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Chapter 1

Getting Started With Erlang

1.1 Introduction

1.1.1 Introduction

This is a “kick start” tutorial to get you started with Erlang. Everything here is true, but only part of the
truth. For example, I'll only tell you the simplest form of the syntax, not all esoteric forms. Where I've
greatly oversimplified things I'll write *manual* which means there is lots more information to be found
in the Erlang book or in the Erlang Reference Manual.

I also assume that this isn't the first time you have touched a computer and you have a basic idea about
how they are programmed. Don't worry, I won't assume you're a wizard programmer.

1.1.2 Things Left Out

In particular the following has been omitted:

� References

� Local error handling (catch/throw)

� Single direction links (monitor)

� Handling of binary data (binaries / bit syntax)

� List comprehensions

� How to communicate with the outside world and/or software written in other languages (ports).
There is however a separate tutorial for this, Interoperability Tutorial

� Very few of the Erlang libraries have been touched on (for example file handling)

� OTP has been totally skipped and in consequence the Mnesia database has been skipped.

� Hash tables for Erlang terms (ETS)

� Changing code in running systems
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1.2 Sequential Programming

1.2.1 The Erlang Shell

Most operating systems have a command interpreter or shell, Unix and Linux have many, Windows has
the Command Prompt. Erlang has its own shell where you can directly write bits of Erlang code and
evaluate (run) them to see what happens (*manual*). Start the Erlang shell (in Linux or UNIX) by
starting a shell or command interpreter in your operating system and typing erl, you will see something
like this.

% erl
Erlang (BEAM) emulator version 5.2 [source] [hipe]

Eshell V5.2 (abort with ^G)
1>

Now type in “2 + 5.” as shown below.

1> 2 + 5.
7
2>

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has numbered the lines that can be entered, (as 1> 2>) and that it
has correctly told you that 2 + 5 is 7! Also notice that you have to tell it you are done entering code by
finishing with a full stop “.” and a carriage return. If you make mistakes writing things in the shell, you
can delete things by using the backspace key as in most shells. There are many more editing commands
in the shell (*manual*).

(Note: you will find a lot of line numbers given by the shell out of sequence in this tutorial as it was
written and the code tested in several sessions).

Now let's try a more complex calculation.

2> (42 + 77) * 66 / 3.
2618.00

Here you can see the use of brackets and the multiplication operator “*” and division operator “/”, just
as in normal arithmetic (*manual*).

To shutdown the Erlang system and the Erlang shell type Control-C. You will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

a
%

Type “a” to leave the Erlang system.

Another way to shutdown the Erlang system is by entering halt():
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3> halt().
%

1.2.2 Modules and Functions

A programming language isn't much use if you can just run code from the shell. So here is a small
Erlang program. Enter it into a file called tut.erl (the file name tut.erl is important, also make sure
that it is in the same directory as the one where you started erl (*manual*) using a suitable text editor.
If you are lucky your editor will have an Erlang mode which will make it easier for you to enter and
format your code nicely (*manual*), but you can manage perfectly well without. Here's the code to
enter:

-module(tut).
-export([double/1]).

double(X) ->
2 * X.

It's not hard to guess that this “program” doubles the value of numbers. I'll get back to the first two
lines later. Let's compile the program. This can be done in your Erlang shell as shown below:

3> c(tut).
fok,tutg

The fok,tutg tells you that the compilation was OK. If it said “error” instead, you have made some
mistake in the text you entered and there will also be error messages to give you some idea as to what
has gone wrong so you can change what you have written and try again.

Now lets run the program.

4> tut:double(10).
20

As expected double of 10 is 20.

Now let's get back to the first two lines. Erlang programs are written in files. Each file contains what we
call an Erlang module. The first line of code in the module tells us the name of the module (*manual*).

-module(tut).

This tells us that the module is called tut. Note the “.” at the end of the line. The files which are used to
store the module must have the same name as the module but with the extension “.erl”. In our case the
file name is tut.erl. When we use a function in another module, we use the syntax,
module name:function name(arguments). So

4> tut:double(10).

means call function double in module tut with argument “10”.

The second line:
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-export([double/1]).

says that the module tut contains a function called double which takes one argument (X in our
example) and that this function can be called from outside the module tut. More about this later.
Again note the “.” at the end of the line.

Now for a more complicated example, the factorial of a number (e.g. factorial of 4 is 4 * 3 * 2 * 1).
Enter the following code in a file called tut1.erl.

-module(tut1).
-export([fac/1]).

fac(1) ->
1;

fac(N) ->
N * fac(N - 1).

Compile the file

5> c(tut1).
fok,tut1g

And now calculate the factorial of 4.

6> tut1:fac(4).
24

The first part:

fac(1) ->
1;

says that the factorial of 1 is 1. Note that we end this part with a “;” which indicates that there is more
of this function to come. The second part:

fac(N) ->
N * fac(N - 1).

says that the factorial of N is N multiplied by the factorial of N - 1. Note that this part ends with a “.”
saying that there are no more parts of this function.

A function can have many arguments. Let's expand the module tut1 with the rather stupid function to
multiply two numbers:
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-module(tut1).
-export([fac/1, mult/2]).

fac(1) ->
1;

fac(N) ->
N * fac(N - 1).

mult(X, Y) ->
X * Y.

Note that we have also had to expand the -export line with the information that there is another
function mult with two arguments.

Compile:

7> c(tut1).
fok,tut1g

and try it out:

8> tut1:mult(3,4).
12

In the example above the numbers are integers and the arguments in the functions in the code, N, X, Y
are called variables. Variables must start with a capital letter (*manual*). Examples of variable could be
Number, ShoeSize, Age etc.

1.2.3 Atoms

Atoms are another data type in Erlang. Atoms start with a small letter (*manual*), for example:
charles, centimeter, inch. Atoms are simply names, nothing else. They are not like variables which
can have a value.

Enter the next program (file: tut2.erl) which could be useful for converting from inches to
centimeters and vice versa:

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
M / 2.54;

convert(N, centimeter) ->
N * 2.54.

Compile and test:
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9> c(tut2).
fok,tut2g
10> tut2:convert(3, inch).
1.18110
11> tut2:convert(7, centimeter).
17.7800

Notice that I have introduced decimals (floating point numbers) without any explanation, but I guess
you can cope with that.

See what happens if I enter something other than centimeter or inch in the convert function:

13> tut2:convert(3, miles).

=ERROR REPORT==== 28-May-2003::18:36:27 ===
Error in process <0.25.0> with exit value: ffunction clause,[ftut2,convert,[3,miles]g,ferl eval,expr,3g
** exited: ffunction clause,[ftut2,convert,[3,miles]g,

ferl eval,expr,3g,
ferl eval,exprs,4g,
fshell,eval loop,2g]g **

The two parts of the convert function are called its clauses. Here we see that “miles” is not part of
either of the clauses. The Erlang system can't match either of the clauses so we get an error message
function clause. The above output looks rather a mess, but with a little practice, you can see from it
exactly where in the code the error occurred.

1.2.4 Tuples

Now the tut2 program is hardly good programming style. Consider:

tut2:convert(3, inch).

Does this mean that 3 is in inches? or that 3 is in centimeters and we want to convert it to inches? So
Erlang has a way to group things together to make things more understandable. We call these tuples.
Tuples are surrounded by “f” and “g”.

So we can write finch,3g to denote 3 inches and fcentimeter,5g to denote 5 centimeters. Now let's
write a new program which converts centimeters to inches and vice versa. (file tut3.erl).

-module(tut3).
-export([convert_length/1]).

convert_length({centimeter, X}) ->
{inch, X / 2.54};

convert_length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:
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14> c(tut3).
fok,tut3g
15> tut3:convert length(finch, 5g).
fcentimeter,12.7000g
16> tut3:convert length(tut3:convert length(finch, 5g)).
finch,5.00000g

Note on line 16 we convert 5 inches to centimeters and back again and reassuringly get back to the
original value. I.e the argument to a function can be the result of another function. Pause for a moment
and consider how line 16 (above) works. The argument we have given the function finch,5g is first
matched against the first head clause of convert length i.e. convert length(fcentimeter,Xg) where
it can be seen that fcentimeter,Xg does not match finch,5g (the head is the bit before the “->”). This
having failed, we try the head of the next clause i.e. convert length(finch,Yg), this matches and Y
get the value 5.

We have shown tuples with two parts above, but tuples can have as many parts as we want and contain
any valid Erlang term. For example, to represent the temperature of various cities of the world we could
write

{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of things in them. We call each thing in a tuple an element. So in the tuple
fmoscow,fc,-10gg, element 1 is moscow and element 2 is fc,-10g. I have chosen c meaning
Centigrade (or Celsius) and f meaning Fahrenheit.

1.2.5 Lists

Whereas tuples group things together, we also want to be able to represent lists of things. Lists in Erlang
are surrounded by “[” and “]”. For example a list of the temperatures of various cities in the world could
be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Note that this list was so long that it didn't fit on one line. This doesn't matter, Erlang allows line breaks
at all “sensible places” but not, for example, in the middle of atoms, integers etc.

A very useful way of looking at parts of lists, is by using “|”. This is best explained by an example using
the shell.

18> [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]
19> First.
1
20> TheRest.
[2,3,4,5]
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We use | to separate the first elements of the list from the rest of the list. (First has got value 1 and
TheRest value [2,3,4,5]).

