory on the server.

read(Server, Handle, Len) -> fok, Datag | eof | ferror, Errorg

pread(Server, Handle, Position, Length) -> fok, Datag | eof | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Position = integer()

12 SSH

SSH Reference Manual ssh sftp

� Len = integer()
� Data = string() | binary()
� Reason = term()

Reads Len bytes from the file referenced by Handle. Returns fok, Datag, or eof, or
ferror, Reasong. If the file is opened with binary, Data is a binary, otherwise it is a
string.

If the file is read past eof, only the remaining bytes will be read and returned. If no bytes
are read, eof is returned.

The pread function reads from a specified position, combining the position and read
functions.

aread(Server, Handle, Len) -> fasync, Ng | ferror, Errorg

apread(Server, Handle, Position, Length) -> fasync, Ng | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Position = integer()
� Len = integer()
� N = term()
� Reason = term()

Reads from an open file, without waiting for the result. If the handle is valid, the
function returns fasync, Ng, where N is a term guaranteed to be unique between calls
of aread. The actual data is sent as a message to the calling process. This message has
the form fasync reply, N, Resultg, where Result is the result from the read, either
fok, Datag, or eof, or ferror, Errorg.

The apread function reads from a specified position, combining the position and
aread functions.

write(Server, Handle, Data) -> ok | ferror, Errorg

pwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Position = integer()
� Data = iolist()
� Reason = term()

Write data to the file referenced by Handle. The file should be opened with write or
append flag. Returns ok if successful and ferror, Reasong otherwise.

Typical error reasons are:

ebadf The file is not opened for writing.

enospc There is a no space left on the device.

awrite(Server, Handle, Data) -> ok | ferror, Errorg

apwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg

13SSH

ssh sftp SSH Reference Manual

Types:

� Server = pid()
� Handle = term()
� Position = integer()
� Len = integer()
� Data = binary()
� Reason = term()

Writes to an open file, without waiting for the result. If the handle is valid, the function
returns fasync, Ng, where N is a term guaranteed to be unique between calls of
awrite. The result of the write operation is sent as a message to the calling process.
This message has the form fasync reply, N, Resultg, where Result is the result
from the write, either ok, or ferror, Errorg.

The apwrite writes on a specified position, combining the position and awrite
operations.

position(Server, Handle, Location) -> fok, NewPosition | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Location = Offset | fbof, Offsetg | fcur, Offsetg | feof, Offsetg | bof | cur | eof
� Offset = int()
� NewPosition = integer()
� Reason = term()

Sets the file position of the file referenced by Handle. Returns fok, NewPosition (as
an absolute offset) if successful, otherwise ferror, Reasong. Location is one of the
following:

Offset The same as fbof, Offsetg.

fbof, Offsetg Absolute offset.

fcur, Offsetg Offset from the current position.

feof, Offsetg Offset from the end of file.

bof | cur | eof The same as above with Offset 0.

read file info(Server, Name) -> fok, FileInfog | ferror, Reasong

get file info(Server, Handle) -> fok, FileInfog | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Handle = term()
� FileInfo = record()
� Reason = term()

Returns a file info record from the file specified by Name or Handle, like
file:read file info/2.

read link info(Server, Name) -> fok, FileInfog | ferror, Reasong

14 SSH

SSH Reference Manual ssh sftp

Types:

� Server = pid()
� Name = string()
� Handle = term()
� FileInfo = record()
� Reason = term()

Returns a file info record from the symbolic link specified by Name or Handle, like
file:read link info/2.

write file info(Server, Name, Info) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Info = record()
� Reason = term()

Writes file information from a file info record to the file specified by Name, like
file:write file info.

read link(Server, Name) -> fok, Targetg | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Target = string()
� Reason = term()

Read the link target from the symbolic link specified by name, like file:read link/1.

make symlink(Server, Name, Target) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Target = string()
� Reason = term()

Creates a symbolic link pointing to Target with the name Name, like
file:make symlink/2.

rename(Server, OldName, NewName) -> ok | ferror, Reasong

Types:

� Server = pid()
� OldName = string()
� NewName = string()
� Reason = term()

Renames a file named OldName, and gives it the name NewName, like file:rename/2

delete(Server, Name) -> ok | ferror, Reasong

15SSH

ssh sftp SSH Reference Manual

Types:

� Server = pid()
� Name = string()
� Reason = term()

Deletes the file specified by Name, like file:delete/1

make dir(Server, Name) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Reason = term()

Creates a directory specified by Name. Name should be a full path to a new directory.
The directory can only be created in an existing directory.

del dir(Server, Name) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Reason = term()

Deletes a directory specified by Name. The directory should be empty, and

stop(Server) -> ok

Types:

� Server = pid()

Stops the sftp session, closing the connection. Any open files on the server will be
closed.

16 SSH

SSH Reference Manual ssh sftpd

ssh sftpd
Erlang Module

This module implements an SFTP server.

Exports

listen(Port) -> fok, Pidg|ferror, Errorg

listen(Port, Options) -> fok, Pidg|ferror, Errorg

listen(Addr, Port, Options) -> fok, Pidg|ferror, Errorg

Types:

� Port = integer()
� Addr = string()
� Options = [fOption, Valueg]

Starts an SFTP server on the given port. The server listens for connection of an SFTP
client.

