
gpsim

T. Scott Dattalo

05 JUNE 2005

Contents

1 gpsim - An Overview 5

1.1 Making the executable . 5

1.1.1 Make Details - ./configure options 5

1.1.2 RPMs . 6

1.1.3 Windows . 6

1.2 Running . 6

1.3 Requirements . 7

2 Command Line Interface 8

2.1 attach . 9

2.2 break . 10

2.3 clear . 11

2.4 disassemble . 12

2.5 dump . 12

2.6 echo . 12

2.7 frequency . 12

2.8 help . 13

2.9 icd . 13

2.10 list . 13

2.11 load . 13

2.12 macros . 14

2.13 module . 15

2.14 node . 16

2.15 processor . 17

2.16 quit . 17

2.17 run . 17

2.18 step . 18

1

CONTENTS 2

2.19 symbol . 18

2.20 stimulus . 18

2.21 stopwatch . 19

2.22 trace . 19

2.23 version . 19

2.24 x . 20

3 Graphical User Interface 21

3.1 Main window . 21

3.1.1 Menus . 21

3.1.2 Buttons . 21

3.1.3 Simulation mode . 22

3.2 Source Browsers . 22

3.2.1 .asm Browser . 22

3.2.2 Opcode view - the .obj Browser 23

3.3 Register views . 24

3.4 Symbol view . 25

3.5 Watch view . 26

3.6 Stack viewer . 26

3.7 Breadboard . 27

3.8 Trace viewer . 27

3.9 Profile viewer . 28

3.10 Stopwatch . 29

4 Controlling the Flow: Break Points 30

4.1 Execution Break Points . 30

4.1.1 Invalid Instruction Break Points 30

4.2 Register Break Points . 31

4.3 Cycle Break Points . 31

5 Trace: What has happen? 32

6 Simulating the Real World: Stimuli 34

6.1 How They Work . 34

6.1.1 Contention among stimuli 35

6.2 I/O Pins . 35

6.3 Asynchronous Stimuli . 36

6.3.1 Analog Asynchronous Stimuli 37

CONTENTS 3

7 Modules 38

7.1 gpsim Modules . 38

7.2 Writing new modules . 39

8 Symbolic Debugging 40

9 Macros 41

10 Hex Files 42

11 The ICD 43

12 Theory of Operation 45

12.1 Background . 45

12.2 Instructions . 45

12.3 General File Registers . 46

12.4 Special File Registers . 46

12.5 Example of an instruction . 46

12.6 Trace . 48

12.7 Breakpoints . 48

Introduction

gpsim is a full-featured software simulator for Microchip PIC microcontrollers dis-
tributed under the GNU General Public License (see the COPYING section).

gpsim has been designed to be as accurate as possible. Accuracy includes the entire
PIC - from the core to the I/O pins and including ALL of the internal peripherals. Thus
it’s possible to create stimuli and tie them to the I/O pins and test the PIC the same PIC
the same way you would in the real world.

gpsim has been designed to be as fast as possible. Real time simulation speeds of
20Mhz pics are possible.

gpsim can be controlled from either a graphical user interface (GUI), a command line
interface (CLI) or by a remote process. Typical debugging features like breakpoints,
single stepping, disassembling, memory inspect & change, and so on are all supported.
In addition, complex debugging features like real time tracing, assertions, conditional
breaks, and plugin modules to name a few are also supported.

4

Chapter 1

gpsim - An Overview

If you don’t care to wade through details, this chapter should help you get things up and
running. The INSTALL and README files will provide more up-to-date information
then this document, so please refer to those first.

1.1 Making the executable

gpsim’s executable is create in a manner that’s consistant with many of the other open
source software:

command description

tar -xvzf gpsim-x.y.z.tar.gz expand the compressed tar file
./configure Create a ’makefile’ unique to your system
make compile gpsim
make install install gpsim

The last step will require root privileges.

1.1.1 Make Details - ./configure options

gui-less

The default configuration will provide a gui (graphical user interface). The cli (com-
mand line interface) is still available, however many people prefer just to use the cli.
These hardy souls may build a command-line only interface by configuring gpsim:

./configure --disable-gui

debugging

If you want to debug gpsim then you’ll probably use gdb. Consequently, you’ll want
to disable shared libraries:

5

CHAPTER 1. GPSIM - AN OVERVIEW 6

./configure --disable-shared

This will create one, huge monolithic executable with symbolic information.