Another example:

21> [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]
22> E1.
1
23> E2.
2
24> R.
[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more
elements from the list than there are elements in the list we will get an error. Note also the special case
of the list with no elements [].

25> [A, B | C] = [1, 2].
[1,2]
26> A.
1
27> B.
2
28> C.
[]

In all the examples above, I have been using new variable names, not reusing the old ones: First,
TheRest, E1, E2, R, A, B, C. The reason for this is that a variable can only be given a value once in its
context (scope). I'll get back to this later, it isn't so peculiar as it sounds!

The following example shows how we find the length of a list:

-module(tut4).

-export([list_length/1]).

list_length([]) ->
0;

list_length([First | Rest]) ->
1 + list_length(Rest).

Compile (file tut4.erl) and test:

29> c(tut4).
fok,tut4g
30> tut4:list length([1,2,3,4,5,6,7]).
7

Explanation:
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list_length([]) ->
0;

The length of an empty list is obviously 0.

list_length([First | Rest]) ->
1 + list_length(Rest).

The length of a list with the first element First and the remaining elements Rest is 1 + the length of
Rest.

(Advanced readers only: This is not tail recursive, there is a better way to write this function).

In general we can say we use tuples where we would use “records” or “structs” in other languages and
we use lists when we want to represent things which have varying sizes, (i.e. where we would use linked
lists in other languages).

Erlang does not have a string date type, instead strings can be represented by lists of ASCII characters.
So the list [97,98,99] is equivalent to “abc”. The Erlang shell is “clever” and guesses the what sort of
list we mean and outputs it in what it thinks is the most appropriate form, for example:

31> [97,98,99].
"abc"

1.2.6 Standard Modules and Manual Pages

Erlang has a lot of standard modules to help you do things. For example, the module io contains a lot of
functions to help you do formatted input/output. To look up information about standard modules, the
command erl -man can be used at the operating shell or command prompt (i.e. at the same place as
that where you started erl). Try the operating system shell command:

% erl -man io
ERLANG MODULE DEFINITION io(3)

MODULE
io - Standard I/O Server Interface Functions

DESCRIPTION
This module provides an interface to standard Erlang IO
servers. The output functions all return ok if they are suc-
...

If this doesn't work on your system, the documentation is included as HTML in the Erlang/OTP
release, or you can read the documentation as HTML or download it as PDF from either of the sites
www.erlang.se (commercial Erlang) or www.erlang.org (open source), for example for release R9B:

http://www.erlang.org/doc/r9b/doc/index.html
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1.2.7 Writing Output to a Terminal

It's nice to be able to do formatted output in these example, so the next example shows a simple way to
use to use the io:format function. Of course, just like all other exported functions, you can test the
io:format function in the shell:

32> io:format("hello world~n", []).
hello world
ok
33> io:format("this outputs one Erlang term: ~w~n", [hello]).
this outputs one Erlang term: hello
ok
34> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld
ok
35> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world
ok

The function format/2 (i.e. format with two arguments) takes two lists. The first one is nearly always a
list written between “ ”. This list is printed out as it stands, except that each ~w is replaced by a term
taken in order from the second list. Each ~n is replaced by a new line. The io:format/2 function itself
returns the atom ok if everything goes as planned. Like other functions in Erlang, it crashes if an error
occurs. This is not a fault in Erlang, it is a deliberate policy. Erlang has sophisticated mechanisms to
handle errors which we will show later. As an exercise, try to make io:format crash, it shouldn't be
difficult. But notice that although io:format crashes, the Erlang shell itself does not crash.

1.2.8 A Larger Example

Now for a larger example to consolidate what we have learnt so far. Assume we have a list of
temperature readings from a number of cities in the world. Some of them are in Celsius (Centigrade)
and some in Fahrenheit (as in the previous list). First let's convert them all to Celsius, then let's print
out the data neatly.

%% This module is in file tut5.erl

-module(tut5).
-export([format_temps/1]).

%% Only this function is exported
format_temps([])-> % No output for an empty list

ok;
format_temps([City | Rest]) ->

print_temp(convert_to_celsius(City)),
format_temps(Rest).

convert_to_celsius({Name, {c, Temp}}) -> % No conversion needed
{Name, {c, Temp}};

convert_to_celsius({Name, {f, Temp}}) -> % Do the conversion
{Name, {c, (Temp - 32) * 5 / 9}}.
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print_temp({Name, {c, Temp}}) ->
io:format("~-15w ~w c~n", [Name, Temp]).

36> c(tut5).
fok,tut5g
37> tut5:format temps([fmoscow, fc, -10gg, fcape town, ff, 70gg,
fstockholm, fc, -4gg, fparis, ff, 28gg, flondon, ff, 36gg]).
moscow -10 c
cape town 21.1111 c
stockholm -4 c
paris -2.22222 c
london 2.22222 c
ok

Before we look at how this program works, notice that we have added a few comments to the code. A
comment starts with a % character and goes on to the end of the line. Note as well that the
-export([format temps/1]). line only includes the function format temps/1, the other functions are
local functions, i.e. they are not visible from outside the module tut5.

Note as well that when testing the program from the shell, I had to spread the input over two lines as
the line was too long.

When we call format temps the first time, City gets the value fmoscow,fc,-10gg and Rest is the rest
of the list. So we call the function print temp(convert to celsius(fmoscow,fc,-10gg)).

Here we see a function call as convert to celsius(fmoscow,fc,-10gg) as the argument to the
function print temp. When we nest function calls like this we execute (evaluate) them from the inside
out. I.e. we first evaluate convert to celsius(fmoscow,fc,-10gg) which gives the value
fmoscow,fc,-10gg as the temperature is already in Celsius and then we evaluate
print temp(fmoscow,fc,-10gg). The function convert to celsius works in a similar way to the
convert length function in the previous example.

print temp simply calls io:format in a similar way to what has been described above. Note that ~-15w
says to print the “term” with a field length (width) of 15 and left justify it. (*manual*).

Now we call format temps(Rest) with the rest of the list as an argument. This way of doing things is
similar to the loop constructs in other languages. (Yes, this is recursion, but don't let that worry you).
So the same format temps function is called again, this time City gets the value fcape town,ff,70gg
and we repeat the same procedure as before. We go on doing this until the list becomes empty, i.e. [],
which causes the first clause format temps([]) to match. This simply returns (results in) the atom ok,
so the program ends.

1.2.9 Matching, Guards and Scope of Variables

It could be useful to find the maximum and minimum temperature in lists like this. Before extending
the program to do this, let's look at functions for finding the maximum value of the elements in a list:

-module(tut6).
-export([list_max/1]).

list_max([Head|Rest]) ->
list_max(Rest, Head).

list_max([], Res) ->
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Res;
list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->

list_max(Rest, Head);
list_max([Head|Rest], Result_so_far) ->

list_max(Rest, Result_so_far).

39> c(tut6).
fok,tut6g
40> tut6:list max([1,2,3,4,5,7,4,3,2,1]).
7

First note that we have two functions here with the same name list max. However each of these takes
a different number of arguments (parameters). In Erlang these are regarded as completely different
functions. Where we need to distinguish between these functions we write name/arity, where name is
the name of the function and arity is the number of arguments, in this case list max/1 and
list max/2.

This is an example where we walk through a list “carrying” a value with us, in this case Result so far.
list max/1 simply assumes that the max value of the list is the head of the list and calls list max/2
with the rest of the list and the value of the head of the list, in the above this would be
list max([2,3,4,5,7,4,3,2,1],1). If we tried to use list max/1 with an empty list or tried to use it
with something which isn't a list at all, we would cause an error. Note that the Erlang philosophy is not
to handle errors of this type in the function they occur, but to do so elsewhere. More about this later.

In list max/2 we walk down the list and use Head instead of Result so far when Head >
Result so far. when is a special word we use before the -> in the function to say that we should only
use this part of the function if the test which follows is true. We call tests of this type a guard. If the
guard isn't true (we say the guard fails), we try the next part of the function. In this case if Head isn't
greater than Result so far then it must be smaller or equal to is, so we don't need a guard on the next
part of the function.

Some useful operators in guards are, < less than, > greater than, == equal, >= greater or equal, <= less
or equal, /= not equal. (*manual*).

To change the above program to one which works out the minimum value of the element in a list, all
we would need to do is to write < instead of >. (But it would be wise to change the name of the
function to list min :-).

Remember that I mentioned earlier that a variable could only be given a value once in its scope? In the
above we see, for example, that Result so far has been given several values. This is OK since every
time we call list max/2 we create a new scope and one can regard the Result so far as a completely
different variable in each scope.

Another way of creating and giving a variable a value is by using the match operator = . So if I write M =
5, a variable called M will be created and given the value 5. If, in the same scope I then write M = 6, I'll
get an error. Try this out in the shell:

41> M = 5.
5
42> M = 6.
** exited: ffbadmatch,6g,[ferl eval,expr,3g]g **
43> M = M + 1.
** exited: ffbadmatch,6g,[ferl eval,expr,3g]g **
44> N = M + 1.
6
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The use of the match operator is particularly useful for pulling apart Erlang terms and creating new
ones.

45> fX, Yg = fparis, ff, 28gg.
fparis,ff,28gg
46> X.
paris
47> Y.
ff,28g

Here we see that X gets the value paris and Y ff,28g.

