Tools

version 2.6

Typeset in IATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Chapter 1

Tools User’s Guide

The Tools application contains a number of stand-alone tools, which are useful when developing Erlang
programs.
cover A coverage analysis tool for Erlang.

cprof A profiling tool that shows how many times each function is called. Uses a kind of local call trace
breakpoints containing counters to achieve very low runtime performance degradation.

emacs - (erlang.el and erlang-start.el) This package provides support for the programming language
Erlang in Emacs. The package provides an editing mode with lots of bells and whistles,
compilation support, and it makes it possible for the user to start Erlang shells that run inside
Emacs.

eprof A time profiling tool; measure how time is used in Erlang programs. Erlang programs.
Predecessor of fprof (see below).

fprof Another Erlang profiler; measure how time is used in your Erlang programs. Uses trace to file to
minimize runtime performance impact, and displays time for calling and called functions.

instrument Utility functions for obtaining and analysing resource usage in an instrumented Erlang
runtime system.

make A make utility for Erlang similar to UNIX make.
tags A tool for generating Emacs TAGS files from Erlang source files.

xref A cross reference tool. Can be used to check dependencies between functions, modules,
applications and releases.

1.1 cover

1.1.1 Introduction

The module cover provides a set of functions for coverage analysis of Erlang programs, counting how
many times each executable line [page 8] is executed.

Coverage analysis can be used to verify test cases, making sure all relevant code is covered, and may be
helpful when looking for bottlenecks in the code.

Tools 1

Chapter 1: Tools User’s Guide

1.1.2 Getting Started With Cover
Example

Assume that a test case for the following program should be verified:

-module(channel) .
-behaviour(gen_server).

-export ([start_link/0,stop/0]) .
-export([alloc/0,free/1]). % client interface
-export([init/1,handle_call/3,terminate/2]). % callback functions

start_link() ->
gen_server:start_link({local,channel},channel, [],[]).

stop() —>
gen_server:call(channel,stop) .

%h%-Client interface functions----------——————-———————————————

alloc() ->
gen_server:call(channel,alloc).

free(Channel) —>
gen_server:call(channel,{free,Channel}).

%hh-gen_server callback functions—---—--———————————————————————

init(_Arg) ->
{ok,channels()}.

handle_call(stop,Client,Channels) ->
{stop,normal, ok,Channels};

handle_call(alloc,Client,Channels) —->
{Ch,Channels2} = alloc(Channels),
{reply,{ok,Ch},Channels2};

handle_call ({free,Channel},Client,Channels) ->
Channels2 = free(Channel,Channels),

{reply,ok,Channels2}.

terminate (_Reason,Channels) ->
ok.

%hh-Internal functions———————————————————— -

channels() ->
[ch1l,ch2,ch3].

alloc([Channel|Channels]) ->
{Channel,Channels};

2 Tools

1.1: cover

alloc([]) —>
false.

free(Channel,Channels) ->
[Channel |Channels].

The test case is implemented as follows:

-module(test) .
-export ([s/0]).

sO) —>
{ok,Pid} = channel:start_link(),
{ok,Ch1} = channel:alloc(),
ok = channel:free(Chl),
ok = channel:stop().

Preparation

First of all, Cover must be started. This spawns a process which owns the Cover database where all
coverage data will be stored.

1> cover:start().
{ok,<0.30.0>}

To include other nodes in the coverage analysis, use start/1. All cover compiled modules will then be
loaded on all nodes, and data from all nodes will be summed up when analysing. For simplicity this
example only involves the current node.

Before any analysis can take place, the involved modules must be Cover compiled. This means that some
extra information is added to the module before it is compiled into a binary which then is loaded [page
9]. The source file of the module is not affected and no .bean file is created.

2> cover:compilemodule(channel).
{ok,channel}

Each time a function in the Cover compiled module channel is called, information about the call will
be added to the Cover database. Run the test case:

3> test:s().
ok

Cover analysis is performed by examining the contents of the Cover database. The output is
determined by two parameters, Level and Analysis. Analysis is either coverage or calls and
determines the type of the analysis. Level is either module, function, clause, Or 1ine and determines
the level of the analysis.

Tools 3

Chapter 1: Tools User’s Guide

Coverage Analysis

Analysis of type coverage is used to find out how much of the code has been executed and how much
has not been executed. Coverage is represented by a tuple {Cov,NotCov}, where Cov is the number of
executable lines that have been executed at least once and NotCov is the number of executable lines
that have not been executed.

If the analysis is made on module level, the result is given for the entire module as a tuple
{Module,{Cov,NotCov}}:

4> cover:analyse(channel,coverage,module) .
{ok,{channel,{14,1}}}

For channel, the result shows that 14 lines in the module are covered but one line is not covered.

If the analysis is made on function level, the result is given as a list of tuples
{Function, {Cov,NotCov}}, one for each function in the module. A function is specified by its module
name, function name and arity:

5> cover:analyse(channel,coverage,function).

{0k, [{{channel,start1ink,0},{1,0}},
{{channel,stop,0},{1,0}},
{{channel,alloc,0},{1,0}},
{{channel,free,1},{1,0}},
{{channel,init,1},{1,0}},
{{channel,handle call,3},{5,0}},
{{channel,terminate,2},{1,0}},
{{channel, channels,0},{1,0}},
{{channel,alloc,1},{1,1}},
{{channel,free,2},{1,0}}1}

For channel, the result shows that the uncovered line is in the function channel:alloc/1.

If the analysis is made on clause level, the result is given as a list of tuples {Clause, {Cov,NotCov}}, one
for each function clause in the module. A clause is specified by its module name, function name, arity
and position within the function definition:

6> cover:analyse(channel,coverage,clause).

{ok, [{{channel,start1ink,0,1},{1,0}},
{{channel,stop,0,1},{1,0}},
{{channel,alloc,0,1},{1,0}},
{{channel,free,1,1},{1,0}},
{{channel,init,1,1},{1,0}},
{{channel,handle call,3,1},{1,0}},
{{channel,handlecall,3,2},{2,0}},
{{channel,handlecall,3,3},{2,0}},
{{channel,terminate,2,1},{1,0}},
{{channel, channels,0,1},{1,0}},
{{channel,alloc,1,1},{1,0}},
{{channel,alloc,1,2},{0,1}},
{{channel,free,2,1},{1,0}}1}

For channel, the result shows that the uncovered line is in the second clause of channel:alloc/1.

Finally, if the analysis is made on line level, the result is given as a list of tuples {Line, {Cov,NotCov}},
one for each executable line in the source code. A line is specified by its module name and line number.

4 Tools

1.1: cover

7> cover:analyse(channel,coverage,line).

{ok, [{{channel,9},{1,0}},
{{channel,12},{1,0}},
{{channel,17},{1,0}},
{{channel,20},{1,0}},
{{channel,25},{1,0}},
{{channel,28},{1,0}},
{{channel,31},{1,0}},
{{channel,32},{1,0}},
{{channel,35},{1,0}},
{{channel,36},{1,0}},
{{channel,39},{1,0}},
{{channel,44},{1,0}},
{{channel,47},{1,0}},
{{channel,49},{0,1}},
{{channel,52},{1,0}}1}

For channel, the result shows that the uncovered line is line number 49.

Call Statistics

Analysis of type calls is used to find out how many times something has been called and is represented
by an integer Calls.

If the analysis is made on module level, the result is given as a tuple {Module,Calls}. Here Calls is the
total number of calls to functions in the module:

8> cover:analyse(channel,calls,module).
{ok,{channel,12}}

For channel, the result shows that a total of twelve calls have been made to functions in the module.

If the analysis is made on function level, the result is given as a list of tuples {Function,Calls}. Here
Calls is the number of calls to each function:

9> cover:analyse(channel,calls,function).

{0k, [{{channel,start1ink,0},1},
{{channel,stop,0},1},
{{channel,alloc,0},1},
{{channel,free,1},1},
{{channel,init,1},1},
{{channel,handle call,3},3},
{{channel,terminate,2},1},
{{channel,channels,0},1},
{{channel,alloc,1},1},
{{channel,free,2},1}1}

For channel, the result shows that handle _call/3 is the most called function in the module (three
calls). All other functions have been called once.

If the analysis is made on clause level, the result is given as a list of tuples {Clause,Calls}. Here Calls
is the number of calls to each function clause:

Tools 5

Chapter 1: Tools User’s Guide

10> cover:analyse(channel,calls,clause).

{ok, [{{channel,start 1ink,0,1},1},
{{channel,stop,0,1},1},
{{channel,alloc,0,1},1},
{{channel, free,1,1},1},
{{channel,init,1,1},1},
{{channel,handle call,3,1},1},
{{channel,handle call,3,2},1},
{{channel,handle call,3,3},1},
{{channel,terminate,2,1},1},
{{channel, channels,0,1},1},
{{channel,alloc,1,1},1},
{{channel,alloc,1,2},0},
{{channel,free,2,1},1}1}

For channel, the result shows that all clauses have been called once, except the second clause of
channel:alloc/1 which has not been called at all.

Finally, if the analysis is made on line level, the result is given as a list of tuples {Line,Calls}. Here
Calls is the number of times each line has been executed:

11> cover:analyse(channel,calls,line).

{ok, [{{channel,9},1},
{{channel,12},1},
{{channel,17},1},
{{channel,20},1},
{{channel,25},1},
{{channel,28},1},
{{channel,31},1},
{{channel,32},1},
{{channel,35},1},
{{channel,36},1},
{{channel,39},1},
{{channel,44},1},
{{channel,47},1},
{{channel,49},0},
{{channel,52},1}1}

For channel, the result shows that all lines have been executed once, except line number 49 which has
not been executed at all.

Analysis to File
A line level calls analysis of channel can be written to a file using cover:analysis to file/1:

12> cover:analyse to_file(channel).
{0k, "channel.COVER.out"}

The function creates a copy of channel.erl where it for each executable line is specified how many
times that line has been executed. The output file is called channel.COVER. out.

6 Tools

1.1: cover

File generated from channel.erl by COVER 2001-05-21 at 11:16:38

>k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k %k >k ok ok ok ok ok ok ok >k >k >k >k >k >k >k >k 5k ok ok ok 5k 5k >k >k >k >k %k >k >k 5k 5k 5k 5k 5k >k >k >k >k >k >k >k >k >k >k 5k ok %k %k %k >k >k >k >k >k *k >k >k k

-module(channel) .
-behaviour(gen server) .

-export ([start_1ink/0,stop/0]).
-export([alloc/0,free/1]). % client interface
-export([init/1,handle call/3,terminate/2]). % callback functions

start_1link() ->

|
|
|
|
|
|
|
|
1..1 gen_server:start_link({local,channel},channel, []1,[]).
|
| stop() ->
1..] gen_server:call(channel,stop) .
|
| %k%-Client interface functions----------————————-—-———o—o—————
|
| alloc() ->
1..] gen_server:call(channel,alloc).
|
| free(Channel) ->
1..] gen_server:call(channel, {free,Channel}).
|
| %%J%-gen_server callback functions-——---—--—————————————————————————
|
| init(Arg) ->
1..1 {ok,channels()}.
|
| handle_call(stop,Client,Channels) ->
1..] {stop,normal,ok,Channels};
|
| handle_call(alloc,Client,Channels) ->
1.1 {Ch,Channels2} = alloc(Channels),
1..1 {reply,{ok,Ch},Channels2};
|
| handle call({free,Channel},Client,Channels) ->
1..1 Channels2 = free(Channel,Channels),
1.1 {reply,ok,Channels2}.
|
| terminate(_Reason,Channels) ->
1..] ok.
|
| %h%-Internal functions——-—————-——————————————————————— o
|
| channels() ->
1..1 [ch1l,ch2,ch3].
|
| alloc([Channel|Channels]) ->
1..1 {Channel,Channels};
| alloc([]) ->
0..1 false.

Tools 7

Chapter 1: Tools User’s Guide

|
| free(Channel,Channels) ->
1..] [Channel |Channels] .

Conclusion

By looking at the results from the analyses, it can be deducted that the test case does not cover the case
when all channels are allocated and test . erl should be extended accordingly.
Incidentally, when the test case is corrected a bug in channel should indeed be discovered.

When the Cover analysis is ready, Cover is stopped and all Cover compiled modules are unloaded [page
9]. The code for channel is now loaded as usual from a .bean file in the current path.

13> code:which(channel).
cover_compiled

14> cover:stop().

ok

15> code:which(channel).
"./channel.beam"

1.1.3 Miscellaneous
Performance

Execution of code in Cover compiled modules is slower and more memory consuming than for
regularly compiled modules. As the Cover database contains information about each executable line in
each Cover compiled module, performance decreases proportionally to the size and number of the
Cover compiled modules.

Executable Lines

Cover uses the concept of executable lines, which is lines of code containing an executable expression
such as a matching or a function call. A blank line or a line containing a comment, function head or
pattern in a case- Or receive statement is not executable.

In the example below, lines number 2,4,6,8 and 11 are executable lines:

1: is_loaded(Module,Compiled) ->

2 case get_file(Module,Compiled) of
3 {ok,File} ->

4: case code:which(Module) of
5: ?TAG ->

6: {loaded,File};

7 - >

8 unloaded

9: end;

10: false ->

11: false

12: end.

8 Tools

1.1: cover

Code Loading Mechanism

When a module is Cover compiled, it is also loaded using the normal code loading mechanism of
Erlang. This means that if a Cover compiled module is re-loaded during a Cover session, for example
using c (Module), it will no longer be Cover compiled.

Use cover:is_compiled/1 or code:which/1 to see if a module is Cover compiled (and still loaded) or
not.

When Cover is stopped, all Cover compiled modules are unloaded.

1.1.4 Using the Web Based User Interface to Cover
Introduction

To ease the use of Cover there is a web based user interface to Cover called WebCover. WebCover is
designed to be started and used via WebTool. It is possible to Cover compile Erlang modules and to
generate printable Cover and Call analyses via the web based user interface.

Start the Web Based User Interface to Cover

To start WebCover you can either start WebTool, point a browser to the start page of WebTool and start
WebCover from there, or you can use the start_webtool script to start Webtool, WebCover and a
browser. See WebTool documentation for further information.

Currently WebCover is only compatible with Internet Explorer and Netscape Navigator 4.0 and higher.

Navigating WebCover

From the menu in the lefthand frame you can select the Nodes, Compile, Import Or Result page.

From the Nodes page you can add remote nodes to participate in the coverage analysis. Coverage data
from all involved nodes will then be merged during analysis.

From the Compile page you can Cover compile .erl or .bean files.

From the Import page you can import coverage data from a previous analysis. Imported data will then
be merged with the current coverage data. Note that it is only possible to import files with the
extension .coverdata.

From the Result page you can analyse, reset or export coverage data.
Please follow the instructions on each page.

Tools 9

Chapter 1: Tools User’s Guide

1.2 cprof - The Call Count Profiler

cprof is a profiling tool that can be used to get a picture of how often different functions in the system
are called.

cprof uses breakpoints similar to local call trace, but containing counters, to collect profiling data.
Therfore there is no need for special compilation of any module to be profiled.

cprof presents all profiled modules in decreasing total call count order, and for each module presents all
profiled functions also in decreasing call count order. A call count limit can be specified to filter out all
functions below the limit.

Profiling is done in the following steps:

cprof:start/0. .3 Starts profiling with zeroed call counters for specified functions by setting call
count breakpoints on them.

Mod:Fun() Runs the code to be profiled.

cprof :pause/0. .3 Pauses the call counters for specified functions. This minimises the impact of code
running in the background or in the shell that disturbs the profiling. Call counters are
automatically paused when they “hit the ceiling” of the host machine word size. For a 32 bit host
the maximum counter value is 2147483647.

cprof :analyse/0. .2 Collects call counters and computes the result.

cprof :restart/0. .3 Restarts the call counters from zero for specified functions. Can be used to
collect a new set of counters without having to stop and start call count profiling.

cprof :stop/0. .3 Stops profiling by removing call count breakpoints from specified functions.

Functions can be specified as either all in the system, all in one module, all arities of one function, one
function, or all functions in all modules not yet loaded. As for now, BIFs cannot be call count traced.

The analysis result can either be for all modules, or for one module. In either case a call count limit can
be given to filter out the functions with a call count below the limit. The all modules analysis does not
contain the module cprof itself, it can only be analysed by specifying it as a single module to analyse.

Call count tracing is very lightweight compared to other forms of tracing since no trace message has to
be generated. Some measurements indicates performance degradations in the vicinity of 10 percent.

The following sections show some examples of profiling with cprof. See also cprof(3) [page 40].

1.2.1 Example: Background work

From the Erlang shell:

1> cprof:start(), cprof:pause(). % Stop counters just after start

3476

2> cprof:analyse().

{30,

[{erleval,il,
[{{erl-eval,expr,3},3},

{{erl_eval,’-merge bindings/2-fun-0-’,2},2},
{{erl_eval,expand module name,2},1},
{{erl_eval,merge bindings,2},1},
{{erl_eval,binding,2},1},
{{erleval,exprlist,5},1},
{{erl_eval,exprlist,3},1},
{{erleval,exprs,4},1}1},

10 Tools

1.2: cprof - The Call Count Profiler

{orddict,8,
[{{orddict,find,2},6},
{{orddict,dict to.list,1},1},
{{orddict,tolist,1},1}1},
{packages,7, [{{packages,is_segmented_1,1},6},
{{packages,is_segmented,1},1}]},
{lists,4, [{{lists,foldl,3},3},{{lists,reverse,1},1}1}1}
3> cprof:analyse(cprof).
{cprof,3, [{{cprof,tr,2},2},{{cprof,pause,0},1}1}
4> cprof:stop().
3476

The example showed the background work that the shell performs just to interpret the first command
line. Most work is done by erl_eval and orddict.

What is captured in this example is the part of the work the shell does while interpreting the command
line that occurs between the actual calls to cprof:start () and cprof:analyse().

1.2.2 Example: One module

From the Erlang shell:

1> cprof:start() ,R=calendar:day.of_the week(1896,4,27),cprof:pause(),R.

1

2> cprof:analyse(calendar).

{calendar,9,
[{{calendar,df,2},1},
{{calendar,dm,1},1},
{{calendar,dy,1},1},
{{calendar,last day of _themonthl,2},1},
{{calendar,last day of_themonth,2},1},
{{calendar,is leap_yearl,1},1},
{{calendar,is leap_year,1},1},
{{calendar,day of _the week,3},1},
{{calendar,date to_gregorian days,3},1}]1}

3> cprof:stop().

3271

The example tells us that “Aktiebolaget LM Ericsson & Co” was registered on a Monday (since the
return value of the first command is 1), and that the calendar module needed 9 function calls to
calculate that.

Using cprof :analyse () in this example also shows approximately the same background work as in the
first example.

Tools 11

Chapter 1: Tools User’s Guide

1.2.3 Example: In the code

Write a module:

-module(sort).
-export([do/1]).

do(N) ->
cprof:stop(),
cprof:start(),
do(N, [1).

do(0, L) ->
R = lists:sort(L),
cprof :pause (),
R;
do(N, L) ->
do(N-1, [random:uniform(256)-1 | L]).

From the Erlang shell:

1> c(sort).

{ok,sort}

2> 1(random).

{module,random}

3> sort:do(1000).
[0,0,1,1,1,1,1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,6,6,6,6,6,6]...]
4> cprof:analyse().

{9050,

[{lists_sort,6047,
[{{lists_sort,merge32,6},923},
{{lists_sort,merge3.1,6},879},
{{lists_sort,split.2,5},661},
{{lists_sort,rmerge3_1,6},580},
{{lists_sort,rmerge32,6},543},
{{lists_sort,merge3.12.3,6},531},
{{lists_sort,merge3 21.3,6},383},
{{lists_sort,split.2.1,6},338},
{{lists_sort,rmerge3.21.3,6},299},
{{lists_sort,rmerge3_12.3,6},205},
{{lists_sort,rmerge2.2,4},180},
{{lists_sort,rmerge2.1,4},171},
{{lists_sort,merge2.1,4},127},
{{lists_sort,merge2.2,4},121},
{{lists_sort,mergel,2},79},
{{lists_sort,rmergel,2},27}1},

{random, 2001,

[{{random,uniform,1},1000},
{{random,uniform,0},1000},
{{random, seed0,0},1}1},

{sort,1001, [{{sort,do,2},1001}]1},

{lists,1, [{{lists,sort,1},1}1}1}

12 Tools

1.3: The Erlang mode for Emacs

5> cprof:stop().
5369

The example shows some details of how lists:sort/1 works. It used 6047 function calls in the
module lists_sort to complete the work.

This time, since the shell was not involved, no other work was done in the system during the profiling.
If you retry the same example with a freshly started Erlang emulator, but omit the command
1(random), the analysis will show a lot more function calls done by code_server and others to
automatically load the module random.

1.3 The Erlang mode for Emacs

1.3.1 Purpose

The purpose of this user guide is to introduce you to the Erlang mode for Emacs and gives some
relevant background information of the functions and features. See also Erlang mode reference manual
[page 46] The purpose of the Erlang mode itself is to facilitate the developing process for the Erlang
programmer.

1.3.2 Pre-requisites

Basic knowledge of Emacs and Erlang/OTP.

1.3.3 Elisp

There are two Elsip modules include in this tool package for Emacs. There is erlang.el that defines the
actual erlang mode and there is erlang-start.el that makes some nice initializations.

1.3.4 Setup on UNIX

To set up the Erlang Emacs mode on a UNIX systems, edit/create the file . emacs in the your home
directory.