Options are:

fcwd, Stringg Sets the initial current working directory for the server.

ffile handler, CallbackModuleg Determines which module to call for
communicating with the file server. Default value is ssh sftpd file that uses the file
and filelib API:s to access the standard OTP file server. This option may be used to
plug in the use of other file servers.

froot, Stringg Sets the sftp root directory. The user will then not be able to see any
files above this root. If for instance the root is set to /tmp the user will see this
directory as / and if the user does cd /etc the user will end up in /tmp/etc.

For more options, see ssh cm:listen.

17SSH

ssh ssh SSH Reference Manual

ssh ssh
Erlang Module

This module implements a simple SSH client in erlang, providing an interactive shell to
another computer.

Exports

connect(Host) -> ok

connect(Host, Options) -> ok

connect(Host, Port, Options) -> ok

Types:

� Host = string()
� Port = integer()
� Options = [Option]

connect starts an interactive shell to an SSH server on the given Host. The function
waits for user input, and will not return until the remote shell is ended.(e.g. on exit
from the shell).

For options, see ssh cm:connect

18 SSH

SSH Reference Manual ssh sshd

ssh sshd
Erlang Module

This module implements an erlang shell as an SSH server.

Exports

listen(Port) -> fok, Pidg|ferror, Errorg

listen(Port, Options) -> fok, Pidg|ferror, Errorg

listen(Addr, Port, Options) -> fok, Pidg|ferror, Errorg

Types:

� Addr = string()
� Port = integer()
� Options = [fOption, Valueg]

Create a listener on the given port. (It calls ssh cli:listen with shell:start/0 as
argument.) An SSH client can be used to connect to the listener and execute erlang
commands.

Unix example:

1> ssh sshd:listen(9999, [fsystem dir, "."g])
<0.59.0>

On a unix shell:

bash@balin$ ssh -p 9999 balin
Eshell V5.4.9.1 (abort with ^G)
1> exit().
Connection to balin closed.
bash@balin$

This assumes that the current dir contains a private host key.

For options, see ssh cli:listen/3 and ssh cm:listen/4.

stop(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = atom()

Stops the listener given by Pid.

19SSH

ssh transport SSH Reference Manual

ssh transport
Erlang Module

This module implements the SSH connection layer, as described in
draft-ietf-secsh-transport-24.

This module should not normally be called by a client application.

20 SSH

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

apread/4
ssh sftp , 13

apwrite/4
ssh sftp , 13

aread/3
ssh sftp , 13

awrite/3
ssh sftp , 13

close/2
ssh sftp , 12

connect/1
ssh cm , 8
ssh sftp , 11
ssh ssh , 18

connect/2
ssh cm , 8
ssh sftp , 11
ssh ssh , 18

connect/3
ssh cm , 8
ssh sftp , 11
ssh ssh , 18

del_dir/2
ssh sftp , 16

delete/2
ssh sftp , 15

get_file_info/2
ssh sftp , 14

list_dir/2
ssh sftp , 12

listen/1
ssh cli , 6

ssh sftpd , 17
ssh sshd , 19

listen/2
ssh cli , 6
ssh cm , 9
ssh sftpd , 17
ssh sshd , 19

listen/3
ssh cli , 6
ssh cm , 9
ssh sftpd , 17
ssh sshd , 19

listen/4
ssh cli , 6
ssh cm , 9

make_dir/2
ssh sftp , 16

make_symlink/3
ssh sftp , 15

open/3
ssh sftp , 12

opendir/2
ssh sftp , 12

position/3
ssh sftp , 14

pread/4
ssh sftp , 12

pwrite/4
ssh sftp , 13

read/3
ssh sftp , 12

read_file/2

21SSH

ssh sftp , 11

read_file_info/2
ssh sftp , 14

read_link/2
ssh sftp , 15

read_link_info/2
ssh sftp , 14

rename/3
ssh sftp , 15

SSH
start/0, 5
stop, 5
stop/0, 5

ssh cli
listen/1, 6
listen/2, 6
listen/3, 6
listen/4, 6
stop/1, 6

ssh cm
connect/1, 8
connect/2, 8
connect/3, 8
listen/2, 9
listen/3, 9
listen/4, 9
stop_listener/1, 9

ssh sftp
apread/4, 13
apwrite/4, 13
aread/3, 13
awrite/3, 13
close/2, 12
connect/1, 11
connect/2, 11
connect/3, 11
del_dir/2, 16
delete/2, 15
get_file_info/2, 14
list_dir/2, 12
make_dir/2, 16
make_symlink/3, 15
open/3, 12
opendir/2, 12
position/3, 14
pread/4, 12
pwrite/4, 13
read/3, 12

read_file/2, 11
read_file_info/2, 14
read_link/2, 15
read_link_info/2, 14
rename/3, 15
stop/1, 16
write/3, 13
write_file/3, 11
write_file_info/3, 15

ssh sftpd
listen/1, 17
listen/2, 17
listen/3, 17

ssh ssh
connect/1, 18
connect/2, 18
connect/3, 18

ssh sshd
listen/1, 19
listen/2, 19
listen/3, 19
stop/1, 19

start/0
SSH , 5

stop
SSH , 5

stop/0
SSH , 5

stop/1
ssh cli , 6
ssh sftp , 16
ssh sshd , 19

stop_listener/1
ssh cm , 9

write/3
ssh sftp , 13

write_file/3
ssh sftp , 11

write_file_info/3
ssh sftp , 15

22 SSH