Of course if we try to do the same again with another city, we get an error:

49> fX, Yg = flondon, ff, 36gg.
** exited: ffbadmatch,flondon,ff,36ggg,[ferl eval,expr,3g]g **

Variables can also be used to improve the readability of programs, for example, in the list max/2
function above, we could write:

list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
New_result_far = Head,
list_max(Rest, New_result_far);

which is possibly a little clearer.

1.2.10 More About Lists

Remember that the | operator can be used to get the head of a list:

50> [M1|T1] = [paris, london, rome].
[paris,london,rome]
51> M1.
paris
52> T1.
[london,rome]

The | operator can also be used to add a head to a list:

53> L1 = [madrid | T1].
[madrid,london,rome]
54> L1.
[madrid,london,rome]

Now an example of this when working with lists - reversing the order of a list:
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-module(tut8).

-export([reverse/1]).

reverse(List) ->
reverse(List, []).

reverse([Head | Rest], Reversed_List) ->
reverse(Rest, [Head | Reversed_List]);

reverse([], Reversed_List) ->
Reversed_List.

56> c(tut8).
fok,tut8g
57> tut8:reverse([1,2,3]).
[3,2,1]

Consider how Reversed List is built. It starts as [], we then successively take off the heads of the list
to be reversed and add them to the the Reversed List, as shown in the following:

reverse([1|2,3], []) =>
reverse([2,3], [1|[]])

reverse([2|3], [1]) =>
reverse([3], [2|[1])

reverse([3|[]], [2,1]) =>
reverse([], [3|[2,1]])

reverse([], [3,2,1]) =>
[3,2,1]

The module lists contains a lot of functions for manipulating lists, for example for reversing them, so
before you write a list manipulating function it is a good idea to check that one isn't already written for
you. (*manual*).

Now lets get back to the cities and temperatures, but take a more structured approach this time. First
let's convert the whole list to Celsius as follows and test the function:

-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
convert_list_to_c(List_of_cities).

convert_list_to_c([{Name, {f, F}} | Rest]) ->
Converted_City = {Name, {c, (F -32)* 5 / 9}},
[Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
[City | convert_list_to_c(Rest)];
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convert_list_to_c([]) ->
[].

58> c(tut7).
fok, tut7g.
59> tut7:format temps([fmoscow, fc, -10gg, fcape town, ff, 70gg,
fstockholm, fc, -4gg, fparis, ff, 28gg, flondon, ff, 36gg]).
[fmoscow,fc,-10gg,
fcape town,fc,21.1111gg,
fstockholm,fc,-4gg,
fparis,fc,-2.22222gg,
flondon,fc,2.22222gg]

Looking at this bit by bit:

format_temps(List_of_cities) ->
convert_list_to_c(List_of_cities, []).

Here we see that format temps/1 calls convert list to c/1. convert list to c/1 takes off the head
of the List of cities, converts it to Celsius if needed. The | operator is used to add the (maybe)
converted to the converted rest of the list:

[Converted_City | convert_list_to_c(Rest)];

or

[City | convert_list_to_c(Rest)];

We go on doing this until we get to the end of the list (i.e. the list is empty:

convert_list_to_c([]) ->
[].

Now we have converted the list, we add a function to print it:

-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
Converted_List = convert_list_to_c(List_of_cities),
print_temp(Converted_List).

convert_list_to_c([{Name, {f, F}} | Rest]) ->
Converted_City = {Name, {c, (F -32)* 5 / 9}},
[Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
[City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
[].
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print_temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Temp]),
print_temp(Rest);

print_temp([]) ->
ok.

60> c(tut7).
fok,tut7g
61> tut7:format temps([fmoscow, fc, -10gg, fcape town, ff, 70gg,
fstockholm, fc, -4gg, fparis, ff, 28gg, flondon, ff, 36gg]).

moscow -10 c
cape town 21.1111 c
stockholm -4 c
paris -2.22222 c
london 2.22222 c
ok

We now have to add a function to find the cities with the maximum and minimum temperatures. The
program below isn't the most efficient way of doing this as we walk through the list of cities four times.
But it is better to first strive for clarity and correctness and to make programs efficient only if really
needed.

-module(tut7).
-export([format_temps/1]).

format_temps(List_of_cities) ->
Converted_List = convert_list_to_c(List_of_cities),
print_temp(Converted_List),
{Max_city, Min_city} = find_max_and_min(Converted_List),
print_max_and_min(Max_city, Min_city).

convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
[Converted_City | convert_list_to_c(Rest)];

convert_list_to_c([City | Rest]) ->
[City | convert_list_to_c(Rest)];

convert_list_to_c([]) ->
[].

print_temp([{Name, {c, Temp}} | Rest]) ->
io:format("~-15w ~w c~n", [Name, Temp]),
print_temp(Rest);

print_temp([]) ->
ok.

find_max_and_min([City | Rest]) ->
find_max_and_min(Rest, City, City).

find_max_and_min([{Name, {c, Temp}} | Rest],
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{Max_Name, {c, Max_Temp}},
{Min_Name, {c, Min_Temp}}) ->

if
Temp > Max_Temp ->

Max_City = {Name, {c, Temp}}; % Change
true ->

Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
end,
if

Temp < Min_Temp ->
Min_City = {Name, {c, Temp}}; % Change

true ->
Min_City = {Min_Name, {c, Min_Temp}} % Unchanged

end,
find_max_and_min(Rest, Max_City, Min_City);

find_max_and_min([], Max_City, Min_City) ->
{Max_City, Min_City}.

print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).

62> c(tut7).
fok, tut7g
63> tut7:format temps([fmoscow, fc, -10gg, fcape town, ff, 70gg,
fstockholm, fc, -4gg, fparis, ff, 28gg, flondon, ff, 36gg]).
moscow -10 c
cape town 21.1111 c
stockholm -4 c
paris -2.22222 c
london 2.22222 c
Max temperature was 21.1111 c in cape town
Min temperature was -10 c in moscow
ok

1.2.11 If and Case

The function find max and min works out the maximum and minimum temperature. We have
introduced a new construct here if. If works as follows:

if
Condition 1 ->

Action 1;
Condition 2 ->

Action 2;
Condition 3 ->

Action 3;
Condition 4 ->

Action 4
end
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Note there is no “;” before end! Conditions are the same as guards, tests which succeed or fail. Erlang
starts at the top until it finds a condition which succeeds and then it evaluates (performs) the action
following the condition and ignores all other conditions and action before the end. If no condition
matches, there will be a run-time failure. A condition which always is succeeds is the atom, true and
this is often used last in an if meaning do the action following the true if all other conditions have
failed.

The following is a short program to show the workings of if.

-module(tut9).
-export([test_if/2]).

test_if(A, B) ->
if

A == 5 ->
io:format("A = 5~n", []),
a_equals_5;

B == 6 ->
io:format("B = 6~n", []),
b_equals_6;

A == 2, B == 3 -> %i.e. A equals 2 and B equals 3
io:format("A == 2, B == 3~n", []),
a_equals_2_b_equals_3;

A == 1 ; B == 7 -> %i.e. A equals 1 or B equals 7
io:format("A == 1 ; B == 7~n", []),
a_equals_1_or_b_equals_7

end.

Testing this program gives:

64> c(tut9).
fok,tut9g
65> tut9:test if(5,33).
A = 5
a equals 5
66> tut9:test if(33,6).
B = 6
b equals 6
67> tut9:test if(2, 3).
A == 2, B == 3
a equals 2 b equals 3
68> tut9:test if(1, 33).
A == 1 ; B == 7
a equals 1 or b equals 7
69> tut9:test if(33, 7).
A == 1 ; B == 7
a equals 1 or b equals 7
70> tut9:test if(33, 33).

=ERROR REPORT==== 11-Jun-2003::14:03:43 ===
Error in process <0.85.0> with exit value:
fif clause,[ftut9,test if,2g,ferl eval,exprs,4g,fshell,eval loop,2g]g
** exited: fif clause,[ftut9,test if,2g,
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ferl eval,exprs,4g,
fshell,eval loop,2g]g **

Notice that tut9:test if(33,33) did not cause any condition to succeed so we got the run time error
if clause. See the (*manual*) for details of the many guard tests available. case is another construct in
Erlang. Recall that we wrote the convert length function as:

convert_length({centimeter, X}) ->
{inch, X / 2.54};

convert_length({inch, Y}) ->
{centimeter, Y * 2.54}.

We could also write the same program as:

-module(tut10).
-export([convert_length/1]).

convert_length(Length) ->
case Length of

{centimeter, X} ->
{inch, X / 2.54};

{inch, Y} ->
{centimeter, Y * 2.54}

end.

71> c(tut10).
fok,tut10g
72> tut10:convert length(finch, 6g).
fcentimeter,15.2400g
73> tut10:convert length(fcentimeter, 2.5g).
finch,0.98425g

Notice that both case and if have return values, i.e. in the above example case returned either
finch,X/2.54g or fcentimeter,Y*2.54g. The behaviour of case can also be modified by using guards.
An example should hopefully clarify this. The following example tells us the length of a month, given
the year. We need to know the year of course, since February has 29 days in a leap year.