Below is a complete example of what should be added to a user’s . emacs provided that OTP is installed
in the directory /usr/local/otp :

(setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"
load-path))

(setq erlang-root-dir "/usr/local/otp")

(setq exec-path (cons "/usr/local/otp/bin" exec-path))

(require ’erlang-start)

Tools 13

Chapter 1: Tools User’s Guide

1.3.5 Setup on Windows

To set up the Erlang Emacs mode on a Windows systems, edit/create the file . emacs, the location of the
file depends on the configuration of the system. If the HOME environment variable is set, Emacs will
look for the .emacs file in the directory indicated by the HOME variable. If HOME is not set, Emacs
will look for the .emacs filein C:\ .

Below is a complete example of what should be added to a user’s . emacs provided that OTP is installed
in the directory C:\Program Files\erl<Ver>:

(setq load-path (cons "C:/Program Files/erl<Ver>/lib/tools-<ToolsVer>/emacs"
load-path))

(setq erlang-root-dir "C:/Program Files/erl<Ver>")

(setq exec-path (cons "C:/Program Files/erl<Ver>/bin" exec-path))

(require ’erlang-start)

Note:

In .emacs, the slash character “/” can be used as path separator. But if you decide to use the backslash
character “\”, please not that you must use double backslashes, since they are treated as escape
characters by Emacs.

1.3.6 Indentation
The “Oxford Advanced Learners Dictionary of Current English” says the following about the word
“indent”:

“start (a line of print or writing) farther from the margin than the others”.

The Erlang mode does, of course, provide this feature. The layout used is based on the common use of
the language.

It is strongly recommend to use this feature and avoid to indent lines in a nonstandard way. Some
motivations are:
e Code using the same layout is easy to read and maintain.
e Since several features of Erlang mode is based on the standard layout they might not work
correctly if a nonstandard layout is used.

The indentation features can be used to reindent large sections of a file. If some lines use nonstandard
indentation they will be reindented.

14 Tools

1.3: The Erlang mode for Emacs

1.3.7 Editing

e M-x erlang-mode RET - This command activates the Erlang major mode for the current buffer.
When this mode is active the mode line contain the word “Erlang”.

When the Erlang mode is correctly installed, it is automatically activated when a file ending in .erl or
.hrl is opened in Emacs.

When a file is saved the name in the -module () . line is checked against the file name. Should they
mismatch Emacs can change the module specifier so that it matches the file name. By default, the user
is asked before the change is performed.

An “electric” command is a character that in addition to just inserting the character performs some type
of action. For example the “;” character is typed in a situation where is ends a function clause a new
function header is generated. The electric commands are as follows:

e erlang-electric-comma - Insert a comma character and possibly a new indented line.

e erlang-electric-semicolon - Insert a semicolon character and possibly a prototype for the next
line.

e erlang-electric-gt - “Insert a ’>’-sign and possible a new indented line.

To disable all electric commands set the variable erlang-electric-commands to the empty list. In
short, place the following line in your .emacs-file:

(setq erlang-electric-commands ’())

1.3.8 Syntax highlighting

It is possible for Emacs to use colors when displaying a buffer. By “syntax highlighting”, we mean that
syntactic components, for example keywords and function names, will be colored.

The basic idea of syntax highlighting is to make the structure of a program clearer. For example, the
highlighting will make it easier to spot simple bugs. Have not you ever written a variable in lower-case
only? With syntax highlighting a variable will colored while atoms will be shown with the normal text
color.

1.3.9 Tags

Tags is a standard Emacs package used to record information about source files in large development
projects. In addition to listing the files of a project, a tags file normally contains information about all
functions and variables that are defined. By far, the most useful command of the tags system is its ability
to find the definition of functions in any file in the project. However the Tags system is not limited to
this feature, for example, it is possible to do a text search in all files in a project, or to perform a
project-wide search and replace.

In order to use the Tags system a file named TAGS must be created. The file can be seen as a database
over all functions, records, and macros in all files in the project. The TAGS file can be created using two
different methods for Erlang. The first is the standard Emacs utility “etags”, the second is by using the
Erlang module tags.

Tools 15

Chapter 1: Tools User’s Guide

1.3.10 Etags

etags is a program that is part of the Emacs distribution. It is normally executed from a command line,
like a unix shell or a DOS box.

The etags program of fairly modern versions of Emacs and XEmacs has native support for Erlang. To
check if your version does include this support, issue the command etags --help at a the command
line prompt. At the end of the help text there is a list of supported languages. Unless Erlang is a
member of this list | suggest that you should upgrade to a newer version of Emacs.

As seen in the help text — unless you have not upgraded your Emacs yet (well, what are you waiting
around here for? Off you go and upgrade!) — etags associate the file extensions .erl and .hrl with
Erlang.

Basically, the etags utility is runed using the following form:
etags filel.erl file2.erl

This will create a file named TAGS in the current directory.

The etags utility can also read a list of files from its standard input by supplying a single dash in place
of the file names. This feature is useful when a project consists of a large number of files. The standard
UNIX command find can be used to generate the list of files, e.g:

find . -name "*.[he]rl" -print | etags -

The above line will create a TAGS file covering all the Erlang source files in the current directory, and in
the subdirectories below.

Please see the GNU Emacs Manual and the etags man page for more info.

1.3.11 Shell

The look and feel on an Erlang shell inside Emacs should be the same as in a normal Erlang shell. There
is just one major difference, the cursor keys will actually move the cursor around just like in any normal
Emacs buffer. The command line history can be accessed by the following commands:

e C-up OrM-p (comint-previous-input)- Move to the previous line in the input history.

e C-down Or M-n (comint-next-input)- Move to the next line in the input history.

If the Erlang shell buffer would be killed the command line history is saved to a file. The command line
history is automatically retrieved when a new Erlang shell is started.

1.3.12 Compilation

The classic edit-compile-bugfix cycle for Erlang is to edit the source file in an editor, save it to a file and
switch to an Erlang shell. In the shell the compilation command is given. Should the compilation fail
you have to bring out the editor and locate the correct line.

With the Erlang editing mode the entire edit-compile-bugfix cycle can be performed without leaving
Emacs. Emacs can order Erlang to compile a file and it can parse the error messages to automatically
place the point on the erroneous lines.

16 Tools

1.4: fprof - The File Trace Profiler

1.4 fprof - The File Trace Profiler

fprof is a profiling tool that can be used to get a picture of how much processing time different
functions consumes and in which processes.

fprof uses tracing with timestamps to collect profiling data. Therfore there is no need for special
compilation of any module to be profiled.

fprof presents wall clock times from the host machine OS, with the assumption that OS scheduling
will randomly load the profiled functions in a fair way. Both own time i.e the time used by a function for
its own execution, and accumulated time i.e execution time including called functions.

Profiling is essentially done in 3 steps:

1 Tracing; to file, as mentioned in the previous paragraph.

2 Profiling; the trace file is read and raw profile data is collected into an internal RAM storage on the
node. During this step the trace data may be dumped in text format to file or console.

3 Analysing; the raw profile data is sorted and dumped in text format either to file or console.

Since fprof uses trace to file, the runtime performance degradation is minimized, but still far from
negligible, especially not for programs that use the filesystem heavily by themselves. Where you place
the trace file is also important, e.g on Solaris /tmp is usually a good choice, while any NFS mounted disk
is a lousy choice.

Fprof can also skip the file step and trace to a tracer process of its own that does the profiling in runtime.

The following sections show some examples of how to profile with Fprof. See also the reference manual
fprof(3) [page 51].

1.4.1 Profiling from the source code

If you can edit and recompile the source code, it is convenient to insert fprof:trace(start) and
fprof :trace(stop) before and after the code to be profiled. All spawned processes are also traced. If
you want some other filename than the default try fprof:trace(start, "my fprof.trace").

Then read the trace file and create the raw profile data with fprof :profile(), or perhaps
fprof:profile(file, "my_fprof.trace") for non-default filename.

Finally create an informative table dumped on the console with fprof:analyse(), or on file with
fprof:analyse(dest, [1), or perhaps even fprof:analyse([{dest, "my_fprof.analysis"},
{cols, 120}1) for a wider listing on non-default filename.

See the fprof(3) [page 51] manual page for more options and arguments to the functions trace [page
53], profile [page 55] and analyse [page 56].

1.4.2 Profiling a function

If you have one function that does the task that you want to profile, and the function returns when the
profiling should stop, it is convenient to use fprof :apply (Module, Function, Args) and related for
the tracing step.

If the tracing should continue after the function returns, for example if it is a start function that spawns
processes to be profiled, you can use fprof :apply(M, F, Args, [continue | OtherOpts]). The
tracing has to be stopped at a suitable later time using fprof :trace(stop).

Tools 17

Chapter 1: Tools User’s Guide

1.4.3 Immediate profiling

It is also possible to trace immediately into the profiling process that creates the raw profile data, that is
to short circuit the tracing and profiling steps so that the filesystem is not used.

Do something like this:

{ok, Tracer} = fprof:profile(start),
fprof:trace([start, {tracer, Tracer}]),
%% Code to profile

fprof:trace(stop);

This puts less load on the filesystem, but much more on the Erlang runtime system.

1.5 Xref - The Cross Reference Tool

Xref is a cross reference tool that can be used for finding dependencies between functions, modules,
applications and releases. It does so by analyzing the defined functions and the function calls.

In order to make Xref easy to use, there are predefined analyses that perform some common tasks.
Typically, a module or a release can be checked for calls to undefined functions. For the somewhat more
advanced user there is a small, but rather flexible, language that can be used for selecting parts of the
analyzed system and for doing some simple graph analyses on selected calls.

The following sections show some features of Xref, beginning with a module check and a predefined
analysis. Then follow examples that can be skipped on the first reading; not all of the concepts used are
explained, and it is assumed that the reference manual [page 74] has been at least skimmed.

1.5.1 Module Check

Assume we want to check the following module:
-module (my_module) .
-export ([t/1]).

t(A) ->
my_module:t2(A).

t2() ->
true.

Cross reference data are read from BEAM files, so the first step when checking an edited module is to
compile it:

1> c(mymodule, debug-info).
./my_module.erl:10: Warning: function t2/1 is unused
{ok, my module}

The debug_info option ensures that the BEAM file contains debug information, which makes it
possible to find unused local functions.

The module can now be checked for calls to deprecated functions [page 75], calls to undefined
functions [page 75], and for unused local functions:

18 Tools

1.5: Xref - The Cross Reference Tool

2> xref :m(my_module)

[{deprecated, [1},

{undefined, [{{mymodule,t,1},{mymodule,t2,1}}1},
{unused, [{mymodule,t2,1}1}]

m/1 is also suitable for checking that the BEAM file of a module that is about to be loaded into a
running a system does not call any undefined functions. In either case, the code path of the code server
(see the module code) is used for finding modules that export externally called functions not exported
by the checked module itself, so called library modules [page 75].

1.5.2 Predefined Analysis

In the last example the module to analyze was given as an argument to m/1, and the code path was
(implicitly) used as library path [page 75]. In this example an xref server [page 74] will be used, which
makes it possible to analyze applications and releases, and also to select the library path explicitly.

Each Xref server is referred to by a unigue name. The name is given when creating the server:

1> xref:start(s).
{ok,<0.27.0>}

Next the system to be analyzed is added to the Xref server. Here the system will be OTP, so no library
path will be needed. Otherwise, when analyzing a system that uses OTP, the OTP modules are typically
made library modules by setting the library path to the default OTP code path (or to code_path, see the
reference manual [page 93]). By default, the names of read BEAM files and warnings are output when
adding analyzed modules, but these messages can be avoided by setting default values of some options:

2> xref:set._default(s, [{verbose,false}, {warnings,false}l).
ok
3> xref:add release(s, code:lib.dir(), {name, otp}).

{ok,otp}

add_release/3 assumes that all subdirectories of the library directory returned by code:1ib_dir ()
contain applications; the effect is that of reading all applications’ BEAM files.

It is now easy to check the release for calls to undefined functions:

4> xref:analyze(s, undefined function_calls).

{ok, [...1}

We can now continue with further analyses, or we can delete the Xref server:
5> xref:stop(s).

The check for calls to undefined functions is an example of a predefined analysis, probably the most
useful one. Other examples are the analyses that find unused local functions, or functions that call some
given functions. See the analyze/2,3 [page 85] functions for a complete list of predefined analyses.

Each predefined analysis is a shorthand for a query [page 82], a sentence of a tiny language providing
cross reference data as values of predefined variables [page 77]. The check for calls to undefined
functions can thus be stated as a query:

Tools 19

Chapter 1: Tools User’s Guide

4> xref:q(s, "(XC - UC) || (XU - X - B)").
{ok,[...1}

The query asks for the restriction of external calls except the unresolved calls to calls to functions that
are externally used but neither exported nor built-in functions (the | | operator restricts the used
functions while the | operator restricts the calling functions). The - operator returns the difference of
two sets, and the + operator to be used below returns the union of two sets.

The relationships between the predefined variables XU, X, B and a few others are worth elaborating
upon. The reference manual mentions two ways of expressing the set of all functions, one that focuses
on how they are defined: X+L+B+U, and one that focuses on how they are used: UU+LU+XU. The
reference also mentions some facts [page 78] about the variables:

e Fisequal toL + X (the defined functions are the local functions and the external functions);

e U is a subset of XU (the unknown functions are a subset of the externally used functions since the
compiler ensures that locally used functions are defined);

B is a subset of XU (calls to built-in functions are always external by definition, and unused built-in
functions are ignored);

LU is a subset of F (the locally used functions are either local functions or exported functions,
again ensured by the compiler);

UU is equal to F- (XU+LU) (the unused functions are defined functions that are neither used
externally nor locally);

e UU is a subset of F (the unused functions are defined in analyzed modules).

Using these facts, the two small circles in the picture below can be combined.

Definition

Definition and Use

Use

Figure 1.1: Definition and use of functions

20 Tools

1.5: Xref - The Cross Reference Tool

It is often clarifying to mark the variables of a query in such a circle. This is illustrated in the picture
below for some of the predefined analyses. Note that local functions used by local functions only are
not marked in the locals not_used circle.

XU-X-B X - XU L* (UU + (XU - LU))
undefined_functions exports_not_used locals_not_used (simplified
(modules mode

Figure 1.2: Some predefined analyses as subsets of all functions

1.5.3 Expressions

The module check and the predefined analyses are useful, but limited. Sometimes more flexibility is
needed, for instance one might not need to apply a graph analysis on all calls, but some subset will do
equally well. That flexibility is provided with a simple language. Below are some expressions of the
language with comments, focusing on elements of the language rather than providing useful examples.
The analyzed system is assumed to be OTP, so in order to run the queries, first evaluate these calls:

xref:start(s).
xref:add release(s, code:root dir()).

xref:q(s, "(Fun) xref : Mod"). All functions of the xref module.

xref:q(s, "xref : Mod * X"). All exported functions of the xref module. The first operand of
the intersection operator * is implicitly converted to the more special type of the second operand.

xref:q(s, "(Mod) tools"). All modules of the tools application.

xref:q(s, ’"xref_.x" : Mod’). All modules with a name beginning with xref .

xref:q(s, "# E|X"). Number of calls from exported functions.

xref:q(s, "XC||L"). All external calls to local functions.

xref:q(s, "XCxLC"). All calls that have both an external and a local version.

xref:q(s, "(LLin) (LC * XC)"). The lines where the local calls of the last example are made.

xref:q(s, "(XLin) (LC * XC)"). The lines where the external calls of the example before last are
made.

xref:q(s, "XC * (ME - strict ME)"). External calls within some module.
xref:q(s, "El|lkernel"). All calls within the kernel application.

xref:q(s, "closureE|kernell |kernel"). All direct and indirect calls within the kernel
application. Both the calling and the used functions of indirect calls are defined in modules of the

Tools 21

Chapter 1: Tools User’s Guide

kernel application, but it is possible that some functions outside the kernel application are used by
indirect calls.

xref:q(s, "{toolbar,debugger}:Mod of ME"). A chain of module calls from toolbar to debugger,
if there is such a chain, otherwise false. The chain of calls is represented by a list of modules,
toolbar being the first element and debugger the last element.

xref:q(s, "closure E | toolbar:Mod || debugger:Mod"). All (in)direct calls from functions in
toolbar to functions in debugger.

xref:q(s, "(Fun) xref -> xref_base"). All function calls from xref to xref_base
xref:q(s, "E * xref -> xref base"). Same interpretation as last expression.
xref:q(s, "E || xref base | xref"). Same interpretation as last expression.

xref:q(s, "E * [xref -> lists, xref_base -> digraph]"). All function calls from xref to
lists, and all function calls from xref base to digraph.

xref:q(s, "E | [xref, xref base] || [lists, digraph]"). All function calls from xref and
xref _base to lists and digraph.

xref:q(s, "components EE"). All strongly connected components of the Inter Call Graph. Each
component is a set of exported or unused local functions that call each other (in)directly.

xref:q(s, "X * digraph * range (closure (E | digraph) | (L * digraph))"). All exported
functions of the digraph module used (in)directly by some function in digraph.

xref:q(s, "L * yeccparser:Mod - range (closure (E |

yeccparser:Mod) | (X * yeccparser:Mod))"). The interpretation is left as an exercise.

1.5.4 Graph Analysis

The list representation of graphs [page 75] is used analyzing direct calls, while the digraph
representation is suited for analyzing indirect calls. The restriction operators (I, || and | | |) are the
only operators that accept both representations. This means that in order to analyze indirect calls using
restriction, the closure operator (which creates the digraph representation of graphs) has to been
applied explicitly.

As an example of analyzing indirect calls, the following Erlang function tries to answer the question: if
we want to know which modules are used indirectly by some module(s), is it worth while using the
function graph [page 75] rather than the module graph? Recall that a module M1 is said to call a
module M2 if there is some function in M1 that calls some function in M2. It would be nice if we could
use the much smaller module graph, since it is available also in the light weight modulesmode [page
74] of Xref servers.

t(8) ->

{ok, _} = xref:q(S, "Eplus := closure E"),

{ok, Ms} = xref:q(S, "AM"),

Fun = fun(M, N) ->
Q = io_lib:format("# (Mod) (Eplus | “p : Mod)", [M]),
{ok, NO} = xref:q(S, lists:flatten(Q)),
N + NO

end,

Sum = lists:foldl(Fun, O, Ms),

ok = xref:forget(S, ’Eplus’),

{ok, Tot} = xref:q(S, "# (closure ME | AM)"),

100 * ((Tot - Sum) / Tot).

22 Tools

1.5: Xref - The Cross Reference Tool

Comments on the code:

¢ We want to find the reduction of the closure of the function graph to modules. The direct
expression for doing that would be (Mod) (closureE|AM), but then we would have to represent
all of the transitive closure of E in memory. Instead the number of indirectly used modules is
found for each analyzed module, and the sum over all modules is calculated.

e A user variable is employed for holding the digraph representation of the function graph for use
in many queries. The reason is efficiency. As opposed to the = operator, the : = operator saves a
value for subsequent analyses. Here might be the place to note that equal subexpressions within a
guery are evaluated only once; = cannot be used for speeding things up.

e Eplus | "p : Mod. The | operator converts the second operand to the type of the first operand.
In this case the module is converted to all functions of the module. It is necessary to assign a type
to the module (:Mod), otherwise modules like kernel would be converted to all functions of the
application with the same name; the most general constant is used in cases of ambiguity.

e Since we are only interested in a ratio, the unary operator # that counts the elements of the
operand is used. It cannot be applied to the digraph representation of graphs.

e \We could find the size of the closure of the module graph with a loop similar to one used for the
function graph, but since the module graph is so much smaller, a more direct method is feasible.

When the Erlang function t/1 was applied to an Xref server loaded with the current version of OTP,
the returned value was close to 84(percent). This means that the number of indirectly used modules is
approximately six times greater when using the module graph. So the answer to the above stated
guestion is that it is definitely worth while using the function graph for this particular analysis. Finally,
note that in the presence of unresolved calls, the graphs may be incomplete, which means that there
may be indirectly used modules that do not show up.

Tools 23

Chapter 1: Tools User’s Guide

24 Tools

Tools Reference Manual

Short Summaries

Erlang Module cover [page 33] — A Coverage Analysis Tool for Erlang

Erlang Module cprof [page 40] — A simple Call Count Profiling Tool using
breakpoints for minimal runtime performance impact.

Erlang Module eprof [page 44] — A Time Profiling Tool for Erlang
Erlang Module erlang.el [page 46] — Erlang mode for Emacs

Erlang Module fprof [page 51] — A Time Profiling Tool using trace to file for
minimal runtime performance impact.

Erlang Module instrument [page 64] — Analysis and Utility Functions for
Instrumentation

Erlang Module make [page 70] — A Make Utility for Erlang
Erlang Module tags [page 72] — Generate Emacs TAGS file from Erlang source files

Erlang Module xref [page 74] — A Cross Reference Tool for analyzing
dependencies between functions, modules, applications and releases.

cover

The following functions are exported:

start() -> {ok,Pid} | {error,Reason}
[page 34] Start Cover.

start (Nodes) -> {ok,StartedNodes} | {error,notmain node}
[page 34] Start Cover on remote nodes.

compile(ModFile) -> Result
[page 34] Compile a module for Cover analysis.

compile(ModFile, Options) -> Result
[page 34] Compile a module for Cover analysis.

compilemodule(ModFile) -> Result
[page 34] Compile a module for Cover analysis.

compilemodule(ModFile, Options) -> Result
[page 34] Compile a module for Cover analysis.

compile directory() -> [Result] | {error,Reason}
[page 35] Compile all modules in a directory for Cover analysis.

compile_ directory(Dir) -> [Result] | {error,Reason}
[page 35] Compile all modules in a directory for Cover analysis.