1.1.2 RPMs

gpsim is also distributed in RPM form. In recent versions, there are two RPMs: gpsim-
devel and gpsim. Both of these must be installed. There is also a RPM for the source
code. This can be used to build a binary RPM unique to your system. Please see the
latest INSTALL and README for the most up to date information.

1.1.3 Windows

gpsim runs on Windows too. Borut Razem maintains the gpsim Windows web site:

http://gpsim.sourceforge.net/gpsimWin32/gpsimWin32.html

You can find detailed instructions there for installing gpsim and its dependencies. Snap
shots can be found:

http://gpsim.sourceforge.net/snap.php

1.2 Running

The executable created above is called: gpsim. The following command line options
may be specified when gpsim is invoked.

gpsim [-?] [-p <device> [<hex_file>]] [-c <stc_file>]
-p, --processor=<processor name> processor (e.g. -pp16c84 for the ’c84)
-c, --command=STRING startup command file
-s .cod symbol file
-L, -- colon separated list of directories to

search.
-v, --version gpsim version
-i, --cli command line mode only
-d, --icd=STRING use ICD (e.g. -d /dev/ttyS0).
Help options:
-?, --help Show this help message
--usage Display brief usage message

Typically gpsim will be invoked like:

[My-Computer]$ gpsim -s mypic-program.cod

CHAPTER 1. GPSIM - AN OVERVIEW 7

(The [My-Computer]$text is an example of a typical bash command prompt - you’ll
only type the text after this prompt). This loads the .cod file generated by gputils.

Under Windows, gpsim can also be invoked by navigating through the Start/Progam
menu. This will open a DOS window to provide access to the command line interface.
It’s also possible to open a DOS window (or CygWin bash session) and invoke gpsim
from there.

1.3 Requirements

gpsim has been developed under Linux. It should build and run just fine under the
popular Linux distributions like Redhat. gpsim has also been ported to the MAC, Mi-
croSoft Windows, Solaris, and BSD. Two packages gpsim requires that may not be
available with all Linux distributions are readline and gtk (the gimp tool kit). The
./configure script should tell you if these packages are not installed on your system or
if the revisions that are installed are too old.

There are no minimum hardware requirements to run gpsim. Faster is better though!

gputils, the gnupic utilities package, is also very useful. gpsim will accept straight
hex files, but if you want to do any symbolic debugging then you’ll want to use the
.cod1 files that gputils produces. The .cod files are in the same format as the .cod files
MPASM2 produces.

1.cod files are symbol files that were created by ByteCraft and are used by Microchip.
2MPASM is Microchip’s Assembler.

Chapter 2

Command Line Interface

The command line interface is fairly straight-forward. The table below summarizes the
available commands. Brief descriptions of these commands can also be displayed by
typinghelpat the command line.

8

CHAPTER 2. COMMAND LINE INTERFACE 9

command summary

attach Attach stimuli to nodes
break Set a break point
bus Add or display node busses

clear Remove a break point
disassemble Disassemble the current cpu

dump Display either the RAM or EEPROM
frequency Set processor frequency

help Type help "command" for more help on a command
icd In Circuit Debugger support.
list Display source and list files
load Load either a hex or command file
log Log/record events to a file

node Add or display stimulus nodes
module Select & Display modules

processor Add/list processors
quit Quit gpsim
reset Reset all or parts of the simulation
run Execute the pic program
set display and control gpsim behavior flags
step Execute one or more instructions

stimulus Create a stimulus
stopwatch Measure time between events
symbol Add/list symbols
trace Dump the trace history

version Display gpsim’s version
x examine and/or modify memory

The built in ’help’ command provides additional online information.

2.1 attach

attach node1 stimulus1 [stimulus2 stimulus_N]

attach is used to define the connections between stimuli and nodes. At least one node
and one stimulus must be specified. If more stimuli are specified then they will all be
attached to the node examples:

gpsim> node n1 # Define a new node.
gpsim> attach n1 porta4 portb0 # Connect two I/O pins to the node.
gpsim> node # Display the new "net list".