-module(tut11).
-export([month_length/2]).

month_length(Year, Month) ->
%% All years divisible by 400 are leap
%% Years divisible by 100 are not leap (except the 400 rule above)
%% Years divisible by 4 are leap (except the 100 rule above)
Leap = if

trunc(Year / 400) * 400 == Year ->
leap;

trunc(Year / 100) * 100 == Year ->
not_leap;

trunc(Year / 4) * 4 == Year ->
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leap;
true ->

not_leap
end,
case Month of

sep -> 30;
apr -> 30;
jun -> 30;
nov -> 30;
feb when Leap == leap -> 29;
feb -> 28;
jan -> 31;
mar -> 31;
may -> 31;
jul -> 31;
aug -> 31;
oct -> 31;
dec -> 31

end.

74> c(tut11).
fok,tut11g
75> tut11:month length(2004, feb).
29
76> tut11:month length(2003, feb).
28
77> tut11:month length(1947, aug).
31

1.2.12 Built In Functions (BIFs)

Built in functions BIFs are functions which for some reason is built in to the Erlang virtual machine.
BIFs often implement functionality that is impossible to implement in Erlang or is to inefficient to
implement in Erlang. Some BIFs can be called by use of the function name only but they are by default
belonging to the erlang module so for example the call to the BIF trunc below is equivalent with a call
to erlang:trunc.

As you can see, we first find out if a year is leap or not. If a year is divisible by 400, it is a leap year. To
find this out we first divide the year by 400 and use the built in function trunc (more later) to cut off
any decimals. We then multiply by 400 again and see if we get back the same value. For example, year
2004:

2004 / 400 = 5.01
trunc(5.01) = 5
5 * 400 = 2000

and we can see that we got back 2000 which is not the same as 2004, so 2004 isn't divisible by 400.
Year 2000:

2000 / 400 = 5.0
trunc(5.0) = 5
5 * 400 = 2000
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so we have a leap year. The next two tests if the year is divisible by 100 or 4 are done in the same way.
The first if returns leap or not leap which lands up in the variable Leap. We use this variable in the
guard for feb in the following case which tells us how long the month is.

This example showed the use of trunc, an easier way would be to use the Erlang operator rem which
gives the remainder after division. For example:

2> 2004 rem 400.
4

so instead of writing

trunc(Year / 400) * 400 == Year ->
leap;

we could write

Year rem 400 == 0 ->
leap;

There are many other built in functions (BIF) such as trunc. Only a few built in functions can be used
in guards, and you cannot use functions you have defined yourself in guards. (*manual*) (Aside for
advanced readers: This is to ensure that guards don't have side effects). Let's play with a few of these
functions in the shell:

78> trunc(5.6).
5
79> round(5.6).
6
80> length([a,b,c,d]).
4
81> float(5).
5.00000
82> is atom(hello).
true
83> is atom("hello").
false
84> is tuple(fparis, fc, 30gg).
true
85> is tuple([paris, fc, 30g]).
false

All the above can be used in guards. Now for some which can't be used in guards:

87> atom to list(hello).
"hello"
88> list to atom("goodbye").
goodbye
89> integer to list(22).
"22"

The 3 BIFs above do conversions which would be difficult (or impossible) to do in Erlang.
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1.2.13 Higher Order Functions (Funs)

Erlang, like most modern functional programing languages, has higher order functions. We start with an
example using the shell:

90> Xf = fun(X) -> X * 2 end.
#Fun<erl eval.5.123085357>
91> Xf(5).
10

What we have done here is to define a function which doubles the value of number and assign this
function to a variable. Thus Xf(5) returned the value 10. Two useful functions when working with lists
are foreach and map, which are defined as follows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);

foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First)|map(Fun,Rest)];

map(Fun, []) ->
[].

These two functions are provided in the standard module lists. foreach takes a list and applies a fun
to every element in the list, map creates a new list by applying a fun to every element in a list. Going
back to the shell, we start by using map and a fun to add 3 to every element of a list:

92> Add 3 = fun(X) -> X + 3 end.
#Fun<erl eval.5.123085357>
93> lists:map(Add 3, [1,2,3]).
[4,5,6]

Now lets print out the temperatures in a list of cities (yet again):

95> Print City = fun(fCity, fX, Tempgg) -> io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun<erl eval.5.123085357>
96> lists:foreach(Print City, [fmoscow, fc, -10gg, fcape town, ff, 70gg,
fstockholm, fc, -4gg, fparis, ff, 28gg, flondon, ff, 36gg]).

moscow c -10
cape town f 70
stockholm c -4
paris f 28
london f 36
ok

We will now define a fun which can be used to go through a list of cities and temperatures and
transform them all to Celsius.
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-module(tut13).

-export([convert_list_to_c/1]).

convert_to_c({Name, {f, Temp}}) ->
{Name, {c, trunc((Temp - 32) * 5 / 9)}};

convert_to_c({Name, {c, Temp}}) ->
{Name, {c, Temp}}.

convert_list_to_c(List) ->
lists:map(fun convert_to_c/1, List).

98> tut13:convert list to c([fmoscow, fc, -10gg, fcape town, ff, 70gg,
fstockholm, fc, -4gg, fparis, ff, 28gg, flondon, ff, 36gg]).
[fmoscow,fc,-10gg,
fcape town,fc,21gg,
fstockholm,fc,-4gg,
fparis,fc,-2gg,
flondon,fc,2gg]

The convert to c function is the same as before, but we use it as a fun:

lists:map(fun convert_to_c/1, List)

When we use a function defined elsewhere as a fun we can refer to it as Function/Arity (remember
that Arity = number of arguments). So in the map call we write lists:map(fun convert to c/1,
List). As you can see convert list to c becomes much shorter and easier to understand.

The standard module lists also contains a function sort(Fun, List) where Fun is a fun with two
arguments. This fun should return true if the the first argument is less than the second argument, or
else false. We add sorting to the convert list to c:

-module(tut13).

-export([convert_list_to_c/1]).

convert_to_c({Name, {f, Temp}}) ->
{Name, {c, trunc((Temp - 32) * 5 / 9)}};

convert_to_c({Name, {c, Temp}}) ->
{Name, {c, Temp}}.

convert_list_to_c(List) ->
New_list = lists:map(fun convert_to_c/1, List),
lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) ->

Temp1 < Temp2 end, New_list).

99> c(tut13).
fok,tut13g
100> tut13:convert list to c([fmoscow, fc, -10gg, fcape town, ff, 70gg,
fstockholm, fc, -4gg, fparis, ff, 28gg, flondon, ff, 36gg]).
[fmoscow,fc,-10gg,
fstockholm,fc,-4gg,
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fparis,fc,-2gg,
flondon,fc,2gg,
fcape town,fc,21gg]

In sort we use the fun:

fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

Here we introduce the concept of an anonymous variable “ ”. This is simply shorthand for a variable
which is going to get a value, but we will ignore the value. This can be used anywhere suitable, not just
in fun's. Temp1 < Temp2 returns true if Temp1 is less than Temp2.

1.3 Concurrent Programming

1.3.1 Processes

One of the main reasons for using Erlang instead of other functional languages is Erlang's ability to
handle concurrency and distributed programming. By concurrency we mean programs which can
handle several threads of execution at the same time. For example, modern operating systems would
allow you to use a word processor, a spreadsheet, a mail client and a print job all running at the same
time. Of course each processor (CPU) in the system is probably only handling one thread (or job) at a
time, but it swaps between the jobs a such a rate that it gives the illusion of running them all at the
same time. It is easy to create parallel threads of execution in an Erlang program and it is easy to allow
these threads to communicate with each other. In Erlang we call each thread of execution a process.

(Aside: the term “process” is usually used when the threads of execution share no data with each other
and the term “thread” when they share data in some way. Threads of execution in Erlang share no data,
that's why we call them processes).

The Erlang BIF spawn is used to create a new process: spawn(Module, Exported Function, List of
Arguments). Consider the following module:

-module(tut14).

-export([start/0, say_something/2]).

say_something(What, 0) ->
done;

say_something(What, Times) ->
io:format("~p~n", [What]),
say_something(What, Times - 1).

start() ->
spawn(tut14, say_something, [hello, 3]),
spawn(tut14, say_something, [goodbye, 3]).
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5> c(tut14).
fok,tut14g
6> tut14:say something(hello, 3).
hello
hello
hello
done

We can see that function say something writes its first argument the number of times specified by
second argument. Now look at the function start. It starts two Erlang processes, one which writes
“hello” three times and one which writes “goodbye” three times. Both of these processes use the
function say something. Note that a function used in this way by spawn to start a process must be
exported from the module (i.e. in the -export at the start of the module).

9> tut14:start().
hello
goodbye
<0.63.0>
hello
goodbye
hello
goodbye

Notice that it didn't write “hello” three times and then “goodbye” three times, but the first process
wrote a “hello”, the second a “goodbye”, the first another “hello” and so forth. But where did the
<0.63.0> come from? The return value of a function is of course the return value of the last “thing” in
the function. The last thing in the function start is

spawn(tut14, say_something, [goodbye, 3]).

spawn returns a process identifier, or pid, which uniquely identifies the process. So <0.63.0> is the pid
of the spawn function call above. We will see how to use pids in the next example.

Note as well that we have used ~p instead of ~w in io:format. To quote the manual: “~p Writes the
data with standard syntax in the same way as ~w, but breaks terms whose printed representation is
longer than one line into many lines and indents each line sensibly. It also tries to detect lists of
printable characters and to output these as strings”.