Tools 25

Tools Reference Manual

compile directory(Dir, Options) -> [Result] | {error,Reason}
[page 35] Compile all modules in a directory for Cover analysis.
compile beam(ModFile) -> Result

[page 35] Compile a module for Cover analysis, using an existing beam.
compile beam directory() -> [Result] | {error,Reason}

[page 36] Compile all .beam files in a directory for Cover analysis.
compile beam directory(Dir) -> [Result] | {error,Reason}
[page 36] Compile all .beam files in a directory for Cover analysis.
analyse (Module) -> {ok,Answer} | {error,Error}

[page 36] Analyse a Cover compiled module.

analyse(Module, Analysis) -> {ok,Answer} | {error,Error}
[page 36] Analyse a Cover compiled module.

analyse(Module, Level) -> {ok,Answer} | {error,Error}

[page 36] Analyse a Cover compiled module.

analyse(Module, Analysis, Level) -> {ok,Answer} | {error,Error}
[page 36] Analyse a Cover compiled module.
analyse_to_file(Module) ->

[page 36] Detailed coverage analysis of a Cover compiled module.
analyse_to_file(Module,Options) ->

[page 36] Detailed coverage analysis of a Cover compiled module.
analyse_to_file(Module, OutFile) ->

[page 36] Detailed coverage analysis of a Cover compiled module.
analyse_to_file(Module, OutFile, Options) -> {ok,OutFile} |
{error,Error}

[page 36] Detailed coverage analysis of a Cover compiled module.
modules() -> [Module] | {error,notmain node}

[page 37] Return all Cover compiled modules.

imported modules() -> [Module] | {error,notmain node}
[page 37] Return all modules for which there are imported data.
imported() -> [File] | {error,notmain node}

[page 37] Return all imported files.

which nodes() -> [Node] | {error,notmain node}

[page 37] Return all nodes that are part of the coverage analysis.
is_compiled(Module) -> {file,File} | false | {error,notmain node}
[page 38] Check if a module is Cover compiled.

reset (Module) ->

[page 38] Reset coverage data for Cover compiled modules.

reset() -> ok | {error,notmain node}

[page 38] Reset coverage data for Cover compiled modules.

export (ExportFile)

[page 38] Reset coverage data for Cover compiled modules.

export (ExportFile,Module) -> ok | {error,Reason}

[page 38] Reset coverage data for Cover compiled modules.

import (ExportFile) -> ok | {error,Reason}

[page 38] Reset coverage data for Cover compiled modules.

stop() -> ok | {error,notmain node}

[page 39] Stop Cover.

stop(Nodes) -> ok | {error,notmain node}

[page 39] Stop Cover on remote nodes.

Tools

Tools Reference Manual

cprof

The following functions are exported:
e analyse() -> {AllCallCount, ModAnalysisList}
[page 40] Collect and analyse call counters.

e analyse(Limit) -> {AllCallCount, ModAnalysisList}
[page 40] Collect and analyse call counters.

e analyse(Mod) -> ModAnlysis
[page 40] Collect and analyse call counters.

e analyse(Mod, Limit) -> ModAnalysis
[page 40] Collect and analyse call counters.

e pause() -> integer()
[page 41] Pause running call count trace for all functions.

o pause(FuncSpec) -> integer()
[page 41] Pause running call count trace for matching functions.

e pause(Mod, Func) -> integer()
[page 41] Pause running call count trace for matching functions.

e pause(Mod, Func, Arity) -> integer()
[page 41] Pause running call count trace for matching functions.

e restart() -> integer()
[page 41] Restart existing call counters for matching functions.

e restart(FuncSpec) -> integer()
[page 41] Restart existing call counters for matching functions.

e restart(Mod, Func) -> integer()
[page 41] Restart existing call counters for matching functions.

e restart(Mod, Func, Arity) -> integer()
[page 41] Restart existing call counters for matching functions.

e start() -> integer()
[page 42] Start call count tracing for all functions.

e start(FuncSpec) -> integer()
[page 42] Start call count tracing for matching functions.

e start(Mod, Func) -> integer()
[page 42] Start call count tracing for matching functions.

e start(Mod, Func, Arity) -> integer()
[page 42] Start call count tracing for matching functions.

e stop() -> integer()
[page 42] Stop call count tracing for all functions.

e stop(FuncSpec) -> integer()
[page 42] Stop call count tracing for matching functions.

e stop(Mod, Func) -> integer()
[page 42] Stop call count tracing for matching functions.

e stop(Mod, Func, Arity) -> integer()
[page 42] Stop call count tracing for matching functions.

Tools

Tools Reference Manual

28

eprof

The following functions are exported:

start() -> {ok,Pid} | {error,Reason}
[page 44] Start Eprof.

start_profiling(Rootset) -> profiling | error

[page 44] Start profiling.

profile(Rootset) -> profiling | error

[page 44] Start profiling.

stop_profiling() -> profiling stopped | profiling already_stopped
[page 44] Stop profiling.

profile(Rootset,Fun) -> {ok,Value} | {error,Reason} | error
[page 44] Start profiling.

profile(Rootset,Module,Function,Args) -> {ok,Value} | {error,Reason}
| error

[page 44] Start profiling.

analyse()

[page 45] Display profiling results per process.

total_analyse()

[page 45] Display profiling results per function call.
log(File) -> ok

[page 45] Activate logging of eprofprintouts.

stop() -> stopped
[page 45] Stop Eprof.

erlang.el

No functions are exported.

fprof

The following functions are exported:

start() -> {ok, Pid} | {error, {already started, Pid}}
[page 52] Starts the fprofserver.

stop() -> ok
[page 52] Same as stop(normal).

stop(Reason) -> ok
[page 52] Stops the fprofserver.

apply(Func, Args) -> term()

[page 52] Same as apply(Func, Args, [1).

apply (Module, Function, Args) -> term()

[page 52] Same as apply({Module, Function}, Args, [1).

apply(Func, Args, OptionList) -> term()
[page 52] Calls erlang:apply (Func, Args)surrounded bytrace([start |
OptionList])andtrace(stop).

Tools

Tools Reference Manual

apply(Module, Function, Args, OptionList) -> term()

[page 53] Same as apply ({Module, Function}, Args, OptionList).
trace(start, Filename) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}

[page 53] Same as trace([start, {file, Filename}]).

trace(verbose, Filename) -> ok | {error, Reason} | {’EXIT’,
ServerPid, Reason}

[page 53] Same as trace([start, verbose, {file, Filename}]).
trace(OptionName, OptionValue) -> ok | {error, Reason} | {’EXIT’,
ServerPid, Reason}

[page 53] Same as trace ([{OptionName, OptionValue}l).

trace(verbose) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
[page 54] Same as trace([start, verbosel).

trace(OptionName) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}

[page 54] Same as trace ([OptionName]).

trace({OptionName, OptionValue}) -> ok | {error, Reason} | {’EXIT’,
ServerPid, Reason}

[page 53] Same as trace ([{OptionName, OptionValue}l).

trace([Option]) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}

[page 54] Starts or stops tracing.

profile() -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
[page 55] Same as profile([]).

profile(OptionName, OptionValue) -> ok | {error, Reason} | {’EXIT’,
ServerPid, Reason}

[page 55] Same as profile([{OptionName, OptionValue}l).
profile(OptionName) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}

[page 55] Same as profile([OptionName]).

profile({OptionName, OptionValue}) -> ok | {error, Reason} |
{’EXIT’, ServerPid, Reason}

[page 55] Same as profile([{OptionName, OptionValue}l).
profile([Option]) -> ok | {ok, Tracer} | {error, Reason} | {’EXIT’,
ServerPid, Reason}

[page 55] Compiles a trace into raw profile data held by the fprofserver.
analyse() -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
[page 56] Same as analyse([]).

analyse(OptionName, OptionValue) -> ok | {error, Reason} | {’EXIT’,
ServerPid, Reason}

[page 56] Same as analyse([{OptionName, OptionValue}l).
analyse(OptionName) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}

[page 56] Same as analyse ([OptionName]).

analyse({OptionName, OptionValue}) -> ok | {error, Reason} |
{’EXIT’, ServerPid, Reason}

[page 56] Same as analyse([{OptionName, OptionValue}l).
analyse([Option]) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}

[page 56] Analyses raw profile data in the fprofserver.

Tools 29

Tools Reference Manual

30

instrument

The following functions are exported:

allocator_descr (MemoryData, TypeNo) -> AllocDescr | invalid_type |
"unknown"
[page 65] Returns a allocator description

block header_size(MemoryData) -> int()
[page 65] Returns the memory block header size used by the emulator that
generated the memory allocation map

class_descr (MemoryData, TypeNo) -> ClassDescr | invalid_type |
"unknown"
[page 65] Returns a allocator description

descr (MemoryData) -> DescrMemoryData
[page 65] Replace type numbers in memory allocation map with type descriptions

holes(MemoryData) -> ok

[page 66] Print out the sizes of unused memory blocks
mem_limits(MemoryData) -> {Low, High}

[page 66] Return lowest and highest memory address used

memory_data() -> MemoryData | false
[page 66] Return the current memory allocation map

memory_status(StatusType) -> [StatusInfo] | false
[page 66] Return current memory allocation status

read memory data(File) -> MemoryData | {error, Reason}
[page 67] Read memory allocation map

read memory_status(File) -> MemoryStatus | {error, Reason}
[page 67] Read memory allocation status from a file

sort (MemoryData) -> MemoryData
[page 68] Sort the memory allocation list

store memory_data(File) -> true|false
[page 68] Store the current memory allocation map on a file

store memory_status(File) -> truel|false
[page 68] Store the current memory allocation status on a file

sum_blocks (MemoryData) -> int()
[page 68] Return the total amount of memory used

type_descr (MemoryData, TypeNo) -> TypeDescr | invalid_type
[page 69] Returns a type description

typeno_range (MemoryData) -> {Min, Max}
[page 69] Returns the memory block type numbers

make

The following functions are exported:

all() -> up_to_date | error
[page 70] Compile a set of modules.

all(Options) -> up-to_date | error
[page 70] Compile a set of modules.

Tools

Tools Reference Manual

files(ModFiles) -> up_to_date | error
[page 70] Compile a set of modules.

files(ModFiles, Options) -> up_to_date | error
[page 70] Compile a set of modules.

tags

The following functions are exported:

file(File [, Optiomns])
[page 72] Create a TAGSfile for the file File.

files(FileList [, Options])
[page 72] Create a TAGS file for the files in the listFileList.

dir(Dir [, Options])
[page 72] Create a TAGS file for all files in directoryDir.

dirs(DirList [, Options])
[page 72] Create a TAGS file for all files in any directory inDirList.

subdir(Dir [, Optiomns])
[page 72] Descend recursively down the directory Dirand create a TAGSfile based
on all files found.

subdirs(DirList [, Options])
[page 72] Descend recursively down all the directories inDirListand create a
TAGSfile based on all files found.

root ([Options])
[page 72] Create a TAGSfile covering all files in the Erlang distribution.

xref

The following functions are exported:

add_application(Xref, Directory [, Options]) -> {ok, application()}
| Error

[page 83] Add the modules of an application.

add_directory(Xref, Directory [, Options]) -> {ok, Modules} | Error
[page 83] Add the modules in a directory.

add-module(Xref, File [, Options]) -> {ok, module()} | Error
[page 83] Add a module.

add_release(Xref, Directory [, Options]) -> {ok, release()} | Error
[page 84] Add the modules of a release.

analyze(Xref, Analysis [, Options]) -> {ok, Answer} | Error
[page 84] Evaluate a predefined analysis.

d(Directory) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
[page 86] Check the modules in a directory using the code path.

forget (Xref) -> ok
[page 86] Remove user variables and their values.

forget(Xref, Variables) -> ok | Error
[page 86] Remove user variables and their values.

Tools 31

Tools Reference Manual

32

format_error (Error) -> Chars
[page 86] Return an English description of an Xref error reply.

get_default (Xref) -> [{Option, Value}]
[page 87] Return the default values of options.

get_default (Xref, Option) -> {ok, Value} | Error
[page 87] Return the default values of options.

get_library path(Xref) -> {ok, LibraryPath}
[page 87] Return the library path.

info(Xref) -> [Info]
[page 87] Return information about an Xref server.

info(Xref, Category) -> [{Item, [Infol}]
[page 87] Return information about an Xref server.

info(Xref, Category, Items) -> [{Item, [Info]}]
[page 87] Return information about an Xref server.

m(Module) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
[page 90] Check a module using the code path.

m(File) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
[page 90] Check a module using the code path.

q(Xref, Query [, Options]) -> {ok, Answer} | Error
[page 90] Evaluate a query.

remove_application(Xref, Applications) -> ok | Error
[page 91] Remove applications and their modules.

remove_module (Xref, Modules) -> ok | Error
[page 91] Remove analyzed modules.

remove_release(Xref, Releases) -> ok | Error
[page 92] Remove releases and their applications and modules.

replace_application(Xref, Application, Directory [, Options]) ->
{ok, application()} | Error
[page 92] Replace an application’s modules.

replacemodule(Xref, Module, File [, Options]) -> {ok, module()}
Error
[page 92] Replace an analyzed module.

set_default(Xref, Option, Value) -> {ok, 0ldValue} | Error
[page 93] Set the default values of options.

set_default(Xref, OptionValues) -> ok | Error
[page 93] Set the default values of options.

set_library path(Xref, LibraryPath [, Options]) -> ok | Error
[page 93] Set the library path and finds the library modules.

start (Xref [, Options]) -> Return
[page 93] Create an Xref server.

stop (Xref)
[page 94] Delete an Xref server.

update (Xref [, Options]) -> {ok, Modules} | Error
[page 94] Replace newly compiled analyzed modules.

variables(Xref [, Optiomns]) -> {ok, [VariableInfo]}
[page 94] Return the names of variables.

Tools

Tools Reference Manual cover

cover

Erlang Module

The module cover provides a set of functions for coverage analysis of Erlang programs,
counting how many times each executable line of code is executed when a program is
run.

An executable line contains an Erlang expression such as a matching or a function call.
A blank line or a line containing a comment, function head or pattern in a case- or
receive Statement is not executable.

Coverage analysis can be used to verify test cases, making sure all relevant code is
covered, and may also be helpful when looking for bottlenecks in the code.

Before any analysis can take place, the involved modules must be Cover compiled. This
means that some extra information is added to the module before it is compiled into a
binary which then is loaded. The source file of the module is not affected and no .beam
file is created.

Each time a function in a Cover compiled module is called, information about the call is
added to an internal database of Cover. The coverage analysis is performed by
examining the contents of the Cover database. The output Answer is determined by
two parameters, Level and Analysis.

e Level = module
Answer = {Module,Value}, where Module is the module name.

e Level = function
Answer = [{Function,Value}], one tuple for each function in the module. A
function is specified by its module name M, function name F and arity A as a tuple
{M,F,A}.

e Level = clause
Answer = [{Clause,Value}], one tuple for each clause in the module. A clause is
specified by its module name M, function name F, arity A and position in the
function definition C as a tuple {M,F,A,C}.

e Level = line
Answer = [{Line,Value}], one tuple for each executable line in the module. A
line is specified by its module name M and line number in the source file N as a
tuple {M,N}.

e Analysis = coverage
Value = {Cov,NotCov} where Cov is the number of executable lines in the
module, function, clause or line that have been executed at least once and NotCov
is the number of executable lines that have not been executed.

e Analysis = calls
Value = Calls which is the number of times the module, function, or clause has
been called. In the case of line level analysis, Calls is the number of times the line
has been executed.

Tools 33

cover

Tools Reference Manual

Distribution

Cover can be used in a distributed Erlang system. One of the nodes in the system must
then be selected as the main node, and all Cover commands must be executed from this
node. The error reason not_main_node is returned if an interface function is called on
one of the remote nodes.

Use cover:start/1and cover:stop/1to add or remove nodes. The same Cover
compiled code will be loaded on each node, and analysis will collect and sum up
coverage data results from all nodes.

Exports

start() -> {ok,Pid} | {error,Reason}

start (Nodes)

Types:
e Pid = pid()
e Reason = {already_started,Pid}

Starts the Cover server which owns the Cover internal database. This function is called
automatically by the other functions in the module.

-> {ok,StartedNodes} | {error,notmain node}

Types:
e Nodes = StartedNodes = [atom()]
Starts a Cover server on the each of given nodes, and loads all cover compiled modules.

compile(ModFile) -> Result
compile(ModFile, Options) -> Result
compilemodule(ModFile) -> Result

compile module(ModFile, Options) -> Result

34

Types:
e ModFile = Module | File
e Module = atom()
e File = string()
e Options = [Option]
e Option = {i,Dir} | {d,Macro} | {d,Macro,Value}
See compile:file/2.
¢ Result = {ok,Module} | {error,File} | {error,not_.main_node}

Tools

Tools Reference Manual cover

Compiles a module for Cover analysis. The module is given by its module name Module
or by its file name File. The .erl extension may be omitted. If the module is located
in another directory, the path has to be specified.

Options is a list of compiler options which defaults to [1. Only options defining include
file directories and macros are passed to compile:file/2, everything else is ignored.

If the module is successfully Cover compiled, the function returns {ok,Module}.
Otherwise the function returns {error,File}. Errors and warnings are printed as they
occur.

Note that the internal database is (re-)initiated during the compilation, meaning any
previously collected coverage data for the module will be lost.

compile.directory() -> [Result] | {error,Reason}
compiledirectory(Dir) -> [Result] | {error,Reason}
compile directory(Dir, Options) -> [Result] | {error,Reason}
Types:
e Dir = string()
e Options = [Option]
See compile module/1,2
¢ Result = {ok,Module} | {error,File} | {error,not_-main_node}
See compile module/1,2
¢ Reason = eacces | enoent

Compiles all modules (.er1 files) in a directory Dir for Cover analysis the same way as
compile module/1,2 and returns a list with the return values.

Dir defaults to the current working directory.

The function returns {error,eacces} if the directory is not readable or
{error,encent} if the directory does not exist.

compile_beam(ModFile) -> Result
Types:
e ModFile = Module | BeamFile
e Module = atom()
e BeamFile = string()
¢ Result = {ok,Module} | {error,BeamFile} | {error,Reason}
¢ Reason = non_existing | {no_abstract_code,BeamFile} |

{encrypted_abstract_code,BeamFile} |
{already_cover_compiled,no_beam_found,Module} | not_main_node

Does the same as compile/1,2, but uses an existing .bean file as base, i.e. the module
is not compiled from source. Thus compile_beam/1 is faster than compile/1,2.

Note that the existing .beam file must contain abstract code, i.e. it must have been
compiled with the debug_info option. If not, the error reason
{no_abstract_code,BeamFile} is returned. If the abstract code is encrypted, and no
key is available for decrypting it, the error reason
{encrypted_abstract_code,BeamFile} is returned. <p>If only the module
name (i.e. mnot the full name of the <c>.bean file) is given to this function,
the .bean file is found by calling code:which(Module). If no .bean file is found, the
error reason non_existing is returned. If the module is already cover compiled with
compile_beam/1, the .beam file will be picked from the same location as the first time it

Tools 35

cover Tools Reference Manual

was compiled. If the module is already cover compiled with compile/1,2, there is no
way to find the correct .bean file, so the error reason
{already_cover_compiled,no.beam _found,Module} is returned.

{error,BeamFile} is returned if the compiled code can not be loaded on the node.

compile beam directory() -> [Result] | {error,Reason}
compile beam directory(Dir) -> [Result] | {error,Reason}

Types:

e Dir = string()

e Result = See compile_beam/1
¢ Reason = eacces | enoent

Compiles all modules (.bean files) in a directory Dir for Cover analysis the same way as
compile_beam/1 and returns a list with the return values.

Dir defaults to the current working directory.

The function returns {error,eacces} if the directory is not readable or
{error,enocent} if the directory does not exist.

analyse(Module) -> {ok,Answer} | {error,Error}
analyse(Module, Analysis) -> {ok,Answer} | {error,Error}
analyse(Module, Level) -> {ok,Answer} | {error,Error}

analyse(Module, Analysis, Level) -> {ok,Answer} | {error,Error}

Types:

e Module = atom()

e Analysis = coverage | calls

e Level =line | clause | function | module

e Answer = {Module,Value} | [{Item,Value}]
e Item = Line | Clause | Function

e Line = {M,N}

e Clause = {M,FA,C}

e Function = {M,FA}

e M=F =atom()

e N =A=C =integer()

¢ Value = {Cov,NotCov} | Calls

e Cov = NotCov = Calls = integer()

e Error = {not_cover_compiled,Module} | not_main_node

Performs analysis of a Cover compiled module Module, as specified by Analysis and
Level (see above), by examining the contents of the internal database.

Analysis defaults to coverage and Level defaults to function.

If Module is not Cover compiled, the function returns
{error,{not_cover_compiled,Module}}.

analyse_to_file(Module) ->

analyse_to_file(Module,Options) ->

analyse_to_file(Module, OutFile) ->

analyse_to_file(Module, OutFile, Options) -> {ok,OutFile} | {error,Error}

36 Tools

Tools Reference Manual cover

Types:

¢ Module = atom()

e OutFile = string()

e Options = [Option]

e Option = html

¢ Error = {not_cover_compiled,Module} | {file,File,Reason} | no_source_code_found |
not_main_node

e File = string()

e Reason = term()

Makes a copy OutFile of the source file for a module Module, where it for each
executable line is specified how many times it has been executed.

The output file OutFile defaults to Module.COVER. out, Or Module.COVER.html if the
option html was used.

If Module is not Cover compiled, the function returns
{error,{not_cover_compiled,Module}}.