CHAPTER 2. COMMAND LINE INTERFACE 10

2.2 break

The break command is used to set and examine break points. New break points are
assigned a unique number. This number can be used to query or clear the break point.
Break points halt the simulation when the condition associated with them is true. Break
points are ignored during single stepping.

Examining break points

break [bp_number]

Break points can be examined by typing the break command without any options. Spe-
cific breaks can be queried by specifying the break point number.

Program Memory/Execution breaks

The most common break point is an execution break point. This one halts execution
whenever the program counter reaches the address at which the break point is set. The
syntax is:

break e|r|w ADDRESS [expr]

The simulation halts when the address is executed, read, or written. The ADDRESS
can be a symbol or a number. If the optional expression is specified, then it must
evaluate to true before the simulation will halt. The read and write options only apply
to those processors that can manipulate their own program memory.

Register Memory breaks

gpsim can also associate break points with register accesses. This is useful for cap-
turing bugs that stomp on RAM. E.g. you can say something like “halt execution
whenever bit 4 of register 42 is cleared”. The command line syntax is:

break r|w REGISTER [expr]

The simulation halts whenREGISTERis read or written and the optional expression
evaluates to true. There are two styles of expressions supported. One involves only
expressions of theREGISTER, the other is completely arbitrary. The examples below
illustrate the differences.

Here’s an example of a register write break. This one will halt the simulation if any
value is written to the variable namedtemp1.

break w temp1

Here the write is conditioned to happen for only a certain value:

CHAPTER 2. COMMAND LINE INTERFACE 11

break w temp1==0x22

Here the condition applies to specific bits:

break w temp1 & 0b11110000 == 0b11000000

This one breaks only if the hex digit ’C’ is written to the upper nibble of temp1.

Boolean Expressions

Sometimes it’s necessary to specify an auxillary condition with a break point. For
example, there may be a temporary variable that is shared throughout the code. You
may wish to trap writes to that variable only while executing a specific subroutine.
For example, the following break point triggers when temp1 is written and while the
program counter is in between the labelsfunc_startandfunc_end:

break w temp1 (pc >= func_start && pc < func_end)

TIP: Use this type of break point if you suspect an interrupt routine is over writing a
variable.

Another situation is one where you wish to trap writes to a variable only if some other
variable is a certain value:

break w temp1 (CurTask & 0x0f != 0b101)

If the firmware writes to the variable temp1 then the simulation will halt if the lower
nibble of CurTask is not equal to 5.

Attribute Breakpoints

gpsim also supports a concept ofattribute breakpoints.Attributes are parameters that
gpsim and its modules expose to the user interface. For example, the simulator stop-
watch exposes attributes which support breakpoints. This feature is intend mainly for
module writers to provide a mechanism for allowing the user to control the module.

2.3 clear

clear bp_number

The clear command is used to clear break points. The break point number must be
specified. Thebreak command without any arguments displays all of the currently
defined break points. This can be used to ascertain the break point number. Once
cleared, a break point is deleted.1

1A break point disable/enable feature has been discussed and may be added a future date.

CHAPTER 2. COMMAND LINE INTERFACE 12

2.4 disassemble

disassemble [[begin:end] | [length]]

The disassemble command decodes the program memory opcodes into their standard
mnemonics. With no options, thedisassemblecommand disassembles instructions
surrounding the current program counter:

gpsim> disassemble
current pc = 0x1c

0012 2a03 incf reg3,f,0
0014 0004 clrwdt
0016 5000 movf reg,w,0
0018 1001 iorwf reg1,w,0
001a 1002 iorwf reg2,w,0

==> 001c 1003 iorwf reg3,w,0
001e e1f4 bnz $-0x16 ;(0x8)
0020 d7ff bra $-0x0 ;(0x00020)

With a single numeric option, the disassemble command will

2.5 dump

dump [r | e]

dump r or dump with no options will display all of the file
registers and special function registers.
dump e will display the contents of the eeprom (if the pic
being simulated contains any)

See the ’x’ command for examining and modifying individual registers.

2.6 echo

The echo command is used like a print statement within configuration files. It just lets
you display information about your configuration file.

2.7 frequency

This command sets the clock frequency. By default gpsim uses 4 MHz as clock. The
clock frequency is used to compute time in seconds. Use this command to adjust this
value. If no value is provided this command prints the current clock. Note that PICs
have an instruction clock that’s a forth of the external clock. This value is the external
clock.