1.3.2 Message Passing

In the following example we create two processes which send messages to each other a number of times.

-module(tut15).

-export([start/0, ping/2, pong/0]).

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished~n", []);
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ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_PID).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start() ->
Pong_PID = spawn(tut15, pong, []),
spawn(tut15, ping, [3, Pong_PID]).

1> c(tut15).
fok,tut15g
2> tut15: start().
<0.36.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
ping finished
Pong finished

The function start first creates a process, let's call it “pong”:

Pong_PID = spawn(tut15, pong, [])

This process executes tut15:pong(). Pong PID is the process identity of the “pong” process. The
function start now creates another process “ping”.

spawn(tut15, ping, [3, Pong_PID]),

this process executes

tut15:ping(3, Pong_PID)

<0.36.0> is the return value from the start function.

The process “pong” now does:
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receive
finished ->

io:format("Pong finished~n", []);
{ping, Ping_PID} ->

io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

The receive construct is used to allow processes to wait for messages from other processes. It has the
format:

receive
pattern1 ->

actions1;
pattern2 ->

actions2;
....
patternN

actionsN
end.

Note: no “;” before the end.

Messages between Erlang processes are simply valid Erlang terms. I.e. they can be lists, tuples, integers,
atoms, pids etc.

Each process has its own input queue for messages it receives. New messages received are put at the
end of the queue. When a process executes a receive, the first message in the queue is matched against
the first pattern in the receive, if this matches, the message is removed from the queue and the actions
corresponding to the the pattern are executed.

However, if the first pattern does not match, the second pattern is tested, if this matches the message is
removed from the queue and the actions corresponding to the second pattern are executed. If the
second pattern does not match the third is tried and so on until there are no more pattern to test. If
there are no more patterns to test, the first message is kept in the queue and we try the second message
instead. If this matches any pattern, the appropriate actions are executed and the second message is
removed from the queue (keeping the first message and any other messages in the queue). If the second
message does not match we try the third message and so on until we reach the end of the queue. If we
reach the end of the queue, the process blocks (stops execution) and waits until a new message is
received and this procedure is repeated.

Of course the Erlang implementation is “clever” and minimizes the number of times each message is
tested against the patterns in each receive.

Now back to the ping pong example.

“Pong” is waiting for messages. If the atom finished is received, “pong” writes “Pong finished” to the
output and as it has nothing more to do, terminates. If it receives a message with the format:

{ping, Ping_PID}

it writes “Pong received ping” to the output and sends the atom pong to the process “ping”:

Ping_PID ! pong
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Note how the operator “!” is used to send messages. The syntax of “!” is:

Pid ! Message

I.e. Message (any Erlang term) is sent to the process with identity Pid.

After sending the message pong, to the process “ping”, “pong” calls the pong function again, which
causes it to get back to the receive again and wait for another message. Now let's look at the process
“ping”. Recall that it was started by executing:

tut15:ping(3, Pong_PID)

Looking at the function ping/2 we see that the second clause of ping/2 is executed since the value of
the first argument is 3 (not 0) (first clause head is ping(0,Pong PID), second clause head is
ping(N,Pong PID), so N becomes 3).

The second clause sends a message to “pong”:

Pong_PID ! {ping, self()},

self() returns the pid of the process which executes self(), in this case the pid of “ping”. (Recall the
code for “pong”, this will land up in the variable Ping PID in the receive previously explained).

“Ping” now waits for a reply from “pong”:

receive
pong ->

io:format("Ping received pong~n", [])
end,

and writes “Ping received pong” when this reply arrives, after which “ping” calls the ping function again.

ping(N - 1, Pong_PID)

N-1 causes the first argument to be decremented until it becomes 0. When this occurs, the first clause
of ping/2 will be executed:

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished~n", []);

The atom finished is sent to “pong” (causing it to terminate as described above) and “ping finished” is
written to the output. “Ping” then itself terminates as it has nothing left to do.
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1.3.3 Registered Process Names

In the above example, we first created “pong” so as to be able to give the identity of “pong” when we
started “ping”. I.e. in some way “ping” must be able to know the identity of “pong” in order to be able to
send a message to it. Sometimes processes which need to know each others identities are started
completely independently of each other. Erlang thus provides a mechanism for processes to be given
names so that these names can be used as identities instead of pids. This is done by using the register
BIF:

register(some_atom, Pid)

We will now re-write the ping pong example using this and giving the name pong to the “pong” process:

-module(tut16).

-export([start/0, ping/1, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", []);

ping(N) ->
pong ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start() ->
register(pong, spawn(tut16, pong, [])),
spawn(tut16, ping, [3]).

2> c(tut16).
fok, tut16g
3> tut16:start().
<0.38.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
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ping finished
Pong finished

In the start/0 function,

register(pong, spawn(tut16, pong, [])),

both spawns the “pong” process and gives it the name pong. In the “ping” process we can now send
messages to pong by:

pong ! {ping, self()},

so that ping/2 now becomes ping/1 as we don't have to use the argument Pong PID.

1.3.4 Distributed Programming

Now let's re-write the ping pong program with “ping” and “pong” on different computers. Before we do
this, there are a few things we need to set up to get this to work. The distributed Erlang
implementation provides a basic security mechanism to prevent unauthorized access to an Erlang
system on another computer (*manual*). Erlang systems which talk to each other must have the same
magic cookie. The easiest way to achieve this is by having a file called .erlang.cookie in your home
directory on all machines which on which you are going to run Erlang systems communicating with
each other (on Windows systems the home directory is the directory where pointed to by the $HOME
environment variable - you may need to set this. On Linux or Unix you can safely ignore this and
simply create a file called .erlang.cookie in the directory you get to after executing the command cd
without any argument). The .erlang.cookie file should contain on line with the same atom. For
example on Linux or Unix in the OS shell:

$ cd
$ cat > .erlang.cookie
this is very secret
$ chmod 400 .erlang.cookie

The chmod above make the .erlang.cookie file accessible only by the owner of the file. This is a
requirement.

When you start an Erlang system which is going to talk to other Erlang systems, you must give it a
name, eg:

erl -sname my_name

We will see more details of this later (*manual*). If you want to experiment with distributed Erlang,
but you only have one computer to work on, you can start two separate Erlang systems on the same
computer but give them different names. Each Erlang system running on a computer is called an Erlang
node.

(Note: erl -sname assumes that all nodes are in the same IP domain and we can use only the first
component of the IP address, if we want to use nodes in different domains we use -name instead, but
then all IP address must be given in full (*manual*).

Here is the ping pong example modified to run on two separate nodes:
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-module(tut17).

-export([start_ping/1, start_pong/0, ping/2, pong/0]).

ping(0, Pong_Node) ->
{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start_pong() ->
register(pong, spawn(tut17, pong, [])).

start_ping(Pong_Node) ->
spawn(tut17, ping, [3, Pong_Node]).

Let us assume we have two computers called gollum and kosken. We will start a node on kosken called
ping and then a node on gollum called pong.

On kosken (on a Linux/Unix system):

kosken> erl -sname ping
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ^G)
(ping@kosken)1>

On gollum:

gollum> erl -sname pong
Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]

Eshell V5.2.3.7 (abort with ^G)
(pong@gollum)1>
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Now we start the “pong” process on gollum:

(pong@gollum)1> tut17:start pong().
true

and start the “ping” process on kosken (from the code above you will see that a parameter of the
start ping function is the node name of the Erlang system where “pong” is running):

(ping@kosken)1> tut17:start ping(pong@gollum).
<0.37.0>
Ping received pong
Ping received pong
Ping received pong
ping finished

Here we see that the ping pong program has run, on the “pong” side we see:

(pong@gollum)2>
Pong received ping
Pong received ping
Pong received ping
Pong finished
(pong@gollum)2>

Looking at the tut17 code we see that the pong function itself is unchanged, the lines:

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,

work in the same way irrespective of on which node the “ping” process is executing. Thus Erlang pids
contain information about where the process executes so if you know the pid of a process, the “!”
operator can be used to send it a message if the process is on the same node or on a different node.

A difference is how we send messages to a registered process on another node:

{pong, Pong_Node} ! {ping, self()},

We use a tuple fregistered name,node nameg instead of just the registered name.

In the previous example, we started “ping” and “pong” from the shells of two separate Erlang nodes.
spawn can also be used to start processes in other nodes. The next example is the ping pong program,
yet again, but this time we will start “ping” in another node:
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-module(tut18).

-export([start/1, ping/2, pong/0]).

ping(0, Pong_Node) ->
{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start(Ping_Node) ->
register(pong, spawn(tut18, pong, [])),
spawn(Ping_Node, tut18, ping, [3, node()]).

Assuming an Erlang system called ping (but not the “ping” process) has already been started on kosken,
then on gollum we do:

(pong@gollum)1> tut18:start(ping@kosken).
<3934.39.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong finished
ping finished

Notice we get all the output on gollum. This is because the io system finds out where the process is
spawned from and sends all output there.

1.3.5 A Larger Example

Now for a larger example. We will make an extremely simple “messenger”. The messenger is a program
which allows users to log in on different nodes and send simple messages to each other.
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Before we start, let's note the following:

� This example will just show the message passing logic no attempt at all has been made to provide
a nice graphical user interface - this can of course also be done in Erlang - but that's another
tutorial.

� This sort of problem can be solved more easily if you use the facilities in OTP, which will also
provide methods for updating code on the fly etc. But again, that's another tutorial.