If the source file and/or the output file cannot be opened using file:open/2, the
function returns {error,{file,File,Reason}} Where File is the file name and
Reason is the error reason.

If the module was cover compiled from the .bean file, i.e. using compile beam/1 or
compile beam directory/0,1, it is assumed that the source code can be found in the
same directory as the .bean file, or in . ./src relative to that directory. If no source
code is found, , {error,no_source_code_found} is returned.

modules() -> [Module] | {error,notmain node}
Types:
¢ Module = atom()
Returns a list with all modules that are currently Cover compiled.

imported.modules() -> [Module] | {error,notmain node}
Types:
e Module = atom()
Returns a list with all modules for which there are imported data.

imported() -> [File] | {error,not.mainnode}
Types:
e File = string()
Returns a list with all imported files.

which nodes() -> [Node] | {error,notmain node}
Types:
e Node = atom()

Returns a list with all nodes that are part of the coverage analysis. Note that the current
node is not returned. This node is always part of the analysis.

Tools 37

cover

Tools Reference Manual

is_compiled(Module) -> {file,File} | false | {error,not.main node}

Types:
e Module = atom()
e Beam = string()

Returns {file,File} if the module Module is Cover compiled, or false otherwise.
File is the .erl file used by cover:compile module/1,2 or the .bean file used by
compile_beam/1.

reset (Module) ->

reset() -> ok | {error,notmain node}

Types:
e Module = atom()

Resets all coverage data for a Cover compiled module Module in the Cover database on
all nodes. If the argument is omitted, the coverage data will be reset for all modules
known by Cover.

If Module is not Cover compiled, the function returns
{error,{not_cover_compiled,Module}}.

export (ExportFile)
export (ExportFile,Module) -> ok | {error,Reason}

Types:

e ExportFile = string()

e Module = atom()

¢ Reason = {not_cover_compiled,Module} | {cant_open_file,ExportFile,Reason} |
not_main_node

Exports the current coverage data for Module to the file ExportFile. Itis
recommended to name the ExportFile with the extension .coverdata, since other
filenames can not be read by the web based interface to cover.

If Module is not given, data for all Cover compiled or earlier imported modules is
exported.

This function is useful if coverage data from different systems is to be merged.

See also cover:import/1

import (ExportFile) -> ok | {error,Reason}

38

Types:
e ExportFile = string()
e Reason = {cant_open_file,ExportFile,Reason} | not_main_node

Tools

Tools Reference Manual cover

Imports coverage data from the file ExportFile created with cover:export/1,2. Any
analysis performed after this will include the imported data.

Note that when compiling a module all existing coverage data is removed, including
imported data. If a module is already compiled when data is imported, the imported
data is added to the existing coverage data.

Coverage data from several export files can be imported into one system. The coverage
data is then added up when analysing.

Coverage data for a module can not be imported from the same file twice unless the
module is first reset or compiled. The check is based on the filename, so you can easily
fool the system by renaming your export file.

See also cover:export/1,2

stop() -> ok | {error,notmain node}

Stops the Cover server and unloads all Cover compiled code.

stop(Nodes) -> ok | {error,notmainnode}

Types:
e Nodes = [atom()]

Stops the Cover server and unloads all Cover compiled code on the given nodes. Data
stored in the Cover database on the remote nodes is fetched and stored on the main
node.

SEE ALSO

code(3), compile(3)

Tools 39

cprof

Tools Reference Manual

cprof

Erlang Module

The cprof module is used to profile a program to find out how many times different
functions are called. Breakpoints similar to local call trace, but containing a counter, are
used to minimise runtime performance impact.

Since breakpoints are used there is no need for special compilation of any module to be
profiled. For now these breakpoints can only be set on BEAM code so BIF s cannot be
call count traced.

The size of the call counters is the host machine word size. One bit is used when
pausing the counter, so the maximum counter value for a 32-bit host is 2147483647.

The profiling result is delivered as a term containing a sorted list of entries, one per
module. Each module entry contains a sorted list of functions. The sorting order in both
cases is of decreasing call count.

Call count tracing is very lightweight compared to other forms of tracing since no trace
message has to be generated. Some measurements indicates performance degradation in
the vicinity of 10 percent.

Exports

analyse() -> {AllCallCount, ModAnalysisList}
analyse(Limit) -> {AllCallCount, ModAnalysisList}
analyse(Mod) -> ModAnlysis

analyse(Mod, Limit) -> ModAnalysis

40

Types:

e Limit = integer()

e Mod = atom()

e AllCallCount = integer()

e ModAnalysisList = [ModAnalysis]

e ModAnalysis = {Mod, ModCallCount, FuncAnalysisList}
e ModCallCount = integer()

e FuncAnalysisList = [{{Mod, Func, Arity}, FuncCallCount}]
e Func = atom()

e Arity = integer()

e FuncCallCount = integer()

Collects and analyses the call counters presently in the node for either module Mod, or
for all modules (except cprof itself), and returns:

FuncAnalysisList A list of tuples, one for each function in a module, in decreasing
FuncCallCount order.

Tools

Tools Reference Manual cprof

ModCallCount The sum of FuncCallCount values for all functions in module Mod.
Al1CallCount The sum of ModCallCount values for all modules concerned in
ModAnalysisList.

ModAnalysisList A list of tuples, one for each module except cprof, in decreasing
ModCallCount order.

If call counters are still running while analyse/0. .2 is executing, you might get an
inconsistent result. This happens if the process executing analyse/0. .2 gets scheduled
out so some other process can increment the counters that are being analysed, Calling
pause () before analysing takes care of the problem.

If the Mod argument is given, the result contains a ModAnalysis tuple for module Mod
only, otherwise the result contains one ModAnalysis tuple for all modules returned
from code:all loaded() except cprof itself.

All functions with a FuncCallCount lower than Limit are excluded from
FuncAnalysisList. They are still included in ModCallCount, though. The default
value for Limit is 1.

pause() -> integer()
Pause call count tracing for all functions in all modules and stop it for all functions in
modules to be loaded. This is the same as (pause({’_?,’_’,?_?})+stop({on_load})).
See also pause/1..3 [page 41] below.

pause (FuncSpec) -> integer()
pause (Mod, Func) -> integer()
pause (Mod, Func, Arity) -> integer()

Types:

e FuncSpec = Mod | {Mod,Func,Arity}, {FS}

e Mod = atom()

e Func = atom()

e Arity = integer()

e FS=term()

Pause call counters for matching functions in matching modules. The FS argument can
be used to specify the first argument to erlang:trace_pattern/3. See erlang(3).

The call counters for all matching functions that has got call count breakpoints are
paused at their current count.

Return the number of matching functions that can have call count breakpoints, the
same as start/0. .3 with the same arguments would have returned.

restart() -> integer()
restart (FuncSpec) -> integer()
restart (Mod, Func) -> integer()
restart(Mod, Func, Arity) -> integer()
Types:
e FuncSpec = Mod | {Mod,Func,Arity}, {FS}
e Mod = atom()
e Func = atom()

Tools 41

cprof

Tools Reference Manual

e Arity = integer()

e FS=term()

Restart call counters for the matching functions in matching modules that are call count
traced. The FS argument can be used to specify the first argument to

erlang:trace pattern/3. See erlang(3).

The call counters for all matching functions that has got call count breakpoints are set
to zero and running.

Return the number of matching functions that can have call count breakpoints, the
same as start/0. .3 with the same arguments would have returned.

start() -> integer()

Start call count tracing for all functions in all modules, and also for all functions in
modules to be loaded. This is the same as
(start({’.?,’_’,’_?})+start ({onload})).

See also start/1..3 [page 42] below.

start (FuncSpec) -> integer()
start(Mod, Func) -> integer()
start(Mod, Func, Arity) -> integer()

Types:

e FuncSpec = Mod | {Mod,Func,Arity}, {FS}

e Mod = atom()

e Func = atom()

e Arity = integer()

e FS=term()

Start call count tracing for matching functions in matching modules. The FS argument

can be used to specify the first argument to erlang:trace pattern/3, for example
on_load. See erlang(3).

Set call count breakpoints on the matching functions that has no call count breakpoints.
Call counters are set to zero and running for all matching functions.

Return the number of matching functions that has got call count breakpoints.

stop() -> integer()

Stop call count tracing for all functions in all modules, and also for all functions in
modules to be loaded. This is the same as (stop({’_?,’_?,’_?})+stop({on_load})).

See also stop/1..3 [page 42] below.

stop(FuncSpec) -> integer()
stop(Mod, Func) -> integer()
stop(Mod, Func, Arity) -> integer()

42

Types:

e FuncSpec = Mod | {Mod,Func,Arity}, {FS}
e Mod = atom()

e Func = atom()

e Arity = integer()

Tools

Tools Reference Manual cprof

e FS=term()

Stop call count tracing for matching functions in matching modules. The FS argument
can be used to specify the first argument to erlang:trace pattern/3, for example
on_load. See erlang(3).

Remove call count breakpoints from the matching functions that has call count
breakpoints.

Return the number of matching functions that can have call count breakpoints, the
same as start/0. .3 with the same arguments would have returned.

See Also

eprof [page 44](3), fprof [page 51](3), erlang(3), User’s Guide [page 10]

Tools 43

eprof

Tools Reference Manual

eprof

Erlang Module

The module eprof provides a set of functions for time profiling of Erlang programs to
find out how the execution time is used. The profiling is done using the Erlang trace
BIFs. Tracing of local function calls for a specfied set of processes is enabled when
profiling is begun, and disabled when profiling is stopped.

When using Eprof, expect a significant slowdown in program execution, in most cases at
least 100 percent.

Exports

start() -> {ok,Pid} | {error,Reason}

Types:

e Pid = pid()

e Reason = {already_started,Pid}

Starts the Eprof server which owns the Eprof internal database.

start_profiling(Rootset) -> profiling | error

profile(Rootset) -> profiling | error

Types:
¢ Rootset = [atom() | pid()]

Starts profiling for the processes in Rootset (and any new processes spawned from
them). Information about activity in any profiled process is stored in the Eprof database.

Rootset is a list of pids and registered names.

The function returns profiling if tracing could be enabled for all processes in Rootset,
or error otherwise.

stop_profiling() -> profiling stopped | profiling already_stopped

Stops profiling started with start_profiling/1 or profile/1.

profile(Rootset,Fun) -> {ok,Value} | {error,Reason} | error
profile(Rootset,Module,Function,Args) -> {ok,Value} | {error,Reason} | error

44

Types:

e Rootset = [atom() | pid()]
e Fun = fun() -> term()
e Module = Function = atom()

Tools

Tools Reference Manual eprof

analyse()

e Args = [term()]
¢ Value = Reason = term()

This function first spawns a process P which evaluates Fun () or

apply (Module,Function,Args). Then, it starts profiling for P and the processes in
Rootset (and any new processes spawned from them). Information about activity in
any profiled process is stored in the Eprof database.

Rootset is a list of pids and registered names.

If tracing could be enabled for P and all processes in Rootset, the function returns
{ok,Value} when Fun()/apply returns with the value Value, or {error,Reason} if
Fun () /apply fails with exit reason Reason. Otherwise it returns error immediately.

The programmer must ensure that the function given as argument is truly synchronous
and that no work continues after the function has returned a value.

Call this function when profiling has been stopped to display the results per process,
that is:

e how much time has been used by each process, and
¢ in which function calls this time has been spent.

Time is shown as percentage of total time, not as absolute time.

total_analyse()

Call this function when profiling has been stopped to display the results per function
call, that is in which function calls the time has been spent.

Time is shown as percentage of total time, not as absolute time.

log(File) -> ok

Types:
e File = atom() | string()

This function ensures that the results displayed by analyse/0 and total analyse/0 are
printed both to the file File and the screen.

stop() -> stopped

Stops the Eprof server.

Tools 45

Erlang mode for Emacs Tools Reference Manual

Erlang mode for Emacs

Erlang Module

Possibly the most important feature of an editor designed for programmers is the ability
to indent a line of code in accordance with the structure of the programming language.
The Erlang mode does, of course, provide this feature. The layout used is based on the
common use of the language. The mode also provides things as syntax highlighting,
electric commands, module name verification, comment support including paragraph
filling, skeletons, tags support etc.

In the following descriptions the use of the word Point means: “Point can be seen as the
position of the cursor. More precisely, the point is the position between two characters
while the cursor is drawn over the character following the point”.

Indent

The following command are directly available for indentation.

e TAB (erlang-indent-command) - Indents the current line of code.
e M-C-\ (indent-region) - Indents all lines in the region.

e M-1 (indent-for-comment) - Insert a comment character to the right of the code
on the line (if any).

Lines containing comment are indented differently depending on the number of
%-characters used:

e Lines with one %-character is indented to the right of the code. The column is
specified by the variable comment-column, by default column 48 is used.

e Lines with two %-characters will be indented to the same depth as code would
have been in the same situation.

e Lines with three of more %-characters are indented to the left margin.
e C-c C-q (erlang-indent-function) - Indents the current Erlang function.

e M-x erlang-indent-clause RET
-Indent the current Erlang clause.

e M-x erlang-indent-current-buffer RET - Indent the entire buffer.

46 Tools

Tools Reference Manual Erlang mode for Emacs

Edit - Fill Comment

When editing normal text in text mode you can let Emacs reformat the text by the
fill-paragraph command. This command will not work for comments since it will
treat the comment characters as words.

The Erlang editing mode provides a command that knows about the Erlang comment
structure and can be used to fill text paragraphs in comments. Ex:

%% This is just a very simple test to show
%% how the Erlang fill
%% paragraph command works.

Clearly, the text is badly formatted. Instead of formatting this paragraph line by line,
let’s try erlang-fill-paragraph by pressing M-q. The result is:

%% This is just a very simple test to show how the Erlang fill
%% paragraph command works.

Edit - Comment/Uncomment Region

C-c C-c will put comment charachters at the begining of all lines in a marked region. If
you want to have two comment charachters instead of one you can do C-u 2 C-c C-c

C-c C-u will undo a comment-region command.

Edit - Moving the marker

e C-a M-a (erlang-beginning-of-function)- Move the point to the beginning
of the current or preceding Erlang function. With an numeric argument (ex C-u 2
C-a M-a) the function skips backwards over this many Erlang functions. Should
the argument be negative the point is moved to the beginning of a function below
the current function.

e M-C-a (erlang-beginning-of-clause)- As above but move point to the
beginning of the current or precqeding Erlang clause.

e C-a M-e (erlang-end-of-function)- Move to the end of the current or
following Erlang function. With an numeric argument (ex C-u 2 C-a M-e) the
function skips backwards over this many Erlang functions. Should the argument be
negative the point is moved to the end of a function below the current function.

e M-C-e (erlang-end-of-clause)- As above but move point to the end of the
current or following Erlang clause.

Edit - Marking

e C-c M-h (erlang-mark-function) - Put the region around the current Erlang
function. The point is placed in the beginning and the mark at the end of the
function.

e M-C-h (erlang-mark-clause) Put the region around the current Erlang clause.
The point is placed in the beginning and the mark at the end of the function.

Tools 47

Erlang mode for Emacs Tools Reference Manual

Edit - Function Header Commands

e C-c C-j (erlang-generate-new-clause) - Create a new clause in the current
Erlang function. The point is placed between the parentheses of the argument list.

e C-c C-y (erlang-clone-arguments) - Copy the function arguments of the
preceding Erlang clause. This command is useful when defining a new clause with
almost the same argument as the preceding.

Edit - Arrows

e C-c C-a(erlang-align-arrows) - aligns arrows after clauses inside a region.

Example:

sum(L) -> sum(L, O0).
sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum.

becomes:

sum (L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H);
sum([], Sum) -> Sum."

Syntax highlighting

The syntax highlighting can be activated from the Erlang menu. There are four
different alternatives:

e Off: Normal black and white display.

e Level 1: Function headers, reserved words, comments, strings, quoted atoms, and
character constants will be colored.

e Level 2: The above, attributes, Erlang bif:s, guards, and words in comments
enclosed in single quotes will be colored.

e Level 3: The above, variables, records, and macros will be colored. (This level is
also known as the Christmas tree level.)

Tags

For the tag commands to work it requiers that you have generated a tag file. See Erlang
mode users guide [page 15]

e M-. (find-tag) - Find a function definition. The default value is the function
name under the point.

e Find Tag (erlang-find-tag) - Like the Elisp-function ‘find-tag’. Capable of
retreiving Erlang modules. Tags can be given on the forms ‘tag’, ‘module:’,
‘module:tag’.

e M-+ (erlang-find-next-tag) - Find the next occurrence of tag.

48 Tools

Tools Reference Manual Erlang mode for Emacs

M-TAB (erlang-complete-tag) - Perform completion on the tag entered in a tag
search. Completes to the set of names listed in the current tags table.

Tags aprops (tags-apropos) - Display list of all tags in tags table REGEXP
matches.

C-x t s (tags-search) - Search through all files listed in tags table for match for
REGEXP. Stops when a match is found.

Skeletons

A skeleton is a piece of pre-written code that can be inserted into the buffer. Erlang

mode comes with a set of predefined skeletons. The skeletons can be accessed either
from the Erlang menu of from commands named tempo-template-erlang-*, as the
skeletons is defined using the standard Emacs package “tempo”. Here follows a brief
description of the available skeletons:

Simple skeletons: If, Case, Receive, Receive After, Receive Loop - Basic code
constructs.

Header elementes: Module, Author - These commands inserts lines on the form
-module(xxX). and -author (’my@home’) .. They can be used directly, but are
also used as part of the full headers described below.

Full Headers: Small (minimum requirement), Medium (with fields for basic
information about the module), and Large Header (medium header with some
extra layout structure).

Small Server - skeleton for a simple server not using OTP.

Application - skeletons for the OTP application behavior

Supervisor - skeleton for the OTP supervisor behavior

Supervisor Bridge - skeleton for the OTP supervisor bridge behavior
gen_server - skeleton for the OTP gen_server behavior

gen_event - skeleton for the OTP gen_event behavior

gen_fsm - skeleton for the OTP gen_fsm behavior

Library module - skeleton for a module that does not implement a process.
Corba callback - skeleton for a Corba callback module.

Erlang test suite - skeleton for a callback module for the erlang test server.

Shell

New shell (erlang-shell) - Starts a new Erlang shell.

C-c C-z, (erlang-shell-display) - Displays an Erlang shell, or starts a new
one if there is no shell started.

Tools 49

Erlang mode for Emacs Tools Reference Manual

50

Compile

e C-c C-k, (erlang-compile) - Compiles the Erlang module in the current buffer.
You can also use C-u C-c C-k to debug compile the module with the debug
options debug_info and export_all.

e C-c C-1, (erlang-compile-display) - Display compilation output.

e C-u C-x°¢ Start parsing the compiler output from the beginning. This command
will place the point on the line where the first error was found.

e C-x‘ (erlang-next-error) - Move the point on to the next error. The buffer
displaying the compilation errors will be updated so that the current error will be
visible.

Man

On unix you can view the manual pages in emacs. In order to find the manual pages,
the variable ‘erlang-root-dir’ should be bound to the name of the directory containing
the Erlang installation. The name should not include the final slash. Practically, you
should add a line on the following form to your ~/.emacs,

(setq erlang-root-dir "/the/erlang/root/dir/goes/here")

Starting IMenu
e M-x imenu-add-to-menubar RET - This command will create the IMenu menu

containing all the functions in the current buffer. The command will ask you for a
suitable name for the menu. Not supported by Xemacs.

Version
e M-x erlang-version RET - This command displays the version number of the

Erlang editing mode. Remember to always supply the version number when asking
guestions about the Erlang mode.

Tools

Tools Reference Manual fprof

fprof

Erlang Module

This module is used to profile a program to find out how the execution time is used.
Trace to file is used to minimize runtime performance impact.

The fprof module uses tracing to collect profiling data, hence there is no need for
special compilation of any module to be profiled. When it starts tracing, fprof will
erase all previous tracing in the node and set the necessary trace flags on the profiling
target processes as well as local call trace on all functions in all loaded modules and all
modules to be loaded. fprof erases all tracing in the node when it stops tracing.

fprof presents both own time i.e how much time a function has used for its own
execution, and accumulated time i.e including called functions. All presented times are
collected using trace timestamps. fprof tries to collect cpu time timestamps, if the host
machine OS supports it. Therefore the times may be wallclock times and OS
scheduling will randomly strike all called functions in a presumably fair way.

If, however, the profiling time is short, and the host machine OS does not support high
resolution cpu time measurements, some few OS schedulings may show up as ridicously
long execution times for functions doing practically nothing. An example of a function
more or less just composing a tuple in about 100 times the normal execution time has
been seen, and when the tracing was repeated, the execution time became normal.

Profiling is essentially done in 3 steps:

1 Tracing; to file, as mentioned in the previous paragraph. The trace contains entries for
function calls, returns to function, process scheduling, other process related
(spawn, etc) events, and garbage collection. All trace entries are timestamped.

2 Profiling; the trace file is read, the execution call stack is simulated, and raw profile
data is calculated from the simulated call stack and the trace timestamps. The
profile data is stored in the fprof server state. During this step the trace data may
be dumped in text format to file or console.

3 Analysing; the raw profile data is sorted, filtered and dumped in text format either to
file or console. The text format intended to be both readable for a human reader,
as well as parsable with the standard erlang parsing tools.

Since fprof uses trace to file, the runtime performance degradation is minimized, but
still far from negligible, especially for programs that use the filesystem heavily by
themselves. Where you place the trace file is also important, e.g on Solaris /tmp is
usually a good choice since it is essentially a RAM disk, while any NFS (network)
mounted disk is a bad idea.

fprof can also skip the file step and trace to a tracer process that does the profiling in
runtime.