� The first program we write will contain some inadequacies as regards handling of nodes which
disappear, we will correct these in a later version of the program.

We will set up the messenger by allowing “clients” to connect to a central server and say who and where
they are. I.e. a user won't need to know the name of the Erlang node where another user is located to
send a message.

File messenger.erl:

%%% Message passing utility.
%%% User interface:
%%% logon(Name)
%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.
%%% logoff()
%%% Logs off anybody at at node
%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.
%%%
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess_client"
%%%
%%% Protocol between the client processes and the server
%%% ----------------------------------------------------
%%%
%%% To server: {ClientPid, logon, UserName}
%%% Reply {messenger, stop, user_exists_at_other_node} stops the client
%%% Reply {messenger, logged_on} logon was successful
%%%
%%% To server: {ClientPid, logoff}
%%% Reply: {messenger, logged_off}
%%%
%%% To server: {ClientPid, logoff}
%%% Reply: no reply
%%%
%%% To server: {ClientPid, message_to, ToName, Message} send a message
%%% Reply: {messenger, stop, you_are_not_logged_on} stops the client
%%% Reply: {messenger, receiver_not_found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
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%%%
%%% To client: {message_from, Name, Message},
%%%
%%% Protocol between the "commands" and the client
%%% ----------------------------------------------
%%%
%%% Started: messenger:client(Server_Node, Name)
%%% To client: logoff
%%% To client: {message_to, ToName, Message}
%%%
%%% Configuration: change the server_node() function to return the
%%% name of the node where the messenger server runs

-module(messenger).
-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).

%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->

messenger@bill.

%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server(User_List) ->

receive
{From, logon, Name} ->

New_User_List = server_logon(From, Name, User_List),
server(New_User_List);

{From, logoff} ->
New_User_List = server_logoff(From, User_List),
server(New_User_List);

{From, message_to, To, Message} ->
server_transfer(From, To, Message, User_List),
io:format("list is now: ~p~n", [User_List]),
server(User_List)

end.

%%% Start the server
start_server() ->

register(messenger, spawn(messenger, server, [[]])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->

%% check if logged on anywhere else
case lists:keymember(Name, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, %reject logon
User_List;

false ->
From ! {messenger, logged_on},
[{From, Name} | User_List] %add user to the list

end.
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%%% Server deletes a user from the user list
server_logoff(From, User_List) ->

lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->

%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User_List) of

false ->
From ! {messenger, stop, you_are_not_logged_on};

{value, {From, Name}} ->
server_transfer(From, Name, To, Message, User_List)

end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->

%% Find the receiver and send the message
case lists:keysearch(To, 2, User_List) of

false ->
From ! {messenger, receiver_not_found};

{value, {ToPid, To}} ->
ToPid ! {message_from, Name, Message},
From ! {messenger, sent}

end.

%%% User Commands
logon(Name) ->

case whereis(mess_client) of
undefined ->

register(mess_client,
spawn(messenger, client, [server_node(), Name]));

_ -> already_logged_on
end.

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->
case whereis(mess_client) of % Test if the client is running

undefined ->
not_logged_on;

_ -> mess_client ! {message_to, ToName, Message},
ok

end.

%%% The client process which runs on each server node
client(Server_Node, Name) ->

{messenger, Server_Node} ! {self(), logon, Name},
await_result(),
client(Server_Node).
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client(Server_Node) ->
receive

logoff ->
{messenger, Server_Node} ! {self(), logoff},
exit(normal);

{message_to, ToName, Message} ->
{messenger, Server_Node} ! {self(), message_to, ToName, Message},
await_result();

{message_from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])

end,
client(Server_Node).

%%% wait for a response from the server
await_result() ->

receive
{messenger, stop, Why} -> % Stop the client

io:format("~p~n", [Why]),
exit(normal);

{messenger, What} -> % Normal response
io:format("~p~n", [What])

end.

To use this program you need to:

� configure the server node() function

� copy the compiled code (messenger.beam) to the directory on each computer where you start
Erlang.

In the following example of use of this program, I have started nodes on four different computers, but if
you don't have that many machines available on your network, you could start up several nodes on the
same machine.

We start up four Erlang nodes, messenger@super, c1@bilbo, c2@kosken, c3@gollum.

First we start up a the server at messenger@super:

(messenger@super)1> messenger:start server().
true

Now Peter logs on at c1@bilbo:

(c1@bilbo)1> messenger:logon(peter).
true
logged on

James logs on at c2@kosken:

(c2@kosken)1> messenger:logon(james).
true
logged on
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and Fred logs on at c3@gollum:

(c3@gollum)1> messenger:logon(fred).
true
logged on

Now Peter sends Fred a message:

(c1@bilbo)2> messenger:message(fred, "hello").
ok
sent

And Fred receives the message and sends a message to Peter and logs off:

Message from peter: "hello"
(c3@gollum)2> messenger:message(peter, "go away, I’m busy").
ok
sent
(c3@gollum)3> messenger:logoff().
logoff

James now tries to send a message to Fred:

(c2@kosken)2> messenger:message(fred, "peter doesn’t like you").
ok
receiver not found

But this fails as Fred has already logged off.

First let's look at some of the new concepts we have introduced.

There are two versions of the server transfer function, one with four arguments
(server transfer/4) and one with five (server transfer/5). These are regarded by Erlang as two
separate functions.

Note how we write the server function so that it calls itself, server(User List) and thus creates a
loop. The Erlang compiler is “clever” and optimizes the code so that this really is a sort of loop and not
a proper function call. But this only works if there is no code after the call, otherwise the compiler will
expect the call to return and make a proper function call. This would result in the process getting
bigger and bigger for every loop.

We use functions in the lists module. This is a very useful module and a study of the manual page is
recommended (erl -man lists). lists:keymember(Key,Position,Lists) looks through a list of
tuples and looks at Position in each tuple to see if it is the same as Key. The first element is position 1.
If it finds a tuple where the element at Position is the same as Key, it returns true, otherwise false.

3> lists:keymember(a, 2, [fx,y,zg,fb,b,bg,fb,a,cg,fq,r,sg]).
true
4> lists:keymember(p, 2, [fx,y,zg,fb,b,bg,fb,a,cg,fq,r,sg]).
false
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lists:keydelete works in the same way but deletes the first tuple found (if any) and returns the
remaining list:

5> lists:keydelete(a, 2, [fx,y,zg,fb,b,bg,fb,a,cg,fq,r,sg]).
[fx,y,zg,fb,b,bg,fq,r,sg]

lists:keysearch is like lists:keymember, but it returns fvalue,Tuple Foundg or the atom false.

There are a lot more very useful functions in the lists module.

An Erlang process will (conceptually) run until it does a receive and there is no message which it
wants to receive in the message queue. I say “conceptually” because the Erlang system shares the CPU
time between the active processes in the system.

A process terminates when there is nothing more for it to do, i.e. the last function it calls simply returns
and doesn't call another function. Another way for a process to terminate is for it to call exit/1. The
argument to exit/1 has a special meaning which we will look at later. In this example we will do
exit(normal) which has the same effect as a process running out of functions to call.

The BIF whereis(RegisteredName) checks if a registered process of name RegisteredName exists and
return the pid of the process if it does exist or the atom undefined if it does not.

You should by now be able to understand most of the code above so I'll just go through one case: a
message is sent from one user to another.

The first user “sends” the message in the example above by:

messenger:message(fred, "hello")

After testing that the client process exists:

whereis(mess_client)

and a message is sent to mess client:

mess_client ! {message_to, fred, "hello"}

The client sends the message to the server by:

{messenger, messenger@super} ! {self(), message_to, fred, "hello"},

and waits for a reply from the server.

The server receives this message and calls:

server_transfer(From, fred, "hello", User_List),

which checks that the pid From is in the User List:

lists:keysearch(From, 1, User_List)

If keysearch returns the atom false, some sort of error has occurred and the server sends back the
message:

From ! {messenger, stop, you_are_not_logged_on}
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which is received by the client which in turn does exit(normal) and terminates. If keysearch returns
fvalue,From,Namegwe know that the user is logged on and is his name (peter) is in variable Name. We
now call:

server_transfer(From, peter, fred, "hello", User_List)

Note that as this is server transfer/5 it is not the same as the previous function server transfer/4.
We do another keysearch on User List to find the pid of the client corresponding to fred:

lists:keysearch(fred, 2, User_List)

This time we use argument 2 which is the second element in the tuple. If this returns the atom false
we know that fred is not logged on and we send the message:

From ! {messenger, receiver_not_found};

which is received by the client, if keysearch returns:

{value, {ToPid, fred}}

we send the message:

ToPid ! {message_from, peter, "hello"},

to fred's client and the message:

From ! {messenger, sent}

to peter's client.

Fred's client receives the message and prints it:

{message_from, peter, "hello"} ->
io:format("Message from ~p: ~p~n", [peter, "hello"])

and peter's client receives the message in the await result function.

1.4 Robustness

There are several things which are wrong with the messenger example [page 34] from the previous
chapter. For example if a node where a user is logged on goes down without doing a log off, the user
will remain in the server's User List but the client will disappear thus making it impossible for the user
to log on again as the server thinks the user already logged on.