Tools 51

fprof

Tools Reference Manual

Exports

start () -> {ok, Pid} | {error, {already started, Pid}}

Types:
e Pid = pid()
Starts the fprofserver.

Note that it seldom needs to be started explicitly since it is automatically started by the
functions that need a running server.

stop() -> ok

stop(Reason)

Same as stop (normal).

-> ok

Types:

e Reason = term()
Stops the fprofserver.

The supplied Reason becomes the exit reason for the server process. Default Any
Reason other than kill sends a request to the server and waits for it to clean up, reply
and exit. If Reason is kill, the server is bluntly killed.

If the fprofserver is not running, this function returns immediately with the same
return value.

Note:
When the fprofserver is stopped the collected raw profile data is lost.

apply(Func, Args) -> term()

Types:

¢ Func = function() | {Module, Function}
e Args = [term()]

e Module = atom()

e Function = atom()

Same as apply (Func, Args, [1).

apply (Module, Function, Args) -> term()

Types:

e Args = [term()]

e Module = atom()
e Function = atom()

Same as apply ({Module, Function}, Args, [1).

apply(Func, Args, OptionList) -> term()

52

Tools

Tools Reference Manual fprof

Types:

¢ Func = function() | {Module, Function}

e Args = [term()]

e OptionList = [Option]

e Module = atom()

e Function = atom()

e Option = continue | start | {procs, PidList} | TraceStartOption

Calls erlang:apply(Func, Args) surrounded by trace([start, ...]) and
trace(stop).

Some effort is made to keep the trace clean from unnecessary trace messages; tracing is
started and stopped from a spawned process while the erlang:apply/2 call is made in
the current process, only surrounded by receive and send statements towards the trace
starting process. The trace starting process exits when not needed any more.

The TraceStartOption is any option allowed for trace/1. The options [start,
{procs, [self() | PidList]} | OptList] are given to trace/1, where OptList is
OptionList with continue, start and {procs, _} options removed

The continue option inhibits the call to trace(stop) and leaves it up to the caller to
stop tracing at a suitable time.

apply (Module, Function, Args, OptionList) -> term()

trace(start,

Types:

¢ Module = atom()

e Function = atom()

e Args = [term()]

Same as apply ({Module, Function}, Args, OptionList).
OptionList is an option list allowed for apply/3.

Filename) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
Types:

e Reason = term()

Same as trace([start, {file, Filename}]).

trace(verbose, Filename) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}

Types:
e Reason = term()
Same as trace([start, verbose, {file, Filename}]).

trace(OptionName, OptionValue) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}

Types:

e OptionName = atom()
e OptionValue = term()
e Reason = term()

Same as trace ([{OptionName, OptionValue}l).

Tools 53

fprof Tools Reference Manual

trace(verbose) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
Types:
e Reason = term()
Same as trace([start, verbose]).

trace(OptionName) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
Types:
e OptionName = atom()
e Reason = term()
Same as trace([OptionName]).

trace({OptionName, OptionValue}) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}
Types:
e OptionName = atom()
e OptionValue = term()
e Reason = term()
Same as trace ([{OptionName, OptionValue}l).

trace([Option]) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
Types:
e Option = start | stop | {procs, PidSpec} | {procs, [PidSpec]} | verbose | {verbose,
bool()} | file | {file, Filename} | {tracer, Tracer}
e PidSpec = pid() | atom()
e Tracer = pid() | port()
e Reason = term()
Starts or stops tracing.
PidSpec and Tracer are used in calls to erlang:trace(PidSpec, true, [{tracer,

Tracer} | Flags]), and Filename is used to call dbg:trace port(file, Filename).
Please see the appropriate documentation.

Option description:

stop Stops a running fprof trace and clears all tracing from the node. Either option
stop or start must be specified, but not both.

start Clears all tracing from the node and starts a new fprof trace. Either option
start or stop must be specified, but not both.

verbose| {verbose, bool()} The options verbose or {verbose, true} adds some
trace flags that fprof does not need, but that may be interesting for general
debugging purposes. This option is only allowed with the start option.

cpu_time| {cpu_time, bool()} The options cpu_time or {cpu_time, true> makes
the timestamps in the trace be in CPU time instead of wallclock time which is the
default. This option is only allowed with the start option.

54 Tools

Tools Reference Manual fprof

{procs, PidSpec}| {procs, [PidSpec]} Specifies which processes that shall be
traced. If this option is not given, the calling process is traced. All processes

spawned by the traced processes are also traced. This option is only allowed with
the start option.

file| {file, Filename} Specifies the filename of the trace. If the option file is
given, or none of these options are given, the file "fprof.trace" is used. This

option is only allowed with the start option, but not with the {tracer, Tracer}
option.

{tracer, Tracer} Specifies that trace to process or port shall be done instead of trace

to file. This option is only allowed with the start option, but not with the {file,
Filename} option.

profile() -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
Types:

e Reason = term()
Same as profile([1).

profile(OptionName, OptionValue) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}

Types:

e OptionName = atom()
e OptionValue = term()
e Reason = term()

Same as profile([{OptionName, OptionValue}l).

profile(OptionName) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
Types:

e OptionName = atom()
e Reason = term()

Same as profile([OptionName]).
profile({OptionName, OptionValue}) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}
Types:

e OptionName = atom()
e OptionValue = term()
e Reason = term()

Same as profile([{OptionName, OptionValue}]).

profile([Option]) -> ok | {ok, Tracer} | {error, Reason} | {’EXIT’, ServerPid,
Reason}

Types:

e Option = file | {file, Filename} | dump | {dump, Dump} | append | start | stop
e Dump = pid() | Dumpfile | []

Tools 55

fprof

Tools Reference Manual

e Tracer = pid()
e Reason = term()

Compiles a trace into raw profile data held by the fprofserver.

Dumpfile is used to call file:open/2, and Filename is used to call
dbg:trace port(file, Filename). Please see the appropriate documentation.

Option description:

filel| {file, Filename} Reads the file Filename and creates raw profile data that is
stored in RAM by the fprofserver. If the option file is given, or none of these
options are given, the file "fprof.trace" is read. The call will return when the
whole trace has been read with the return value ok if successful. This option is not
allowed with the start or stop options.

dump| {dump, Dump} Specifies the destination for the trace text dump. If this option is
not given, no dump is generated, if it is dump the destination will be the caller’s
group leader, otherwise the destination Dump is either the pid of an I/O device or a
filename. And, finally, if the filename is [] - "fprof .dump" is used instead. This
option is not allowed with the stop option.

append Causes the trace text dump to be appended to the destination file. This option
is only allowed with the {dump, Dumpfile} option.

start Starts a tracer process that profiles trace data in runtime. The call will return
immediately with the return value {ok, Tracer} if successful. This option is not
allowed with the stop, file or {file, Filename} options.

stop Stops the tracer process that profiles trace data in runtime. The return value will
be value ok if successful. This option is not allowed with the start, file or
{file, Filename} options.

analyse() -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}

Types:
e Reason = term()
Same as analyse([]).

analyse(OptionName, OptionValue) -> ok | {error, Reason} | {’EXIT’, ServerPid,

Reason}
Types:
e OptionName = atom()

e OptionValue = term()
e Reason = term()

Same as analyse ([{OptionName, OptionValue}]).

analyse(OptionName) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}

56

Types:
e OptionName = atom()
e Reason = term()

Same as analyse([OptionName]).

Tools

Tools Reference Manual fprof

analyse({OptionName, OptionValue}) -> ok | {error, Reason} | {’EXIT’, ServerPid,
Reason}
Types:
e OptionName = atom()
e OptionValue = term()
e Reason = term()

Same as analyse([{OptionName, OptionValue}]).

analyse([Option]) -> ok | {error, Reason} | {’EXIT’, ServerPid, Reason}
Types:

e Option = dest | {dest, Dest} | append | {cols, Cols} | callers | {callers, bool()} |
no_callers | {sort, SortSpec} | totals | {totals, bool()} | details | {details, bool()} |
no_details

e Dest = pid() | Destfile

e Cols = integer() >=80

e SortSpec = acc | own

e Reason = term()

Analyses raw profile data in the fprofserver. If called while there is no raw profile data
available, {error, no_profile} is returned.

Destfile is used to call file:open/2. Please see the appropriate documentation.
Option description:

dest| {dest, Dest} Specifies the destination for the analysis. If this option is not
given or it is dest, the destination will be the caller’s group leader, otherwise the
destination Dest is either the pid () of an I/O device or a filename. And, finally, if
the filename is [] - "fprof.analysis" is used instead.

append Causes the analysis to be appended to the destination file. This option is only
allowed with the {dest, Destfile} option.

{cols, Cols} Specifies the number of columns in the analysis text. If this option is not
given the number of columns is set to 80.

callers| {callers, true} Prints callers and called information in the analysis. This is
the default.

{callers, false}| no_callers Suppresses the printing of callers and called
information in the analysis.

{sort, SortSpec} Specifies if the analysis should be sorted according to the ACC
column, which is the default, or the OWN column. See Analysis Format [page 58]
below.

totals| {totals, true} Includes a section containing call statistics for all calls
regardless of process, in the analysis.

{totals, false} Supresses the totals section in the analysis, which is the default.

details| {details, true} Prints call statistics for each process in the analysis. This is
the default.

{details, false}| no_details Suppresses the call statistics for each process from the
analysis.

Tools 57

fprof Tools Reference Manual

Analysis format

This section describes the output format of the analyse command. See analyse/0 [page
56].

The format is parsable with the standard Erlang parsing tools er1l_scan and erl_parse,
file:consult/10r io:read/2. The parse format is not explained here - it should be
easy for the interested to try it out. Note that some flags to analyse/1 will affect the
format.

The following example was run on OTP/R8 on Solaris 8, all OTP internals in this
example are very version dependent.

As an example, we will use the following function, that you may recogise as a slightly
modified benchmark function from the manpage file(3):

-module(foo).
-export([create_file_slow/2]).

create_file_slow(Name, N) when integer(N), N >= 0 ->
{ok, FD} =
file:open(Name, [raw, write, delayed_write, binary]),
if N > 2566 ->
ok = file:write(FD,
lists:map(fun (X) -> <<X:32/unsigned>> end,
lists:seq(0, 255))),
create_file_slow(FD, 256, N);

ok
true ->
ok = create_file_slow(FD, 0, N)
end,
ok = file:close(FD).

create_file_slow(FD, M, M) —>
ok;

create_file_slow(FD, M, N) —->
ok = file:write(FD, <<M:32/unsigned>>),
create_file_slow(FD, M+1, N).

Let us have a look at the printout after running:

1> fprof:apply(foo, create file_slow, [junk, 1024]).
2> fprof:profile().
3> fprof:analyse().

The printout starts with:

%% Analysis results:
{ analysis_ options,
[{callers, true},

{sort, acc},
{totals, false},
{details, true}l}.

yA CNT ACC OWN
[{ totals, 9627, 1691.119, 1659.074}1. %h%

58 Tools

Tools Reference Manual fprof

The CNT column shows the total number of function calls that was found in the trace.
In the ACC column is the total time of the trace from first timestamp to last. And in
the OWN column is the sum of the execution time in functions found in the trace, not
including called functions. In this case it is very close to the ACC time since the
emulator had practically nothing else to do than to execute our test program.

All time values in the printout are in milliseconds.
The printout continues:

% CNT ACC OwWN
[{ "<0.28.0>", 9627 ,undefined, 1659.074}1. %Y%

This is the printout header of one process. The printout contains only this one process
since we did fprof : apply/3 which traces only the current process. Therefore the CNT
and OWN columns perfectly matches the totals above. The ACC column is undefined
since summing the ACC times of all calls in the process makes no sense - you would get
something like the ACC value from totals above multiplied by the average depth of the
call stack, or something.

All paragraphs up to the next process header only concerns function calls within this
process.

Now we come to something more interesting:

{[{undefined, 0, 1691.076, 0.030}],

{ {fprof,apply.start_stop,4}, 0, 1691.076, 0.030}, YA
[{{foo,createfile_slow,2}, 1, 1691.046, 0.103},
{suspend, 1, 0.000, 0.000}1}.

{[{{fprof,apply start_stop,4}, 1, 1691.046, 0.103}],

{ {foo,create file_slow,2}, 1, 1691.046, 0.103}, %
[{{file,close,1}, 1, 1398.873, 0.019},
{{foo,createfile_slow,3}, 1, 249.678, 0.029},
{{file,open,2}, 1, 20.778, 0.055},
{{lists,map,2}, 1, 16.590, 0.043},
{{lists,seq,2}, 1, 4.708, 0.017},
{{file,write,?2}, 1, 0.3186, 0.021}1}.

The printout consists of one paragraph per called function. The function marked with
"%’ is the one the paragraph concerns - foo:create file slow/2. Above the marked
function are the calling functions - those that has called the marked, and below are
those called by the marked function.

The paragraphs are per default sorted in decreasing order of the ACC column for the
marked function. The calling list and called list within one paragraph are also per
default sorted in decreasing order of their ACC column.

The columns are: CNT - the number of times the funcion has been called, ACC - the
time spent in the function including called functions, and OWN - the time spent in the
function not including called functions.

The rows for the calling functions contain statistics for the marked function with the
constraint that only the occasions when a call was made from the row’s function to the
marked function are accounted for.

The row for the marked function simply contains the sum of all calling rows.

The rows for the called functions contains statistics for the row’s function with the
constraint that only the occasions when a call was made from the marked to the row’s
function are accounted for.

Tools 59

fprof

Tools Reference Manual

60

So, we see that foo:create file_slow/2 used very little time for its own execution. It
spent most of its time in file:close/1. The function foo:create file_slow/3 that
writes 3/4 of the file contents is the second biggest time thief.

We also see that the call to file:write/2 that writes 1/4 of the file contents takes very
little time in itself. What takes time is to build the data (1ists:seq/2 and
lists:map/2).

The function 'undefined’ that has called fprof :apply_start_stop/4 is an unknown
function because that call was not recorded in the trace. It was only recorded that the
execution returned from fprof : apply_start_stop/4 to some other function above in
the call stack, or that the process exited from there.

Let us continue down the printout to find:

{[{{foo,create file_slow,2}, 1, 249.678, 0.029},
{{foo,createfile_slow,3}, 768, 0.000, 23.294}],
{ {foo,createfile slow,3}, 769, 249.678, 23.323}, %
[{{file,write,2}, 768, 220.314, 14.539},
{suspend, 57, 6.041, 0.000},
{{foo,create file_slow,3}, 768, 0.000, 23.294}1}.

If you compare with the code you will see there also that foo:create file slow/3 was
called only from foo:create_file_slow/2 and itself, and called only file:write/2,
note the number of calls to file:write/2. But here we see that suspend was called a
few times. This is a pseudo function that indicates that the process was suspended while
executing in foo:create file_slow/3, and since there is no receive or
erlang:yield/0 in the code, it must be Erlang scheduling suspensions, or the trace file
driver compensating for large file write operations (these are regarded as a shedule out
followed by a shedule in to the same process).

Let us find the suspend entry:

{[{{file,vrite,2}, 53, 6.281, 0.000},
{{foo,createfile_slow,3}, 57, 6.041, 0.000},
{{primfile,drv_command,4}, 50, 4.582, 0.000},
{{primfile,drv_get_response,1}, 34, 2.986, 0.000},
{{lists,map,2}, 10, 2.104, 0.000},
{{prim_file,write,2}, 17, 1.852, 0.000},
{{erlang,port_command,?2}, 15, 1.713, 0.000},
{{primfile,drv_command,?2}, 22, 1.482, 0.000},
{{primfile,translate response,2}, 11, 1.441, 0.000},
{{prim_file,’-drv_command/2-fun-0-’,1}, 15, 1.340, 0.000},
{{lists,seq,4}, 3, 0.880, 0.000},
{{foo,’-create file_slow/2-fun-0-’,1}, 5, 0.523, 0.000},
{{erlang,bump reductions,1}, 4, 0.503, 0.000},
{{primfile,open_int_setopts,3}, 1, 0.165, 0.000},
{{primfile,i32,4}, 1, 0.109, 0.000},
{{fprof,applystart_stop,4}, 1, 0.000, 0.000}]1,

{ suspend, 299, 32.002, 0.000}, %
(1}

We find no particulary long suspend times, so no function seems to have waited in a
receive statement. Actually, prim_file:drv_command/4 contains a receive statement,
but in this test program, the message lies in the process receive buffer when the receive
statement is entered. We also see that the total suspend time for the test run is small.

Tools

Tools Reference Manual fprof

The suspend pseudo function has got an OWN time of zero. This is to prevent the
process total OWN time from including time in suspension. Whether suspend time is
really ACC or OWN time is more of a philosophical question.

Now we look at another interesting pesudo function, garbage collect:

{[{{primfile,drv_command,4}, 25, 0.873, 0.873},
{{prim_file,write,2}, 16, 0.692, 0.692},
{{lists,map,2}, 2, 0.195, 0.195}1,

{ garbage_collect, 43, 1.760, 1.760}, %
[1}.

Here we see that no function distinguishes itself considerably, which is very normal.
The garbage collect pseudo function has not got an OWN time of zero like suspend,
instead it is equal to the ACC time.

Garbage collect often occurs while a process is suspended, but fprof hides this fact by
pretending that the suspended function was first unsuspended and then garbage
collected. Otherwise the printout would show garbage_collect being called from
suspend but not not which function that might have caused the garbage collection.

Let us now get back to the test code:

{[{{foo,createfile_slow,3}, 768, 220.314, 14.539},
{{foo,create file_slow,2}, 1, 0.316, 0.021}],

{ {file,write,2}, 769, 220.630, 14.560}, %
[{{prim_file,vrite,2}, 769, 199.789, 22.573},
{suspend, 53, 6.281, 0.000}1}.

Not unexpectedly, we see that file:write/2 was called from
foo:create file_slow/3 and foo:create_file_slow/2. The number of calls in each
case as well as the used time are also just confirms the previous results.

We see that file:write/2 only calls prim file:write/2, but let us refrain from
digging into the internals of the kernel application.

But, if we nevertheless do dig down we find the call to the linked in driver that does the
file operations towards the host operating system:

{[{{primfile,drv_command,4}, 772, 1458.356, 1456.643}],
{ {erlang,port_command,2}, 772, 1458.356, 1456.643}, %
[{suspend, 15, 1.713, 0.000}1}.

This is 86 % of the total run time, and as we saw before it is the close operation the
absolutely biggest contributor. We find a comparision ratio a little bit up in the call
stack:

{[{{primfile,close,1}, 1, 1398.748, 0.024},
{{prim_file,write,2}, 769, 174.672, 12.810},
{{prim_file,open_int,4}, 1, 19.755, 0.017},
{{prim_file,open_int_setopts,3}, 1, 0.147, 0.016}1,

{ {prim_file,drv_command,?2}, 772, 1593.322, 12.867}, %
[{{prim_file,drv_command,4}, 772, 1578.973, 27.265},
{suspend, 22, 1.482, 0.000}1}.

Tools 61

fprof

Tools Reference Manual

62

The time for file operations in the linked in driver distributes itself as 1 % for open, 11
% for write and 87 % for close. All data is probably buffered in the operating system
until the close.

The unsleeping reader may notice that the ACC times for prim file:drv_command/2
and prim_file:drv_command/4 is not equal between the paragraphs above, even though
it is easy to beleive that prim_file:drv_command/2 is just a passthrough function.

The missing time can be found in the paragraph for prim file:drv_command/4 where it
is evident that not only prim file:drv_command/2 is called but also a fun:

{[{{primfile,drv_command,?2}, 772, 1578.973, 27.265}],
{ {prim_file,drv_command,4}, 772, 1578.973, 27.265}, %
[{{erlang,port_command,2}, 772, 1458.356, 1456.643},
{{prim _file,’-drv_command/2-fun-0-’,1}, 772, 87.897, 12.736},
{suspend, 50, 4.582, 0.000},
{garbage_collect, 25, 0.873, 0.873}1}.

And some more missing time can be explained by the fact that prim file:open_int/4
both calls prim file:drv_command/2 directly as well as through
prim_file:open_int_setopts/3, which complicates the picture.

{[{{prim£file,open,2}, 1, 20.309, 0.029},
{{primfile,open_int,4}, 1, 0.000, 0.057}1,
{ {prim_file,open_int,4}, 2, 20.309, 0.086}, %
[{{prim_file,drv_command,?2}, 1, 19.755, 0.017},
{{prim_file,open_int_setopts,3}, 1, 0.360, 0.032},
{{primfile,drv_open,2}, 1, 0.071, 0.030},
{{erlang,list to_binary,1}, 1, 0.020, 0.020},
{{primfile,i32,1}, 1, 0.017, 0.017},
{{prim file,open int,4}, 1, 0.000, 0.057}1}.
{[{{primfile,open_int,4}, 1, 0.360, 0.032},
{{prim_file,open_int_setopts,3}, 1, 0.000, 0.016}1,
{ {prim_file,open_int_setopts,3}, 2, 0.360, 0.048}, %
[{suspend, 1, 0.165, 0.000},
{{primfile,drv_command,?2}, 1, 0.147, 0.016},
{{primfile,open_int_setopts,3}, 1, 0.000, 0.016}1}.

Notes

The actual supervision of execution times is in itself a CPU intensive activity. A message
is written on the trace file for every function call that is made by the profiled code.

The ACC time calculation is sometimes difficult to make correct, since it is difficult to
define. This happens especially when a function occurs in several instances in the call
stack, for example by calling itself perhaps through other functions and perhaps even
non-tail recursively.

To produce sensible results, fprof tries not to charge any function more than once for
ACC time. The instance highest up (with longest duration) in the call stack is chosen.

Sometimes a function may unexpectedly waste a lot (some 10 ms or more depending
on host machine OS) of OWN (and ACC) time, even functions that does practically

Tools

Tools Reference Manual fprof

nothing at all. The problem may be that the OS has chosen to schedule out the Erlang
runtime system process for a while, and if the OS does not support high resolution cpu
time measurements fprof will use wallclock time for its calculations, and it will appear
as functions randomly burn virtual machine time.

See Also

dbg(3), eprof [page 44](3), erlang(3), io(3), Tools User’s Guide [page 17]

Tools 63

instrument

Tools Reference Manual

64

Instrument

Erlang Module

The module instrument contains support for studying the resource usage in an Erlang
runtime system. Currently, only the allocation of memory can be studied.

Note:
Note that this whole module is experimental, and the representations used as well as
the functionality is likely to change in the future.

The instrument module interface was slightly changed in Erlang/OTP R9C.

To start an Erlang runtime system with instrumentation, use the +Mix* set of
command-line arguments to the erl command (see the erts_alloc(3) and erl(1) man
pages).

The basic object of study in the case of memory allocation is a memory allocation map.
A memory allocation map contains a list of descriptors for each allocated memory
block. Currently, a descriptor is a 4-tuple

{TypeNo, Address, Size, PidDesc}

where TypeNo is the memory block type number, Address is its place in memory, and
Size is its size, in bytes. PidDesc is either a tuple {X,Y,Zz} identifying the process which
was executing when the block was allocated, or undefined if o process was executing.
The pid tuple {X,Y,Z} can be transformed into a real pid by usage of the c:pid/3
function.

Various details about memory allocation:

Memory blocks are allocated both on the heap segment and on other memory segments.
This can cause the instrumentation functionality to report very large holes. Currently
the instrumentation functionality doesn’t provide any support for distinguishing
between holes between memory segments, and holes between allocated blocks inside
memory segments. The current size of the process cannot be obtained from within
Erlang, but can be seen with one of the system statistics tools, e.g., ps or top. The
Solaris utility pmap can be useful. It reports currently mapped memory segments.

Overhead for instrumentation: When the emulator has been started with the ["+Mim
true”] flag, each block is preceded by a 24 bytes large header on a 32-bit machine and a
48 bytes large header on a 64-bit machine. When the emulator has been started with
the ["+Mis true”] flag, each block is preceded by an 8 bytes large header. These are the
header sizes used by the Erlang 5.3/OTP R9C emulator. Other versions of the emulator
may use other header sizes. The function block_header_size/1 [page 65] can be used for
retrieving the header size used for a specific memory allocation map. The time overhead
for managing the instrumentation data is small.

Tools

Tools Reference Manual instrument

Sizes presented by the instrumentation functionality are (by the emulator) requested
sizes, i.e. neither instrumentation headers nor headers used by allocators are included.

Exports

allocator_descr (MemoryData, TypeNo) -> AllocDescr | invalid_-type | "unknown"

Types:

e MemoryData = {term(), AllocList}

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

e TypeNo = int()

e AllocDescr = atom() | string()

Returns the allocator description of the allocator that manages memory blocks of type
number TypeNo used in MemoryData. Valid TypeNos are in the range returned by
type_no_range/1 [page 69] on this specific memory allocation map. If TypeNo is an
invalid integer, invalid_type is returned.

block header_size(MemoryData) -> int()
Types:
e MemoryData = {term(), AllocList}
e AllocList = [Desc]
e Desc = {int(), int(), int(), PidDesc}
e PidDesc = {int(), int(), int()} | undefined

Returns the memory block header size used by the emulator that generated the memory
allocation map. The block header size may differ between different emulators.

class_descr(MemoryData, TypeNo) -> ClassDescr | invalid_type | "unknown"

Types:

¢ MemoryData = {term(), AllocList}

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined
e TypeNo = int()

e ClassDescr = atom() | string()

Returns the class description of the class that the type number TypeNo used in
MemoryData belongs to. Valid TypeNos are in the range returned by type_no_range/1
[page 69] on this specific memory allocation map. If TypeNo is an invalid integer,
invalid_type is returned.

descr (MemoryData) -> DescrMemoryData

Types:
e MemoryData = {term(), AllocList}
e AllocList = [Desc]

Tools 65

instrument

Tools Reference Manual

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

e DescrMemoryData = {term(), DescrAllocList}

e DescrAllocList = [DescrDesc]

e DescrDesc = {TypeDescr, int(), int(), DescrPidDesc}

e TypeDescr = atom() | string()

e DescrPidDesc = pid() | undefined

Returns a memory allocation map where the type numbers (first element of Desc) have
been replaced by type descriptions, and pid tuples (fourth element of Desc) have been
replaced by real pids.

holes(MemoryData) -> ok

Types:

e MemoryData = {term(), AllocList}

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

Prints out the size of each hole (i.e., the space between allocated blocks) on the

terminal. NOTE: Really large holes are probably holes between memory segments. The
memory allocation map has to be sorted (see sort/1 [page 68]).

mem limits(MemoryData) -> {Low, High}

Types:

e MemoryData = {term(), AllocList}

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

e Low = High =int()

Returns a tuple {Low, High} indicating the lowest and highest address used. The
memory allocation map has to be sorted (see sort/1 [page 68]).

memory_data() -> MemoryData | false

Types:

e MemoryData = {term(), AllocList}

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

Returns MemoryData (a the memory allocation map) if the emulator has been started
with the “+Mim true” command-line argument; otherwise, false.
NOTE:memory_data/0 blocks execution of other processes while the data is collected.
The time it takes to collect the data can be substantial.

memory_status(StatusType) -> [StatusInfo] | false

66

Types:
o StatusType = total | allocators | classes | types

Tools

Tools Reference Manual instrument

Statusinfo = {About, [Info]}

About = atom()

Info = {InfoName, Current, MaxSinceLast, MaxEver}

InfoName = sizes| blocks

Current = int()

MaxSinceLast = int()

e MaxEver = int()

Returns a list of StatusInfo if the emulator has been started with the “+Mis true” or
“+Mim true” command-line argument; otherwise, false.

See the read_memory _status/1 [page 67] function for a description of the StatusInfo
term.

read memory data(File) -> MemoryData | {error, Reason}

Types:

e File = string()

¢ MemoryData = {term(), AllocList}

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

Reads a memory allocation map from the file File and returns it. The file is assumed to

have been created by store memory_data/1. The error codes are the same as for
file:consult/1.

read memory_status(File) -> MemoryStatus | {error, Reason}

Types:

e File = string()

e MemoryStatus = [{StatusType, [Statusinfo]}]

e StatusType = total | allocators | classes | types

e Statusinfo = {About, [Info]}

e About = atom()

¢ Info = {InfoName, Current, MaxSinceLast, MaxEver}

¢ InfoName = sizes|blocks

e Current = int()

¢ MaxSincelLast = int()

e MaxEver = int()

Reads memory allocation status from the file File and returns it. The file is assumed to
have been created by store memory_status/1. The error codes are the same as for
file:consult/1.

When StatusType is allocators, About is the allocator that the information is about.
When StatusType iS types, About is the memory block type that the information is
about. Memory block types are not described other than by their name and may vary
between emulators. When StatusType is classes, About is the memory block type
class that information is presented about. Memory block types are classified after their
use. Currently the following classes exist:

process_data Erlang process specific data.

Tools 67

instrument

Tools Reference Manual

binary data Erlang binaries.

atom_data Erlang atoms.

code_data Erlang code.

system data Other data used by the system

When InfoName is sizes, Current, MaxSinceLast, and MaxEver are, respectively,
current size, maximum size since last call to store memory_status/1 or
memory_status/1 with the specific StatusType, and maximum size since the emulator
was started. When InfoName is blocks, Current, MaxSincelast, and MaxEver are,
respectively, current number of blocks, maximum number of blocks since last call to
store_memory_status/1 Or memory_status/1 with the specific StatusType, and
maximum number of blocks since the emulator was started.

NOTE:A memory block is accounted for at “the first level” allocator. E.g. fix_alloc
allocates its memory pools via 11_alloc. When a fix_alloc block is allocated, neither
the block nor the pool in which it resides are accounted for as memory allocated via
11_alloc even though it is.

sort (MemoryData) -> MemoryData

Types:

e MemoryData = {term(), AllocList}

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

Sorts a memory allocation map so that the addresses are in ascending order.

store_memory_data(File) -> true|false

Types:
e File = string()

Stores the current memory allocation map on the file File. Returns true if the
emulator has been started with the “+Mim true” command-line argument, and the map
was successfully stored; otherwise, false. The contents of the file can later be read
using read_memory_data/1 [page 67]. NOTE:store memory_data/0 blocks execution of
other processes while the data is collected. The time it takes to collect the data can be
substantial.

store memory_status(File) -> truel|false

Types:

e File = string()

Stores the current memory status on the file File. Returns true if the emulator has
been started with the “+Mis true”, or “+Mim true” command-line arguments, and the

data was successfully stored; otherwise, false. The contents of the file can later be read
using read_memory _status/1 [page 67].

sum_blocks (MemoryData) -> int()

68

Types:
e MemoryData = {term(), AllocList}

Tools

Tools Reference Manual instrument

e AllocList = [Desc]

e Desc = {int(), int(), int(), PidDesc}

e PidDesc = {int(), int(), int()} | undefined

Returns the total size of the memory blocks in the list.

type_descr (MemoryData, TypeNo) -> TypeDescr | invalid type
Types:

MemoryData = {term(), AllocList}

AllocList = [Desc]

Desc = {int(), int(), int(), PidDesc}

PidDesc = {int(), int(), int()} | undefined

TypeNo = int()

TypeDescr = atom() | string()

Returns the type description of a type number used in MemoryData. Valid TypeNos are
in the range returned by type_no_range/1 [page 69] on this specific memory allocation
map. If TypeNo is an invalid integer, invalid type is returned.

typeno_range (MemoryData) -> {Min, Max}
Types:
MemoryData = {term(), AllocList}
AllocList = [Desc]
Desc = {int(), int(), int(), PidDesc}
PidDesc = {int(), int(), int()} | undefined
Min = int()
Max = int()
Returns the memory block type number range used in MemoryData. When the memory
allocation map was generated by an Erlang 5.3/OTP R9C or newer emulator, all
integers T that satisfy Min <= T <= Max are valid type numbers. When the memory

allocation map was generated by a pre Erlang 5.3/OTP R9C emulator, all integers in the
range are not valid type numbers.

See Also

[erts_alloc(3)], [erl(1)]

Tools 69

make

Tools Reference Manual

make

Erlang Module

The module make provides a set of functions similar to the UNIX type Make functions.

Exports

all() -> up-to_date | error

all(Options) -> up-to_date | error

Types:
e Options = [Option]
e Option = noexec | load | netload | <compiler option>

This function first looks in the current working directory for a file named Emakefile
(see below) specifying the set of modules to compile and the compile options to use. If
no such file is found, the set of modules to compile defaults to all modules in the
current working directory.

Traversing the set of modules, it then recompiles every module for which at least one of
the following conditions apply:

e there is no object file, or
o the source file has been modified since it was last compiled, or,
¢ an include file has been modified since the source file was last compiled.

As a side effect, the function prints the name of each module it tries to compile. If
compilation fails for a module, the make procedure stops and error is returned.

Options is a list of make- and compiler options. The following make options exist:

® noexec
No execution mode. Just prints the name of each module that needs to be
compiled.

e load
Load mode. Loads all recompiled modules.

e netload
Net load mode. Loads all recompiled modules an all known nodes.

All items in Options that are not make options are assumed to be compiler options and
are passed as-is to compile:file/2. Options defaults to [].

files(ModFiles) -> up-to_date | error

files(ModFiles, Options) -> up_to_date | error

70

Tools

Tools Reference Manual make

Types:

e ModFiles = [Module | File]

¢ Module = atom()

e File = string()

e Options = [Option]

e Option = noexec | load | netload | <compiler option>

files/1,2 does exactly the same thing as a11/0, 1 but for the specified ModFiles,
which is a list of module or file names. The file extension .erl may be omitted.

The Emakefile (if it exists) in the current directory is searched for compiler options for
each module. If a given module does not exist in Emakefile or if Emakefile does not
exist, the module is still compiled.

Emakefile

make:all/0,1and make:files/1,2 looks in the current working directory for a file
named Emakefile. If it exists, Emakefile should contain elements like this:

Modules.
{Modules,Options}.

Modules is an atom or a list of atoms. It can be

a module name, e.g. filel

a module name in another directory, e.g. ../foo/file3

a set of modules specified with a wildcards, e.g. *filex*’

a wildcard indicating all modules in current directory, i.e. ’x’
a list of any of the above, e.g. [’filex’,’../foo/file3’,’File4’]

Options is a list of compiler options.

Emakefile is read from top to bottom. If a module matches more than one entry, the
first match is valid. For example, the following Emakefile means that filel shall be
compiled with the options [debug_info,{i,"../foo"}], while all other files in the
current directory shall be compiled with only the debug_info flag.

{’filel’,[debug_info,{i,"../foo"}]}.
{’*’, [debug_infol}.

Tools 71

tags Tools Reference Manual

tags

Erlang Module

A TAGS file is used by Emacs to find function and variable definitions in any source file
in large projects. This module can generate a TAGS file from Erlang source files. It
recognises functions, records, and macro definitions.

Exports

file(File [, Optiomns])
Create a TAGS file for the file File.

files(FileList [, Optiomns])
Create a TAGS file for the files in the list FileList.

dir(Dir [, Options])
Create a TAGS file for all files in directory Dir.

dirs(DirList [, Optiomns])

Create a TAGS file for all files in any directory in DirList.

subdir(Dir [, Options])

Descend recursively down the directory Dir and create a TAGS file based on all files
found.

subdirs(DirList [, Options])

Descend recursively down all the directories in DirList and create a TAGS file based on
all files found.

root ([Options])

Create a TAGS file covering all files in the Erlang distribution.

72 Tools

Tools Reference Manual tags

OPTIONS

The functions above have an optional argument, Options. It is a list which can contain
the following elements:

e {outfile, NameOfTAGSFile} Create a TAGS file named NameOfTAGSFile.

e {outdir, NameOfDirectory} Create a file named TAGS in the directory
NameOfDirectory.

The default behaviour is to create a file named TAGS in the current directory.

Examples

e tags:root([{outfile, "root.TAGS"}]).
This command will create a file named root . TAGS in the current directory. The file
will contain references to all Erlang source files in the Erlang distribution.

e tags:files(["foo.erl", "bar.erl", "baz.erl"], [{outdir,
"../projectdir"}]).
Here we create file named TAGS placed it in the directory . ./projectdir. The file
contains information about the functions, records, and macro definitions of the
three files.

SEE ALSO

e Richard M. Stallman. GNU Emacs Manual, chapter “Editing Programs”, section
“Tag Tables”. Free Software Foundation, 1995.

e Anders Lindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

Tools 73

xref

Tools Reference Manual

74

xref

Erlang Module

Xref is a cross reference tool that can be used for finding dependencies between
functions, modules, applications and releases.

Calls between functions are either local calls like £ (), or external calls like m: £ ().
Module data, which are extracted from BEAM files, include local functions, exported
functions, local calls and external calls. By default, calls to built-in functions (BIF) are
ignored, but if the option builtins, accepted by some of this module’s functions, is set
to true, calls to BIFs are included as well. It is the analyzing OTP version that decides
what functions are BIFs. Functional objects are assumed to be called where they are
created (and nowhere else). Unresolved calls are calls to apply or spawn with variable
module, variable function, or variable arguments. Examples are M:F (a),

apply (M, f, [a]), and spawn(m,f () ,Args). Unresolved calls are represented by calls
where variable modules have been replaced with the atom ’>$M_EXPR’, variable
functions have been replaced with the atom >$F_EXPR’, and variable number of
arguments have been replaced with the number -1. The above mentioned examples are
represented by calls to >$M_EXPR’ : >$F_EXPR’ /1, *$M_EXPR’ :£/1, and m: > $F _EXPR’ /-1.
The unresolved calls are a subset of the external calls.

Warning:
Unresolved calls make module data incomplete, which implies that the results of
analyses may be invalid.

Applications are collections of modules. The modules’ BEAM files are located in the
ebin subdirectory of the application directory. The name of the application directory
determines the name and version of the application. Releases are collections of
applications located in the 1ib subdirectory of the release directory. There is more to
read about applications and releases in the Design Principles book.

Xref servers are identified by names, supplied when creating new servers. Each Xref
server holds a set of releases, a set of applications, and a set of modules with module
data. Xref servers are independent of each other, and all analyses are evaluated in the
context of one single Xref server (exceptions are the functions m/1 and d/1 which do
not use servers at all). The mode of an Xref server determines what module data are
extracted from BEAM files as modules are added to the server. Starting with R7, BEAM
files compiled with the option debug_info contain so called debug information, which
is an abstract representation of the code. In functions mode, which is the default
mode, function calls and line numbers are extracted from debug information. In
modules mode, debug information is ignored if present, but dependencies between
modules are extracted from other parts of the BEAM files. The modules mode is
significantly less time and space consuming than the functions mode, but the analyses
that can be done are limited.

Tools

Tools Reference Manual xref

An analyzed module is a module that has been added to an Xref server together with its
module data. A library module is a module located in some directory mentioned in the
library path. A library module is said to be used if some of its exported functions are
used by some analyzed module. An unknown module is a module that is neither an
analyzed module nor a library module, but whose exported functions are used by some
analyzed module. An unknown function is a used function that is neither local or
exported by any analyzed module nor exported by any library module. An undefined
function is an externally used function that is not exported by any analyzed module or
library module. With this notion, a local function can be an undefined function, namely
if it is externally used from some module. All unknown functions are also undefined
functions; there is a figure [page 21] in the User’s Guide that illustrates this relationship.

Starting with R9C, the module attribute tag deprecated can be used to inform Xref
about deprecated functions and optionally when functions are planned to be removed. A
few examples show the idea:

-deprecated({f,1}). The exported function £/1 is deprecated. Nothing is said whether
£/1 will be removed or not.

-deprecated({f,’-"}). All exported functions £/0, £/1 and so on are deprecated.

-deprecated(module). All exported functions in the module are deprecated. Equivalent
to —~deprecated({’_?,’_?}) ..

-deprecated([{g,1,next_version}).] The function g/1 is deprecated and will be
removed in next version.

-deprecated([{g,2,next_major_release}).] The function g/2 is deprecated and will be
removed in next major release.

-deprecated([{g,3,eventually}).] The function g/3 is deprecated and will eventually be
removed.

-deprecated({’.’,’_",eventually}). All exported functions in the module are deprecated

and will eventually be removed.

Before any analysis can take place, module data must be set up. For instance, the cross
reference and the unknown functions are computed when all module data are known.
The functions that need complete data (analyze, q, variables) take care of setting up
data automatically. Module data need to be set up (again) after calls to any of the add,
replace, remove, set_library path or update functions.

The result of setting up module data is the Call Graph. A (directed) graph consists of a
set of vertices and a set of (directed) edges. The edges represent calls (From,To)
between functions, modules, applications or releases. From is said to call To, and To is
said to be used by From. The vertices of the Call Graph are the functions of all module
data: local and exported functions of analyzed modules; used BIFs; used exported
functions of library modules; and unknown functions. The functions module_info/0,1
added by the compiler are included among the exported functions, but only when
called from some module. The edges are the function calls of all module data. A
consequence of the edges being a set is that there is only one edge if a function is locally
or externally used several times on one and the same line of code.

The Call Graph is represented by Erlang terms (the sets are lists), which is suitable for
many analyses. But for analyses that look at chains of calls, a list representation is much
too slow. Instead the representation offered by the digraph module is used. The
translation of the list representation of the Call Graph - or a subgraph thereof - to the
digraph representation does not come for free, so the language used for expressing
queries to be described below has a special operator for this task and a possibility to save
the digraph representation for subsequent analyses.

Tools 75

xref Tools Reference Manual

In addition to the Call Graph there is a graph called the Inter Call Graph. This is a
graph of calls (From,To) such that there is a chain of calls from From to To in the Call
Graph, and every From and To is an exported function or an unused local function. The
vertices are the same as for the Call Graph.

Calls between modules, applications and releases are also directed graphs. The types of
the vertices and edges of these graphs are (ranging from the most special to the most
general): Fun for functions; Mod for modules; App for applications; and Rel for releases.
The following paragraphs will describe the different constructs of the language used for
selecting and analyzing parts of the graphs, beginning with the constants:

e Expression ::= Constants

e Constants ::= Consts | Consts : Type | RegExpr

e Consts ::= Constant | [Constant,...] | {Constant,...}
e Constant ::= Call | Const

e Call ::= FunSpec->FunSpec | {MFA,MFA} | AtomConst->AtomConst |
{AtomConst, AtomConst}

e Const ::= AtomConst | FunSpec | MFA

e AtomConst ::= Application | Module | Release

e FunSpec ::= Module : Function / Arity

¢ MFA ::= {Module,Function, Arity}

e RegEXxpr ::= RegString : Type | RegFunc | RegFunc : Type
e RegFunc ::= RegModule : RegFunction / RegArity

e RegModule ::= RegAtom

e RegFunction ::= RegAtom

e RegArity ::= RegString | Number | _ | -1

¢ RegAtom ::= RegString | Atom | _

e RegString ::= - a regular expression, as described in the regexp module, enclosed
in double quotes -

e Type ::=Fun | Mod | App | Rel

e Function ::= Atom

e Application ::= Atom

e Module ::= Atom

e Release ::= Atom

e Arity ::= Number | -1

e Atom ::= - same as Erlang atoms -

e Number ::= - same as non-negative Erlang integers -

Examples of constants are: kernel, kernel->stdlib, [kernel, sasl], [pg ->
mnesia, {tv, mnesia}] : Mod. Itisan error if an instance of Const does not match
any vertex of any graph. If there are more than one vertex matching an untyped
instance of AtomConst, then the one of the most general type is chosen. A list of
constants is interpreted as a set of constants, all of the same type. A tuple of constants
constitute a chain of calls (which may, but does not have to, correspond to an actual
chain of calls of some graph). Assigning a type to a list or tuple of Constant is
equivalent to assigning the type to each Constant.