Or what happens if the server goes down in the middle of sending a message leaving the sending client
hanging for ever in the await result function?
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1.4.1 Timeouts

Before improving the messenger program we will look into some general principles, using the ping pong
program as an example. Recall that when “ping” finishes, it tells “pong” that it has done so by sending
the atom finished as a message to “pong” so that “pong” could also finish. Another way to let “pong”
finish, is to make “pong” exit if it does not receive a message from ping within a certain time, this can be
done by adding a timeout to pong as shown in the following example:

-module(tut19).

-export([start_ping/1, start_pong/0, ping/2, pong/0]).

ping(0, Pong_Node) ->
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() ->
receive

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

after 5000 ->
io:format("Pong timed out~n", [])

end.

start_pong() ->
register(pong, spawn(tut19, pong, [])).

start_ping(Pong_Node) ->
spawn(tut19, ping, [3, Pong_Node]).

After we have compiled this and copied the tut19.beam file to the necessary directories:

On (pong@kosken):

(pong@kosken)1> tut19:start pong().
true
Pong received ping
Pong received ping
Pong received ping
Pong timed out

On (ping@gollum):
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(ping@gollum)1> tut19:start ping(pong@kosken).
<0.36.0>
Ping received pong
Ping received pong
Ping received pong
ping finished

(The timeout is set in:

pong() ->
receive

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

after 5000 ->
io:format("Pong timed out~n", [])

end.

We start the timeout (after 5000) when we enter receive. The timeout is canceled if
fping,Ping PIDg is received. If fping,Ping PIDg is not received, the actions following the timeout
will be done after 5000 milliseconds. after must be last in the receive, i.e. preceded by all other
message reception specifications in the receive. Of course we could also call a function which returned
an integer for the timeout:

after pong_timeout() ->

In general, there are better ways than using timeouts to supervise parts of a distributed Erlang system.
Timeouts are usually appropriate to supervise external events, for example if you have expected a
message from some external system within a specified time. For example, we could use a timeout to log
a user out of the messenger system if they have not accessed it, for example, in ten minutes.

1.4.2 Error Handling

Before we go into details of the supervision and error handling in an Erlang system, we need see how
Erlang processes terminate, or in Erlang terminology, exit.

A process which executes exit(normal) or simply runs out of things to do has a normal exit.

A process which encounters a runtime error (e.g. divide by zero, bad match, trying to call a function
which doesn't exist etc) exits with an error, i.e. has an abnormal exit. A process which executes
exit(Reason) (*manual*) where Reason is any Erlang term except the atom normal, also has an
abnormal exit.

An Erlang process can set up links to other Erlang processes. If a process calls link(Other Pid)
(*manual*) it sets up a bidirectional link between itself and the process called Other Pid. When a
process terminates its sends something called a signal to all the processes it has links to.

The signal carries information about the pid it was sent from and the exit reason.

The default behaviour of a process which receives a normal exit is to ignore the signal.

The default behaviour in the two other cases (i.e. abnormal exit) above is to bypass all messages to the
receiving process and to kill it and to propagate the same error signal to the killed process' links. In this
way you can connect all processes in a transaction together using links and if one of the processes exits
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abnormally, all the processes in the transaction will be killed. As we often want to create a process and
link to it at the same time, there is a special BIF, spawn link which does the same as spawn, but also
creates a link to the spawned process. (*manual*).

Now an example of the ping pong example using links to terminate “pong”:

-module(tut20).

-export([start/1, ping/2, pong/0]).

ping(N, Pong_Pid) ->
link(Pong_Pid),
ping1(N, Pong_Pid).

ping1(0, _) ->
exit(ping);

ping1(N, Pong_Pid) ->
Pong_Pid ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping1(N - 1, Pong_Pid).

pong() ->
receive

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start(Ping_Node) ->
PongPID = spawn(tut20, pong, []),
spawn(Ping_Node, tut20, ping, [3, PongPID]).

(s1@bill)3> tut20:start(s2@kosken).
Pong received ping
<3820.41.0>
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong

This is a slight modification of the ping pong program where both processes are spawned from the same
start/1 function, where the “ping” process can be spawned on a separate node. Note the use of the
spawn link BIF. “Ping” calls exit(ping) when it finishes and this will cause an exit signal to be sent to
“pong” which will also terminate.

It is possible to modify the default behaviour of a process so that it does not get killed when it receives
abnormal exit signals, but all signals will be turned into normal messages on the format
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f’EXIT’,FromPID,Reasong and added to the end of the receiving processes mesage queue. This
behaviour is set by:

process_flag(trap_exit, true)

There are several other process flags (*manual*). Changing the default behaviour of a process in this
way is usually not done in standard user programs, but is left to the supervisory programs in OTP (but
that's another tutorial). However we will modify the ping pong program to illustrate exit trapping.

-module(tut21).

-export([start/1, ping/2, pong/0]).

ping(N, Pong_Pid) ->
link(Pong_Pid),
ping1(N, Pong_Pid).

ping1(0, _) ->
exit(ping);

ping1(N, Pong_Pid) ->
Pong_Pid ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping1(N - 1, Pong_Pid).

pong() ->
process_flag(trap_exit, true),
pong1().

pong1() ->
receive

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong1();

{’EXIT’, From, Reason} ->
io:format("pong exiting, got ~p~n", [{’EXIT’, From, Reason}])

end.

start(Ping_Node) ->
PongPID = spawn(tut21, pong, []),
spawn(Ping_Node, tut21, ping, [3, PongPID]).

(s1@bill)1> tut21:start(s2@gollum).
<3820.39.0>
Pong received ping
Ping received pong
Pong received ping
Ping received pong
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Pong received ping
Ping received pong
pong exiting, got f’EXIT’,<3820.39.0>,pingg

1.4.3 The Larger Example with Robustness Added

Now we return to the messenger program and add changes which make it more robust:

%%% Message passing utility.
%%% User interface:
%%% login(Name)
%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.
%%% logoff()
%%% Logs off anybody at at node
%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.
%%%
%%% One node in the network of Erlang nodes runs a server which maintains
%%% data about the logged on users. The server is registered as "messenger"
%%% Each node where there is a user logged on runs a client process registered
%%% as "mess_client"
%%%
%%% Protocol between the client processes and the server
%%% ----------------------------------------------------
%%%
%%% To server: {ClientPid, logon, UserName}
%%% Reply {messenger, stop, user_exists_at_other_node} stops the client
%%% Reply {messenger, logged_on} logon was successful
%%%
%%% When the client terminates for some reason
%%% To server: {’EXIT’, ClientPid, Reason}
%%%
%%% To server: {ClientPid, message_to, ToName, Message} send a message
%%% Reply: {messenger, stop, you_are_not_logged_on} stops the client
%%% Reply: {messenger, receiver_not_found} no user with this name logged on
%%% Reply: {messenger, sent} Message has been sent (but no guarantee)
%%%
%%% To client: {message_from, Name, Message},
%%%
%%% Protocol between the "commands" and the client
%%% ----------------------------------------------
%%%
%%% Started: messenger:client(Server_Node, Name)
%%% To client: logoff
%%% To client: {message_to, ToName, Message}
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%%%
%%% Configuration: change the server_node() function to return the
%%% name of the node where the messenger server runs

-module(messenger).
-export([start_server/0, server/0,

logon/1, logoff/0, message/2, client/2]).

%%% Change the function below to return the name of the node where the
%%% messenger server runs
server_node() ->

messenger@super.

%%% This is the server process for the "messenger"
%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server() ->

process_flag(trap_exit, true),
server([]).

server(User_List) ->
receive

{From, logon, Name} ->
New_User_List = server_logon(From, Name, User_List),
server(New_User_List);

{’EXIT’, From, _} ->
New_User_List = server_logoff(From, User_List),
server(New_User_List);

{From, message_to, To, Message} ->
server_transfer(From, To, Message, User_List),
io:format("list is now: ~p~n", [User_List]),
server(User_List)

end.

%%% Start the server
start_server() ->

register(messenger, spawn(messenger, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->

%% check if logged on anywhere else
case lists:keymember(Name, 2, User_List) of

true ->
From ! {messenger, stop, user_exists_at_other_node}, %reject logon
User_List;

false ->
From ! {messenger, logged_on},
link(From),
[{From, Name} | User_List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->

lists:keydelete(From, 1, User_List).
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%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->

%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User_List) of

false ->
From ! {messenger, stop, you_are_not_logged_on};

{value, {_, Name}} ->
server_transfer(From, Name, To, Message, User_List)

end.

%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->

%% Find the receiver and send the message
case lists:keysearch(To, 2, User_List) of

false ->
From ! {messenger, receiver_not_found};

{value, {ToPid, To}} ->
ToPid ! {message_from, Name, Message},
From ! {messenger, sent}

end.

%%% User Commands
logon(Name) ->

case whereis(mess_client) of
undefined ->

register(mess_client,
spawn(messenger, client, [server_node(), Name]));

_ -> already_logged_on
end.

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->
case whereis(mess_client) of % Test if the client is running

undefined ->
not_logged_on;

_ -> mess_client ! {message_to, ToName, Message},
ok

end.

%%% The client process which runs on each user node
client(Server_Node, Name) ->

{messenger, Server_Node} ! {self(), logon, Name},
await_result(),
client(Server_Node).

client(Server_Node) ->
receive

logoff ->
exit(normal);
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{message_to, ToName, Message} ->
{messenger, Server_Node} ! {self(), message_to, ToName, Message},
await_result();

{message_from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])

end,
client(Server_Node).