76 Tools

Tools Reference Manual xref

Regular expressions are used as a means to select some of the vertices of a graph. A
RegExpr consisting of a RegString and a type - an example is "xref_.*" : Mod - is
interpreted as those modules (or applications or releases, depending on the type) that
match the expression. Similarly, a RegFunc is interpreted as those vertices of the Call
Graph that match the expression. An example is "xref_.*":"add_.*"/"(2]3)", which
matches all add functions of arity two or three of any of the xref modules. Another
example, one that matches all functions of arity 10 or more: _: /" [1-9] .+". Here _is
an abbreviation for " . *", that is, the regular expression that matches anything.

The syntax of variables is simple:

e Expression ::= Variable
e Variable ::= - same as Erlang variables -

There are two kinds of variables: predefined variables and user variables. Predefined
variables hold set up module data, and cannot be assigned to but only used in queries.
User variables on the other hand can be assigned to, and are typically used for temporary
results while evaluating a query, and for keeping results of queries for use in subsequent
gueries. The predefined variables are (variables marked with (*) are available in
functions mode only):

E Call Graph Edges (*).
v Call Graph Vertices (*).

M Modules. All modules: analyzed modules, used library modules, and unknown
modules.

A Applications.

R Releases.

ME Module Edges. All module calls.

AE Application Edges. All application calls.

RE Release Edges. All release calls.

L Local Functions (*). All local functions of analyzed modules.

X Exported Functions. All exported functions of analyzed modules and all used
exported functions of library modules.

F Functions (*).
B Used BIFs. B is empty if builtins is false for all analyzed modules.
U Unknown Functions.

UU Unused Functions (*). All local and exported functions of analyzed modules that
have not been used.

XU Externally Used Functions. Functions of all modules - including local functions -
that have been used in some external call.

LU Locally Used Functions (*). Functions of all modules that have been used in some
local call.

LC Local Calls (*).

XC External Calls (*).

AM Analyzed Modules.
UM Unknown Modules.
LM Used Library Modules.

Tools 77

xref

Tools Reference Manual

78

UC Unresolved Calls. Empty in modules mode.
EE Inter Call Graph Edges (*).

DF Deprecated Functions. All deprecated exported functions and all used deprecated
BIFs.

DF_1 Deprecated Functions. All deprecated functions to be removed in next version.

DF_2 Deprecated Functions. All deprecated functions to be removed in next version or
next major release.

DF_3 Deprecated Functions. All deprecated functions to be removed in next version,
next major release, or later.

These are a few facts about the predefined variables (the set operators + (union) and -
(difference) as well as the cast operator (Type) are described below):

FisequaltoL + X.

VisequaltoX + L + B + U, where X, L, B and U are pairwise disjoint (that is, have
no elements in common).

e UUisequal toVv - (XU + LU), where LU and XU may have elements in common.
Put in another way:

e Visequal toUU + XU + LU.

e Eisequal to LC + XC. Note that LC and XC may have elements in common, namely
if some function is locally and externally used from one and the same function.

e U is a subset of XU.

e B is a subset of XU.

e LU is equal to range LC.
e XU is equal to range XC.
e LU is asubset of F.

e UU is a subset of F.

e range UC is a subset of U.
e Misequal to AM + LM + UM, where AM, LM and UM are pairwise disjoint.
e ME is equal to (Mod) E.

e AE is equal to (App) E.

e RE is equal to (Rel) E.

e (Mod) Vis asubset of M. Equality holds if all analyzed modules have some local,
exported, or unknown function.

e (App) Misasubset of A. Equality holds if all applications have some module.
e (Rel) Aisasubset of R. Equality holds if all releases have some application.
e DF_1 is a subset of DF_2.

e DF_2 is a subset of DF_3.

e DF_3 is a subset of DF.

e DFisasubset of X + B.

An important notion is that of conversion of expressions. The syntax of a cast expression
is:

e Expression ::= (Type) Expression

Tools

Tools Reference Manual xref

The interpretation of the cast operator depends on the named type Type, the type of
Expression, and the structure of the elements of the interpretation of Expression. If
the named type is equal to the expression type, no conversion is done. Otherwise, the
conversion is done one step at a time; (Fun) (App)RE, for instance, is equivalent to
(Fun) (Mod) (App)RE. Now assume that the interpretation of Expression is a set of
constants (functions, modules, applications or releases). If the named type is more
general than the expression type, say Mod and Fun respectively, then the interpretation
of the cast expression is the set of modules that have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more special
than the expression type, say Fun and Mod, then the interpretation is the set of all the
functions of the modules (in modules mode, the conversion is partial since the local
functions are not known). The conversions to and from applications and releases work
analogously. For instance, (App) "xref_.*" : Mod returns all applications containing
at least one module such that xref_is a prefix of the module name.

Now assume that the interpretation of Expression is a set of calls. If the named type is
more general than the expression type, say Mod and Fun respectively, then the
interpretation of the cast expression is the set of calls (M1,M2) such that the
interpretation of the expression contains a call from some function of M1 to some
function of M2. If the named type is more special than the expression type, say Fun and
Mod, then the interpretation is the set of all function calls (F1,F2) such that the
interpretation of the expression contains a call (M1,M2) and F1 is a function of M1 and
F2 is a function of M2 (in modules mode, there are no functions calls, so a cast to Fun
always yields an empty set). Again, the conversions to and from applications and
releases work analogously.

The interpretation of constants and variables are sets, and those sets can be used as the
basis for forming new sets by the application of set operators. The syntax:

e Expression ::= Expression BinarySetOp Expression
e BinarySetOp ::=+ | * | -

+, * and - are interpreted as union, intersection and difference respectively: the union
of two sets contains the elements of both sets; the intersection of two sets contains the
elements common to both sets; and the difference of two sets contains the elements of
the first set that are not members of the second set. The elements of the two sets must
be of the same structure; for instance, a function call cannot be combined with a
function. But if a cast operator can make the elements compatible, then the more
general elements are converted to the less general element type. For instance, M+F is
equivalent to (Fun)M+F, and E-AE is equivalent to E- (Fun) AE. One more example: X *
xref : Mod is interpreted as the set of functions exported by the module xref; xref

Mod is converted to the more special type of X (Fun, that is) yielding all functions of
xref, and the intersection with X (all functions exported by analyzed modules and
library modules) is interpreted as those functions that are exported by some module
and functions of xref.

There are also unary set operators:

e Expression ::= UnarySetOp Expression
e UnarySetOp ::= domain | range | strict

Recall that a call is a pair (From,To). domain applied to a set of calls is interpreted as the
set of all vertices From, and range as the set of all vertices To. The interpretation of the
strict operator is the operand with all calls on the form (A,A) removed.

Tools 79

xref

Tools Reference Manual

80

The interpretation of the restriction operators is a subset of the first operand, a set of
calls. The second operand, a set of vertices, is converted to the type of the first operand.
The syntax of the restriction operators:

e Expression ::= Expression RestrOp Expression
e RestrOp ::= |

e RestrOp ::= ||

e RestrOp ::= | ||

The interpretation in some detail for the three operators:

| The subset of calls from any of the vertices.
| | The subset of calls to any of the vertices.

|11 The subset of calls to and from any of the vertices. For all sets of calls CS and all
sets of vertices VS, CS| | | VS is equivalent to CS|VS*CS| | VS.

Two functions (modules, applications, releases) belong to the same strongly connected
component if they call each other (in)directly. The interpretation of the components
operator is the set of strongly connected components of a set of calls. The
condensation of a set of calls is a new set of calls between the strongly connected
components such that there is an edge between two components if there is some
constant of the first component that calls some constant of the second component.

The interpretation of the of operator is a chain of calls of the second operand (a set of
calls) that passes throw all of the vertices of the first operand (a tuple of constants), in
the given order. The second operand is converted to the type of the first operand. For
instance, the of operator can be used for finding out whether a function calls another
function indirectly, and the chain of calls demonstrates how. The syntax of the graph
analyzing operators:

e Expression ::= Expression GraphOp Expression
e GraphOp ::= components | condensation | of

As was mentioned before, the graph analyses operate on the digraph representation of
graphs. By default, the digraph representation is created when needed (and deleted
when no longer used), but it can also be created explicitly by use of the closure
operator:

e Expression ::= ClosureOp Expression
e ClosureOp ::= closure

The interpretation of the closure operator is the transitive closure of the operand.

The restriction operators are defined for closures as well; closureE|xref :Mod is
interpreted as the direct or indirect function calls from the xref module, while the
interpretation of E|xref :Mod is the set of direct calls from xref. If some graph is to be
used in several graph analyses, it saves time to assign the digraph representation of the
graph to a user variable, and then make sure that every graph analysis operates on that
variable instead of the list representation of the graph.

The lines where functions are defined (more precisely: where the first clause begins)
and the lines where functions are used are available in functions mode. The line
numbers refer to the files where the functions are defined. This holds also for files
included with the —-include and -include_lib directives, which may result in

Tools

Tools Reference Manual xref

functions defined apparently in the same line. The line operators are used for assigning
line numbers to functions and for assigning sets of line numbers to function calls. The
syntax is similar to the one of the cast operator:

e Expression ::= (LineOp) Expression
e Expression ::= (XLineOp) Expression
e LineOp ::=Lin | ELin | LLin | XLin
e XLineOp ::= XXL
The interpretation of the Lin operator applied to a set of functions assigns to each

function the line number where the function is defined. Unknown functions and
functions of library modules are assigned the number 0.

The interpretation of some LineOp operator applied to a set of function calls assigns to
each call the set of line numbers where the first function calls the second function. Not
all calls are assigned line numbers by all operators:

e the Lin operator is defined for Call Graph Edges;

e the LLin operator is defined for Local Calls.

e the XLin operator is defined for External Calls.

e the ELin operator is defined for Inter Call Graph Edges.

The Lin (LLin, XLin) operator assigns the lines where calls (local calls, external calls)
are made. The ELin operator assigns to each call (From,To), for which it is defined,
every line L such that there is a chain of calls from From to To beginning with a call on
line L.

The XXL operator is defined for the interpretation of any of the LineOp operators
applied to a set of function calls. The result is that of replacing the function call with a
line numbered function call, that is, each of the two functions of the call is replaced by
a pair of the function and the line where the function is defined. The effect of the XXL
operator can be undone by the LineOp operators. For instance, (Lin) (XXL) (Lin)Eis
equivalent to (Lin)E.

The +, -, * and # operators are defined for line number expressions, provided the
operands are compatible. The LineOp operators are also defined for modules,
applications, and releases; the operand is implicitly converted to functions. Similarly,
the cast operator is defined for the interpretation of the LineOp operators.

The interpretation of the counting operator is the number of elements of a set. The
operator is undefined for closures. The +, - and * operators are interpreted as the
obvious arithmetical operators when applied to numbers. The syntax of the counting
operator:

e Expression ::= CountOp Expression
e CountOp ::=#

All binary operators are left associative; for instance, A|B | |C is equivalent to (AIB) | |C.
The following is a list of all operators, in increasing order of precedence:

o + -
® X

o #

Tools 81

xref

Tools Reference Manual

82

e of
e (Type)

e closure, components, condensation, domain, range, strict

Parentheses are used for grouping, either to make an expression more readable or to
override the default precedence of operators:

e Expression ::= (Expression)

A query is a non-empty sequence of statements. A statement is either an assignment of a
user variable or an expression. The value of an assignment is the value of the right hand
side expression. It makes no sense to put a plain expression anywhere else but last in
queries. The syntax of queries is summarized by these productions:

e Query ::= Statement, ...
e Statement ::= Assignment | Expression
e Assignment ::= Variable := Expression | Variable = Expression

A variable cannot be assigned a new value unless first removed. Variables assigned to by
the = operator are removed at the end of the query, while variables assigned to by the :=
operator can only be removed by calls to forget. There are no user variables when
module data need to be set up again; if any of the functions that make it necessary to set
up module data again is called, all user variables are forgotten.

Types

application() = atom()

arity() = int() | -1

bool() = true | false

call() = {atom(), atom()} | funcall()
constant() = mfa() | module() | application() | release()
directory() = string()

file() = string()

funcall() = {mfa(), mfa()}

function() = atom()

int() = integer() >= 0

library() = atom()

library_path() = path() | code_path
mfa() = {module(), function(), arity(}
mode() = functions | modules

module() = atom()

release() = atom()

string position() = int() | at_end
variable() = atom()

xref () = atom(Q)

Tools

Tools Reference Manual xref

Exports

add_application(Xref, Directory [, Options]) -> {ok, application()} | Error

Types:

e Directory = directory()

e Error = {error, module(), Reason}

e Options = [Option] | Option

e Option = {builtins, bool()} | {name, application()} | {verbose, bool()} | {warnings,
bool()}

e Reason = {application_clash, {application(), directory(), directory()}} | {file_error,

file(), error()} | {invalid_filename, term()} | {invalid_options, term()} |
-seealsoadd_directory-
o Xref = xref()
Adds an application, the modules of the application and module data [page 74] of the
modules to an Xref server [page 74]. The modules will be members of the application.
The default is to use the base name of the directory with the version removed as
application name, but this can be overridden by the name option. Returns the name of
the application.

If the given directory has a subdirectory named ebin, modules (BEAM files) are
searched for in that directory, otherwise modules are searched for in the given directory.

If the mode [page 74] of the Xref server is functions, BEAM files that contain no
debug information [page 74] are ignored.

add_directory(Xref, Directory [, Options]) -> {ok, Modules} | Error

Types:

e Directory = directory()

e Error = {error, module(), Reason}

e Modules = [module()]

e Options = [Option] | Option

e Option = {builtins, bool()} | {recurse, bool()} | {verbose, bool()} | {warnings,
bool()}

e Reason = {file_error, file(), error()} | {invalid_filename, term()} | {invalid_options,
term()} | {unrecognized-file, file()} | -error from beam_lib:chunks/2-

o Xref = xref()

Adds the modules found in the given directory and the modules’ data [page 74] to an
Xref server [page 74]. The default is not to examine subdirectories, but if the option

recurse has the value true, modules are searched for in subdirectories on all levels as
well as in the given directory. Returns a sorted list of the names of the added modules.

The modules added will not be members of any applications.

If the mode [page 74] of the Xref server is functions, BEAM files that contain no
debug information [page 74] are ignored.

add module(Xref, File [, Options]) -> {ok, module()} | Error

Types:
e Error = {error, module(), Reason}

Tools 83

xref

Tools Reference Manual

o File = file()
¢ Options = [Option] | Option
e Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}

¢ Reason = {file_error, file(), error()} | {invalid_filename, term()} | {invalid_options,
term()} | {module_clash, {module(), file(), file()}} | {no_debug.info, file()} | -error
from beam_lib:chunks/2-

o Xref = xref()

Adds a module and its module data [page 74] to an Xref server [page 74]. The module
will not be member of any application. Returns the name of the module.

If the mode [page 74] of the Xref server is functions, and the BEAM file contains no
debug information [page 74], the error message no_debug_info is returned.

add_release(Xref, Directory [, Options]) -> {ok, release()} | Error

Types:

e Directory = directory()

e Error = {error, module(), Reason}

e Options = [Option] | Option

e Option = {builtins, bool()} | {name, release()} | {verbose, bool()} | {warnings,
bool()}

e Reason = {application_clash, {application(), directory(), directory()}} | {file_error,
file(), errorQ} | {invalid_filename, term()} | {invalid_options, term()} |
{release_clash, {release(), directory(), directory()}} | -seealsoadd_directory-

o Xref = xref()

Adds a release, the applications of the release, the modules of the applications, and
module data [page 74] of the modules to an Xref server [page 74]. The applications
will be members of the release, and the modules will be members of the applications.
The default is to use the base name of the directory as release name, but this can be
overridden by the name option. Returns the name of the release.

If the given directory has a subdirectory named 1ib, the directories in that directory are
assumed to be application directories, otherwise all subdirectories of the given directory
are assumed to be application directories. If there are several versions of some
application, the one with the highest version is chosen.

If the mode [page 74] of the Xref server is functions, BEAM files that contain no
debug information [page 74] are ignored.

analyze(Xref, Analysis [, Options]) -> {ok, Answer} | Error

84

Types:

¢ Analysis = undefined_function_calls | undefined_functions | locals_not_used |
exports_not_used | deprecated_function_calls | {deprecated_function_calls, DeprFlag}
| deprecated_functions | {deprecated_functions, DeprFlag} | {call, FuncSpec} |
{use, FuncSpec} | {module_call, ModSpec} | {module_use, ModSpec} |
{application_call, AppSpec} | {application_use, AppSpec} | {release_call, RelSpec} |
{release_use, RelSpec}

e Answer = [term()]

e AppSpec = application() | [application()]

e DeprFlag = next_version | next_major_release | eventually
e Error = {error, module(), Reason}

Tools

Tools Reference Manual xref

e FuncSpec = mfa() | [mfa()]

e ModSpec = module() | [module()]

e Options = [Option] | Option

¢ Option = {verbose, bool()}

e RelSpec = release() | [release()]

e Reason = {invalid_options, term()} | {parse_error, string_position(), term()} |
{unavailable_analysis, term()} | {unknown_analysis, term()} | {unknown_constant,
string()} | {unknown_variable, variable()}

o Xref = xref()

Evaluates a predefined analysis. Returns a sorted list without duplicates of ca11() or
constant (), depending on the chosen analysis. The predefined analyses, which operate
on all analyzed modules [page 75], are (analyses marked with (*) are available in
functionsmode [page 74] only):

undefined function_calls(*) Returns a list of calls to undefined functions [page 75].
undefined functions Returns a list of undefined functions [page 75].
locals_not_used(*) Returns a list of local functions that have not been locally used.

exports not_used Returns a list of exported functions that have not been externally
used.

deprecated function_calls(*) Returns a list of external calls to deprecated functions
[page 75].

{deprecated function_calls, DeprFlag}(*) Returns a list of external calls to
deprecated functions. If DeprFlag is equal to next_version, calls to functions to
be removed in next version are returned. If DeprFlag is equal to
next_major_release, calls to functions to be removed in next major release are
returned as well as calls to functions to be removed in next version. Finally, if
DeprFlag is equal to eventually, all calls to functions to be removed are returned,
including calls to functions to be removed in next version or next major release.

deprecated functions Returns a list of externally used deprecated functions.

{deprecated functions, DeprFlag} Returns a list of externally used deprecated
functions. If DeprFlag is equal to next_version, functions to be removed in next
version are returned. If DeprFlag is equal to next major_release, functions to be
removed in next major release are returned as well as functions to be removed in
next version. Finally, if DeprFlag is equal to eventually, all functions to be
removed are returned, including functions to be removed in next version or next
major release.

call, FuncSpec}(*) Returns a list of functions called by some of the given functions.
p
use, FuncSpec}(*) Returns a list of functions that use some of the given functions.
p

{module_call, ModSpec} Returns a list of modules called by some of the given
modules.

{module_use, ModSpec} Returns a list of modules that use some of the given modules.

{application_call, AppSpec} Returns a list of applications called by some of the
given applications.

{applicationuse, AppSpec} Returns a list of applications that use some of the given
applications.

release_call, RelSpec} Returns a list of releases called by some of the given
p
releases.

Tools 85

xref

Tools Reference Manual

d(Directory)

forget (Xref)
forget (Xref,

{release_use, RelSpec} Returns a list of releases that use some of the given releases.

-> [DebugInfoResult] | [NoDebugInfoResult] | Error

Types:

e Directory = directory()

e DebuglinfoResult = {deprecated, [funcall()]} | {undefined, [funcall()1} | {unused,
[mfaQ1}

e Error = {error, module(), Reason}
e NoDebuglinfoResult = {deprecated, [mfa()]} | {undefined, [mfa()]}

¢ Reason = {file_error, file(), error()} | {invalid_filename, term()} | {unrecognized_file,
file()} | -error from beam_lib:chunks/2-

The modules found in the given directory are checked for calls to deprecated functions
[page 75], calls to undefined functions [page 75], and for unused local functions. The
code path is used as library path [page 75].

If some of the found BEAM files contain debug information [page 74], then those
modules are checked and a list of tuples is returned. The first element of each tuple is
one of:

e deprecated, the second element is a sorted list of calls to deprecated functions;
e undefined, the second element is a sorted list of calls to undefined functions;
e unused, the second element is a sorted list of unused local functions.

If no BEAM file contains debug information, then a list of tuples is returned. The first
element of each tuple is one of:

e deprecated, the second element is a sorted list of externally used deprecated
functions;

e undefined, the second element is a sorted list of undefined functions.

-> ok

Variables) -> ok | Error

Types:

e Error = {error, module(), Reason}

e Reason = {not_user_variable, term()}
¢ Variables = [variable()] | variable()
o Xref = xref()

forget/1 and forget/2 remove all or some of the user variables [page 77] of an xref
server [page 74].

format_error (Error) -> Chars

86

Types:
e Error = {error, module(), term()}
e Chars = [char() | Chars]

Tools

Tools Reference Manual xref

Given the error returned by any function of this module, the function format_error
returns a descriptive string of the error in English. For file errors, the function
format_error/1 in the file module is called.

get_default(Xref) -> [{Option, Value}]
get_default(Xref, Option) -> {ok, Value} | Error

Types:

Error = {error, module(), Reason}

Option = builtins | recurse | verbose | warnings
Reason = {invalid_options, term()}

Value = bool()

Xref = xref()

Returns the default values of one or more options.

get_library path(Xref) -> {ok, LibraryPath}

Types:

LibraryPath = library_path()
Xref = xref()

Returns the library path [page 75].

info(Xref) -> [Info]
info(Xref, Category) -> [{Item, [Infol}]
info(Xref, Category, Items) -> [{Item, [Infol}]

Types:

Application =[] | [application()]

Category = modules | applications | releases | libraries

Info = {application, Application} | {builtins, bool()} | {directory, directory()} |
{library_path, library_path()} | {mode, mode()} | {no_analyzed_modules, int()} |
{no_applications, int()} | {no_calls, {NoResolved, NoUnresolved}} |
{no_function_calls, {NoLocal, NoResolvedExternal, NoUnresolved}} |
{no_functions, {NoLocal, NoExternal}} | {no_inter_function_calls, int()} |
{no_releases, int()} | {release, Release} | {version, Version}

Item = module() | application() | release() | library()

Items = Item | [Item]

NoLocal = NoExternal = NoResolvedExternal, NoResolved = NoUnresolved = int()
Release =[] | [release()]

Version = [int()]

Xref = xref()

The info functions return information as a list of pairs {Tag,term()} in some order
about the state and the module data [page 74] of an Xref server [page 74].

info/1 returns information with the following tags (tags marked with (*) are available
in functions mode only):

e library path, the library path [page 75];
e mode, the mode [page 74];

Tools 87

xref

Tools Reference Manual

88

no_releases, humber of releases;
no_applications, total number of applications (of all releases);
no_analyzed modules, total number of analyzed modules [page 75];

no_calls (*), total number of calls (in all modules), regarding instances of one
function call in different lines as separate calls;

no_function_calls (*), total number of local calls [page 74], resolved external
calls [page 74] and unresolved calls [page 74];

no_functions (*), total number of local and exported functions;

no_inter_function_calls (*), total number of calls of the Inter Call Graph [page
76].

info/2 and info/3 return information about all or some of the analyzed modules,
applications, releases or library modules of an Xref server. The following information is
returned for every analyzed module:

e application, an empty list if the module does not belong to any application,

otherwise a list of the application name;
builtins, whether calls to BIFs are included in the module’s data;
directory, the directory where the module’s BEAM file is located;

no_calls (*), number of calls, regarding instances of one function call in different
lines as separate calls;

no_function_calls (*), number of local calls, resolved external calls and
unresolved calls;

no_functions (*), number of local and exported functions;
no_inter_function_calls (*), number of calls of the Inter Call Graph;

The following information is returned for every application:

directory, the directory where the modules’ BEAM files are located;
no_analyzed modules, number of analyzed modules;

no_calls (*), number of calls of the application’s modules, regarding instances of
one function call in different lines as separate calls;

no_function_calls (*), number of local calls, resolved external calls and
unresolved calls of the application’s modules;

no_functions (*), number of local and exported functions of the application’s
modules;

no_inter_function_calls (*), number of calls of the Inter Call Graph of the
application’s modules;

release, an empty list if the application does not belong to any release, otherwise
a list of the release name;

version, the application’s version as a list of numbers. For instance, the directory
“kernel-2.6” results in the application name kernel and the application version
[2,6]; “kernel” yields the name kernel and the version [].

The following information is returned for every release:

directory, the release directory;
no_analyzed modules, number of analyzed modules;

Tools

Tools Reference Manual xref

e no_applications, number of applications;
e no_calls (*), number of calls of the release’s modules, regarding instances of one
function call in different lines as separate calls;

e no_function_calls (*), number of local calls, resolved external calls and
unresolved calls of the release’s modules;

e no_functions (*), number of local and exported functions of the release’s
modules;

e no_inter function calls (*), number of calls of the Inter Call Graph of the
release’s modules.

The following information is returned for every library module:

e directory, the directory where the library module’s [page 75] BEAM file is
located.

For every number of calls, functions etc. returned by the no_ tags, there is a query
returning the same number. Listed below are examples of such queries. Some of the
gueries return the sum of a two or more of the no_ tags numbers. mod (app, rel) refers
to any module (application, release).

e no_analyzed modules
— "# AM" (info/1)
— "# (Mod) app:App" (application)
— "# (Mod) rel:Rel" (release)

e no_applications
- "# A" (info/1)

e no_calls. The sum of the number of resolved and unresolved calls:
— "# (XLin) E + # (LLin) E" (info/1)
— "T = E | mod:Mod, # (LLin) T + # (XLin) T" (module)
- "T = E | app:App, # (LLin) T + # (XLin) T" (application)
— "T = E | rel:Rel, # (LLin) T + # (XLin) T" (release)

e no_functions. Functions in library modules and the functions module_info/0,1
are not counted by info. Assuming that "Extra := _:module_info/\"(0|1)\" +
LM" has been evaluated, the sum of the number of local and exported functions are:

- "# (F - Extra)" (info/1)

— "# (F * mod:Mod - Extra)" (module)

— "# (F * app:App - Extra)" (application)
— "# (F * rel:Rel - Extra)" (release)

e no_function_calls. The sum of the number of local calls, resolved external calls

and unresolved calls:
— "# LC + # XC" (info/1)
— "# LC | mod:Mod + # XC | mod:Mod" (module)
— "# LC | app:App + # XC | app:App" (application)
— "# LC | rel:Rel + # XC | mod:Rel" (release)

e no_inter_function_calls

— " EE" (info/1)

Tools 89

xref Tools Reference Manual

— "# EE | mod:Mod" (module)
— "# EE | app:App" (application)
— "# EE | rel:Rel" (release)

® no_releases

— " R" (info/1)

m(Module) -> [DebugInfoResult] | [NoDebugInfoResult] | Error
m(File) -> [DebugInfoResult] | [NoDebugInfoResult] | Error

Types:

e DebuglinfoResult = {deprecated, [funcall()]} | {undefined, [funcall()1} | {unused,
[mfaQ1}

e Error = {error, module(), Reason}

o File =file()

e Module = module()
¢ NoDebuglnfoResult = {deprecated, [mfa()]} | {undefined, [mfa()]}

e Reason = {file_error, file(), error()} | {interpreted, module()} | {invalid_filename,
term()} | {cover_compiled, module()} | {no_such_module, module()} | -error from
beam_lib:chunks/2-

The given BEAM file (with or without the .beam extension) or the file found by calling
code:which(Module) is checked for calls to deprecated functions [page 75], calls to
undefined functions [page 75], and for unused local functions. The code path is used as
library path [page 75].

If the BEAM file contains debug information [page 74], then a list of tuples is returned.
The first element of each tuple is one of:

e deprecated, the second element is a sorted list of calls to deprecated functions;
e undefined, the second element is a sorted list of calls to undefined functions;
e unused, the second element is a sorted list of unused local functions.

If the BEAM file does not contain debug information, then a list of tuples is returned.
The first element of each tuple is one of:

e deprecated, the second element is a sorted list of externally used deprecated
functions;

e undefined, the second element is a sorted list of undefined functions.

q(Xref, Query [, Options]) -> {ok, Answer} | Error

Types:

e Answer = false | [constant()] | [Call] | [Component] | int() | [DefineAt] |
[CallAt] | [AllLines]

Call = call() | ComponentCall

ComponentCall = {Component, Component}

Component = [constant()]

DefineAt = {mfa(), LineNumber}

CallAt = {funcall(), LineNumbers}

AllLines = {{DefineAt, DefineAt}, LineNumbers}

90 Tools

Tools Reference Manual xref

Error = {error, module(), Reason}
LineNumbers = [LineNumber]
LineNumber = int()

Options = [Option] | Option
Option = {verbose, bool()}
Query = string() | atom()

Reason = {invalid_options, term()} | {parse_error, string_position(), term()} |
{type_error, string()} | {type_mismatch, string(), string()} | {unknown_analysis,
term()} | {unknown_constant, string()} | {unknown_variable, variable()} |
{variable_reassigned, string()}

Xref = xref()

Evaluates a query [page 82] in the context of an Xref server [page 74], and returns the
value of the last statement. The syntax of the value depends on the expression:

o A set of calls is represented by a sorted list without duplicates of call().
¢ A set of constants is represented by a sorted list without duplicates of constant ().

A set of strongly connected components is a sorted list without duplicates of
Component.

o A set of calls between strongly connected components is a sorted list without
duplicates of ComponentCall.

e A chain of calls is represented by a list of constant (). The list contains the From
vertex of every call and the To vertex of the last call.

e The of operator returns false if no chain of calls between the given constants can
be found.

e The value of the closure operator (the digraph representation) is represented by
the atom ’closure()’.

e A set of line numbered functions is represented by a sorted list without duplicates
of DefineAt.

e A set of line numbered function calls is represented by a sorted list without
duplicates of CallAt.

e A set of line numbered functions and function calls is represented by a sorted list
without duplicates of A11Lines.

For both CallAt and AllLines it holds that for no list element is LineNumbers an
empty list; such elements have been removed. The constants of component and the
integers of LineNumbers are sorted and without duplicates.

remove_application(Xref, Applications) -> ok | Error

Types:

Applications = application() | [application()]
Error = {error, module(), Reason}

Reason = {no_such_application, application()}
Xref = xref()

Removes applications and their modules and module data [page 74] from an Xref
server [page 74].

remove_module (Xref, Modules) -> ok | Error

Tools 91

xref

Tools Reference Manual

Types:

e Error = {error, module(), Reason}

e Modules = module() | [module()]

e Reason = {no_such_module, module()}
o Xref = xref()

Removes analyzed modules [page 75] and module data [page 74] from an Xref server
[page 74].

remove_release(Xref, Releases) -> ok | Error

Types:

e Error = {error, module(), Reason}

e Reason = {no_such_release, release() }
o Releases = release() | [release()]

o Xref = xref()

Removes releases and their applications, modules and module data [page 74] from an
Xref server [page 74].

replace_application(Xref, Application, Directory [, Options]) -> {ok, application()}

| Error

Types:

e Application = application()

e Directory = directory()

e Error = {error, module(), Reason}

e Options = [Option] | Option

e Option = {builtins, bool()} | {verbose, bool()} | {warnings, bool()}

e Reason = {no_such_application, application()} | -seealsoadd_application-

o Xref = xref()

Replaces the modules of an application with other modules read from an application

directory. Release membership of the application is retained. Note that the name of the
application is kept; the name of the given directory is not used.

replacemodule(Xref, Module, File [, Options]) -> {ok, module()} | Error

92

Types:
e Error = {error, module(), Reason}
« File = file()

e Module = module()

¢ Options = [Option] | Option

e Option = {verbose, bool()} | {warnings, bool()}
e ReadModule = module()

e Reason = {module_mismatch, module(), ReadModule} | {no_such_module,
module()} | -seealsoadd_module-

o Xref = xref()

Tools

Tools Reference Manual xref

Replaces module data [page 74] of an analyzed module [page 75] with data read from a
BEAM file. Application membership of the module is retained, and so is the value of
the builtins option of the module. An error is returned if the name of the read
module differs from the given module.

The update function is an alternative for updating module data of recompiled modules.

set_default (Xref, Option, Value) -> {ok, 0ldValue} | Error
set_default(Xref, OptionValues) -> ok | Error

Types:

e Error = {error, module(), Reason}

¢ OptionValues = [OptionValue] | OptionValue

¢ OptionValue = {Option, Value}

e Option = builtins | recurse | verbose | warnings

e Reason = {invalid_options, term()}

¢ Value = bool()

o Xref = xref()

Sets the default value of one or more options. The options that can be set this way are:

e builtins, with initial default value false;
e recurse, with initial default value false;
e verbose, with initial default value false;
e warnings, with initial default value true.

The initial default values are set when creating an Xref server [page 74].

set_ library.path(Xref, LibraryPath [, Options]) -> ok | Error
Types:

Error = {error, module(), Reason}

LibraryPath = library_path()

Options = [Option] | Option

Option = {verbose, bool()}

Reason = {invalid_options, term()} | {invalid_path, term()}

Xref = xref()

Sets the library path [page 75]. If the given path is a list of directories, the set of library
modules [page 75] is determined by choosing the first module encountered while

traversing the directories in the given order, for those modules that occur in more than
one directory. By default, the library path is an empty list.

The library path code_path is used by the functions m/1 and d/1, but can also be set
explicitly. Note however that the code path will be traversed once for each used library
module [page 75] while setting up module data. On the other hand, if there are only a
few modules that are used by not analyzed, using code_path may be faster than setting
the library path to code:get_path().

If the library path is set to code_path, the set of library modules is not determined, and
the info functions will return empty lists of library modules.

start (Xref [, Options]) -> Return

Tools 93

xref Tools Reference Manual
Types:
¢ Options = [Option] | Option
e Option = {xref_mode, mode()} | term()
e Return = {ok, pid()} | {error, {already_started, pid()}}
o Xref = xref()
Creates an Xref server [page 74]. The default mode [page 74] is functions. Options
that are not recognized by Xref are passed on to gen_server:start/4.
stop (Xref)

Types:
o Xref = xref()
Stops an Xref server [page 74].

update (Xref [, Options]) -> {ok, Modules} | Error

Types:

e Error = {error, module(), Reason}

e Modules = [module()]

e Options = [Option] | Option

e Option = {verbose, bool()} | {warnings, bool()}

e Reason = {invalid_options, term()} | {module_mismatch, module(), ReadModule} |
-seealsoadd_module-

o Xref = xref()

Replaces the module data [page 74] of all analyzed modules [page 75] the BEAM files

of which have been modified since last read by an add function or update. Application

membership of the modules is retained, and so is the value of the builtins option.

Returns a sorted list of the names of the replaced modules.

variables(Xref [, Options]) -> {ok, [VariableInfo]}

94

Types:

e Options = [Option] | Option

e Option = predefined | user | {verbose, bool()}

e Reason = {invalid_options, term()}

e VariableInfo = {predefined, [variable()]} | {user, [variable()]}
o Xref = xref()

Returns a sorted lists of the names of the variables of an Xref server [page 74]. The
default is to return the user variables [page 77] only.

See Also

beam_lib(3), digraph(3), digraph_utils(3), regexp(3), TOOLS User’s Guide [page 18]

Tools

List of Figures

11
1.2

Definition and use of functions

Some predefined analyses as subsets of all functions

Tools

95

List of Figures

96 Tools

Glossary

BIF

Built-In Functions which perform operations that are impossible or inefficient to program in Erlang
itself. Are defined inthe module Erlang in the application kernel

Tools

97

Glossary

98 Tools

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

add_application/3
xref, 83

add_directory/3
xref , 83

add_module/3
xref , 83

add_release/3
xref , 84

all/o
make , 70

all/1
make , 70

allocator_descr/2
instrument , 65

analyse/0
cprof , 40
eprof , 45
fprof , 56

analyse/1
cover, 36
cprof , 40
fprof, 56, 57

analyse/2
cover, 36
cprof, 40
fprof, 56, 57

analyse/3
cover, 36

analyse_to_file/1
cover, 36

analyse_to_file/2
cover , 36

analyse_to_file/3
cover, 36

Tools

analyze/3
xref , 84

apply/2
fprof , 52

apply/3
fprof , 52

apply/4
fprof , 53

block_header_size/1
instrument , 65

class_descr/2
instrument , 65

compile/1
cover , 34

compile/2
cover, 34

compile_beam/1
cover, 35

compile_beam_directory/0
cover, 36

compile_beam_directory/1
cover , 36

compile_directory/0
cover, 35

compile_directory/1
cover, 35

compile_directory/2
cover, 35

compile_module/1
cover , 34

compile_module/2
cover, 34

99

Index of Modules and Functions

cover

analyse/1, 36
analyse/2, 36
analyse/3, 36
analyse_to_file/1, 36
analyse_to_file/2, 36
analyse_to_file/3, 36
compile/1, 34
compile/2, 34
compile_beam/1, 35
compile_beam_directory/0, 36
compile_beam_directory/1, 36
compile_directory/0, 35
compile_directory/1, 35
compile_directory/2, 35
compile_module/1, 34
compile_module/2, 34
export/1, 38
export/2, 38
import/1, 38
imported/0, 37
imported_modules/0, 37
is_compiled/1, 38
modules/0, 37
reset/0, 38

reset/1, 38

start/0, 34

start/1, 34

stop/0, 39

stop/1, 39
which_nodes/0, 37

cprof

analyse/0, 40
analyse/1, 40
analyse/2, 40
pause/0, 41
pause/1,41
pause/2, 41
pause/3, 41
restart/0, 41
restart/1, 41
restart/2, 41
restart/3,41
start/0, 42
start/1, 42
start/2, 42
start/3, 42
stop/0, 42
stop/1, 42
stop/2, 42
stop/3, 42

d/1

xref , 86

descr/1

instrument , 65

dir/2

tags, 72

dirs/2

tags, 72

eprof

analyse/0, 45
log/1,45
profile/1,44
profile/2,44
profile/4, 44
start/0, 44

start_profiling/1, 44

stop/0, 45

stop_profiling/0, 44
total_analyse/0, 45

export/1

cover, 38

export/2

cover, 38

file/2

tags, 72

files/1

make , 70

files/2

make , 70
tags, 72

forget/1

xref , 86

forget/2

xref , 86

format_error/1

xref , 86

fprof

Tools

analyse/0, 56

analyse/1, 56, 57
analyse/2, 56, 57

apply/2, 52
apply/3, 52
apply/4, 53
profile/0, 55
profile/1,55

Index of Modules and Functions

profile/2,55
start/0, 52
stop/0, 52
stop/1, 52
trace/1, 54
trace/2,53, 54

get_default/1
xref , 87

get_default/2
xref, 87

get_library_path/1
xref, 87

holes/1
instrument , 66

import/1
cover, 38

imported/0
cover, 37

imported_modules/0
cover, 37

info/1
xref, 87

info/2
xref, 87

info/3
xref , 87

instrument
allocator_descr/2, 65
block_header_size/1, 65
class_descr/2, 65
descr/1, 65
holes/1, 66
mem_limits/1, 66
memory_data/0, 66
memory_status/1, 66
read_memory_data/1, 67
read_memory_status/1, 67
sort/1, 68
store_memory_data/1, 68
store_memory_status/1, 68
sum_blocks/1, 68
type_descr/2, 69
type_no_range/1, 69

is_compiled/1
cover, 38

Tools

log/1
eprof , 45

m/1
xref, 90

make
all/o, 70
all/1, 70
files/1,70
files/2,70

mem_limits/1
instrument , 66

memory_data/0
instrument , 66

memory_status/1
instrument , 66

modules/0
cover , 37

pause/0
cprof, 41

pause/1
cprof, 41

pause/2
cprof, 41

pause/3
cprof, 41

profile/0
fprof, 55

profile/1
eprof , 44
fprof , 55

profile/2
eprof , 44
fprof , 55

profile/4
eprof , 44

q/3
xref, 90

read_memory_data/1
instrument , 67

read_memory_status/1
instrument , 67

101

Index of Modules and Functions

remove_application/2

xref , 91

remove_module/2

xref, 91

remove_release/2

xref, 92

replace_application/4

xref , 92

replace_module/4
xref , 92

reset/0
cover , 38

reset/1
cover , 38

restart/0
cprof, 41

restart/1
cprof, 41

restart/2
cprof, 41

restart/3
cprof, 41

root/1
tags, 72

set_default/2
xref , 93

set_default/3
xref , 93

set_library_path/3

xref, 93

sort/1
instrument , 68

start/0
cover , 34
cprof, 42
eprof , 44
fprof , 52

start/1
cover , 34
cprof, 42

start/2
cprof, 42
xref , 93

102

start/3
cprof , 42

start_profiling/1
eprof , 44

stop/0
cover, 39
cprof , 42
eprof , 45
fprof , 52

stop/1
cover, 39
cprof , 42
fprof , 52
xref , 94

stop/2
cprof , 42

stop/3
cprof , 42

stop_profiling/0
eprof , 44

store_memory_data/1

instrument , 68

store_memory_status/1

instrument , 68

subdir/2
tags, 72

subdirs/2
tags, 72

sum_blocks/1
instrument , 68

tags

dir/2,72
dirs/2,72
file/2, 72
files/2, 72
root/1, 72
subdir/2, 72
subdirs/2, 72

total_analyse/0
eprof, 45

trace/1
fprof, 54

trace/2
fprof, 53, 54

type_descr/2

Tools

Index of Modules and Functions

instrument , 69

type_no_range/1
instrument , 69

update/2
xref , 94

variables/2
xref, 94

which_nodes/0
cover, 37

xref
add_application/3, 83
add_directory/3, 83
add_module/3, 83
add_release/3, 84
analyze/3, 84
d/1, 86
forget/1, 86
forget/2, 86
format_error/1, 86
get_default/1, 87
get_default/2, 87
get_library_path/1, 87
info/1, 87
info/2, 87
info/3, 87
m/1, 90
q/3, 90
remove_application/2, 91
remove_module/2, 91
remove_release/2, 92
replace_application/4, 92
replace_module/4, 92
set_default/2, 93
set_default/3, 93
set_library_path/3, 93
start/2, 93
stop/1, 94
update/2, 94
variables/2, 94

Tools

103

Index of Modules and Functions

104 Tools