%%% wait for a response from the server
await_result() ->

receive
{messenger, stop, Why} -> % Stop the client

io:format("~p~n", [Why]),
exit(normal);

{messenger, What} -> % Normal response
io:format("~p~n", [What])

after 5000 ->
io:format("No response from server~n", []),
exit(timeout)

end.

We have added the following changes:

The messenger server traps exits. If it receives an exit signal, f’EXIT’,From,Reasong this means that a
client process has terminated or is unreachable because:

� the user has logged off (we have removed the “logoff” message),

� the network connection to the client is broken,

� the node on which the client process resides has gone down, or

� the client processes has done some illegal operation.

If we receive an exit signal as above, we delete the tuple, fFrom,Nameg from the servers User List
using the server logoff function. If the node on which the server runs goes down, an exit signal
(automatically generated by the system), will be sent to all of the client processes:
f’EXIT’,MessengerPID,noconnectiong causing all the client processes to terminate.

We have also introduced a timeout of five seconds in the await result function. I.e. if the server does
not reply withing five seconds (5000 ms), the client terminates. This is really only needed in the logon
sequence before the client and server are linked.

An interesting case is if the client was to terminate before the server links to it. This is taken care of
because linking to a non-existent process causes an exit signal, f’EXIT’,From,noprocg, to be
automatically generated as if the process terminated immediately after the link operation.

1.5 Records and Macros

Larger programs are usually written as a collection of files with a well defined interface between the
various parts.
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1.5.1 The Larger Example Divided into Several Files

To illustrate this, we will divide the messenger example from the previous chapter into five files.

mess config.hrl header file for configuration data

mess interface.hrl interface definitions between the client and the messenger

user interface.erl functions for the user interface

mess client.erl functions for the client side of the messenger

mess server.erl functions for the server side of the messenger

While doing this we will also clean up the message passing interface between the shell, the client and
the server and define it using records, we will also introduce macros.

%%%----FILE mess_config.hrl----

%%% Configure the location of the server node,
-define(server_node, messenger@super).

%%%----END FILE----

%%%----FILE mess_interface.hrl----

%%% Message interface between client and server and client shell for
%%% messenger program

%%%Messages from Client to server received in server/1 function.
-record(logon,{client_pid, username}).
-record(message,{client_pid, to_name, message}).
%%% {’EXIT’, ClientPid, Reason} (client terminated or unreachable.

%%% Messages from Server to Client, received in await_result/0 function
-record(abort_client,{message}).
%%% Messages are: user_exists_at_other_node,
%%% you_are_not_logged_on
-record(server_reply,{message}).
%%% Messages are: logged_on
%%% receiver_not_found
%%% sent (Message has been sent (no guarantee)
%%% Messages from Server to Client received in client/1 function
-record(message_from,{from_name, message}).

%%% Messages from shell to Client received in client/1 function
%%% spawn(mess_client, client, [server_node(), Name])
-record(message_to,{to_name, message}).
%%% logoff

%%%----END FILE----

%%%----FILE user_interface.erl----

%%% User interface to the messenger program
%%% login(Name)
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%%% One user at a time can log in from each Erlang node in the
%%% system messenger: and choose a suitable Name. If the Name
%%% is already logged in at another node or if someone else is
%%% already logged in at the same node, login will be rejected
%%% with a suitable error message.

%%% logoff()
%%% Logs off anybody at at node

%%% message(ToName, Message)
%%% sends Message to ToName. Error messages if the user of this
%%% function is not logged on or if ToName is not logged on at
%%% any node.

-module(user_interface).
-export([logon/1, logoff/0, message/2]).
-include("mess_interface.hrl").
-include("mess_config.hrl").

logon(Name) ->
case whereis(mess_client) of

undefined ->
register(mess_client,

spawn(mess_client, client, [?server_node, Name]));
_ -> already_logged_on

end.

logoff() ->
mess_client ! logoff.

message(ToName, Message) ->
case whereis(mess_client) of % Test if the client is running

undefined ->
not_logged_on;

_ -> mess_client ! #message_to{to_name=ToName, message=Message},
ok

end.

%%%----END FILE----

%%%----FILE mess_client.erl----

%%% The client process which runs on each user node

-module(mess_client).
-export([client/2]).
-include("mess_interface.hrl").

client(Server_Node, Name) ->
{messenger, Server_Node} ! #logon{client_pid=self(), username=Name},
await_result(),
client(Server_Node).
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client(Server_Node) ->
receive

logoff ->
exit(normal);

#message_to{to_name=ToName, message=Message} ->
{messenger, Server_Node} !

#message{client_pid=self(), to_name=ToName, message=Message},
await_result();

{message_from, FromName, Message} ->
io:format("Message from ~p: ~p~n", [FromName, Message])

end,
client(Server_Node).

%%% wait for a response from the server
await_result() ->

receive
#abort_client{message=Why} ->

io:format("~p~n", [Why]),
exit(normal);

#server_reply{message=What} ->
io:format("~p~n", [What])

after 5000 ->
io:format("No response from server~n", []),
exit(timeout)

end.

%%%----END FILE---

%%%----FILE mess_server.erl----

%%% This is the server process of the messneger service

-module(mess_server).
-export([start_server/0, server/0]).
-include("mess_interface.hrl").

server() ->
process_flag(trap_exit, true),
server([]).

%%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
server(User_List) ->

io:format("User list = ~p~n", [User_List]),
receive

#logon{client_pid=From, username=Name} ->
New_User_List = server_logon(From, Name, User_List),
server(New_User_List);

{’EXIT’, From, _} ->
New_User_List = server_logoff(From, User_List),
server(New_User_List);

#message{client_pid=From, to_name=To, message=Message} ->
server_transfer(From, To, Message, User_List),
server(User_List)
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end.

%%% Start the server
start_server() ->

register(messenger, spawn(?MODULE, server, [])).

%%% Server adds a new user to the user list
server_logon(From, Name, User_List) ->

%% check if logged on anywhere else
case lists:keymember(Name, 2, User_List) of

true ->
From ! #abort_client{message=user_exists_at_other_node},
User_List;

false ->
From ! #server_reply{message=logged_on},
link(From),
[{From, Name} | User_List] %add user to the list

end.

%%% Server deletes a user from the user list
server_logoff(From, User_List) ->

lists:keydelete(From, 1, User_List).

%%% Server transfers a message between user
server_transfer(From, To, Message, User_List) ->

%% check that the user is logged on and who he is
case lists:keysearch(From, 1, User_List) of

false ->
From ! #abort_client{message=you_are_not_logged_on};

{value, {_, Name}} ->
server_transfer(From, Name, To, Message, User_List)

end.
%%% If the user exists, send the message
server_transfer(From, Name, To, Message, User_List) ->

%% Find the receiver and send the message
case lists:keysearch(To, 2, User_List) of

false ->
From ! #server_reply{message=receiver_not_found};

{value, {ToPid, To}} ->
ToPid ! #message_from{from_name=Name, message=Message},
From ! #server_reply{message=sent}

end.

%%%----END FILE---

1.5.2 Header Files

You will see some files above with extension .hrl. These are header files which are included in the
.erl files by:

-include("File_Name").
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for example:

-include("mess_interface.hrl").

In our case above the file is fetched from the same directory as all the other files in the messenger
example. (*manual*).

.hrl files can contain any valid Erlang code but are most often used for record and macro definitions.

1.5.3 Records

A record is defined as:

-record(name_of_record,{field_name1, field_name2, field_name3, ......}).

For example:

-record(message_to,{to_name, message}).

This is exactly equivalent to:

{message_to, To_Name, Message}

Creating record, is best illustrated by an example:

#message_to{message="hello", to_name=fred)

This will create:

{message_to, fred, "hello"}

Note that you don't have to worry about the order you assign values to the various parts of the records
when you create it. The advantage of using records is that by placing their definitions in header files you
can conveniently define interfaces which are easy to change. For example, if you want to add a new field
to the record, you will only have to change the code where the new field is used and not at every place
the record is referred to. If you leave out a field when creating a record, it will get the value of the atom
undefined. (*manual*)

Pattern matching with records is very similar to creating records. For example inside a case or receive:

#message_to{to_name=ToName, message=Message} ->

is the same as:

{message_to, ToName, Message}
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1.5.4 Macros

The other thing we have added to the messenger is a macro. The file mess config.hrl contains the
definition:

%%% Configure the location of the server node,
-define(server_node, messenger@super).

We include this file in mess server.erl:

-include("mess_config.hrl").

Every occurrence of ?server node in mess server.erl will now be replaced by messenger@super.

The other place a macro is used is when we spawn the server process:

spawn(?MODULE, server, [])

This is a standard macro (i.e. defined by the system, not the user). ?MODULE is always replaced by the
name of current module (i.e. the -module definition near the start of the file). There are more advanced
ways of using macros with, for example parameters (*manual*).

The three Erlang (.erl) files in the messenger example are individually compiled into object code file
(.beam). The Erlang system loads and links these files into the system when they are referred to during
execution of the code. In our case we simply have put them in the same directory which is our current
working directory (i.e. the place we have done “cd” to). There are ways of putting the .beam files in
other directories.

In the messenger example, no assumptions have been made about what the message being sent is. It
could be any valid Erlang term.
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