CHAPTER 2. COMMAND LINE INTERFACE 13

2.8 help

By itself, help will display all of the commands along with a brief description on how
they work. ’help <command>’ provides more extensive online help. The help com-
mand can also display information about attributes.

2.9 icd

icd [open <port>]

The open command is used to enable ICD mode and specify the serial port where the
ICD is. (e.g. "icd open /dev/ttyS0"). Without options (and after the icd is enabled), it
will print some information about the ICD.

2.10 list

list [[s | l] [*pc] [line_number1 [,line_number2]]]
Display the contents of source and list files.
Without any options, list will use the last specified options.
list s will display lines in the source (or .asm) file.
list l will display lines in the .lst file
list *pc will display either .asm or .lst lines around the pc

The list command allows you to view the source code while you are debugging.

2.11 load

The load command is used to load either hex, configuration, or .cod files. A hex file
is usually used to program the physical part. Consequently, it provides no symbolic
information. .cod files on the other hand, do provide symbolic information. The only
reason to use a hex file is when there’s no .cod file available.

The syntax for loading source code files is:

load [processortype] file

gpsim will automatically determine if the file is a .hex or .cod file. The optional pro-
cessortype allows one to override the processor specified in a .cod file.

Configuration files are script files containing gpsim commands. These are extremely
useful for creating a debugging enviroment that will be used repeatedly.

CHAPTER 2. COMMAND LINE INTERFACE 14

2.12 macros

Macros are defined like:

name macro [arg1, arg2, ..., argN]
macro body

endm

And they’re invoked by:

name param1, param2, ..., paramN

Macros are a way of collecting several parameterized commands into one short com-
mand. The first line of a macro definition specifies the macro’s name and optional
arguments. Thenameis used to invoke the macro. The arguments are text string place
holders. When a macro is invoked, the parameters are aligned with the arguments. I.e.
param1in the invocation can be thought of being assigned toarg1 in the definition.
The parameters replace the arguments in the macro body.

In the following example, a variable or attribute calledmac_flagsis being manipulated
in an expression. The argumentsaddandmaskappear in the macro body and provide
a parameterized way of manipulating this expression.

mac_exp macro add, mask
mac_flags = (mac_flags+add) & mask

endm

Note that the indentation is arbitrary. The macro is invoked by:

mac_exp 1, 0b00001111 # increment the lower nibble

The parameteradd is replaced by the number1 while maskis replaced with the binary
number0b00001111.The invocation turns into the gpsim command:

mac_flags = (mac_flags+1) & 0b00001111

Nested Macros

The macro body can contain any gpsim command. Of particular interest are macro
invocations within other macros. Here’s another macro that invokes the one defined
above.

Nested macro example
mac1 macro p1, p2

run
mac_exp p1, p2

endm

CHAPTER 2. COMMAND LINE INTERFACE 15

And it could be used like:

mac1 1, 0b00001111 # test lower nibble
mac1 (1< <4), 0b11110000 # test upper nibble

The first invocation starts the simulator by executing arun command. When a break
point is encountered, control returns to the command line and themac_expmacro is
invoked.

Displaying Defined Macros

All currently defined macros can be displayed by typing the macro command without
a name or arguments:

gpsim> macro
mac1 macro p1 p2

run
mac_exp p1, p2

endm
mac_exp macro add mask

mac_flags = (mac_flags+add) & mask
endm

2.13 module

The modulecommand is used to load and query external modules. A module is a
special piece of software that can extend gpsim in some manner. LED’s and switches
are examples of modules. A module library is collection of modules.

Loading module libraries

module lib lib_name

The lib option is used to load a module library. Module libraries are system dependent
shared libraries. I.e. on Windows they’re DLL’s and UNIX they’re shared libraries.
This means that either the libraries should reside in a path where the OS knows libraries
exist or that the full path name must be specified along with thelib_name. gpsim
provides a module library with a few modules:

gpsim> module lib libgpsim_modules

CHAPTER 2. COMMAND LINE INTERFACE 16

Displaying available modules

module list

The list option will display all of the modules that can be loaded. Here is an example
of gpsim’s built-in modules.

gpsim> module list
Module Libraries libgpsim_modules.so

binary_indicator
pullup
pulldown
usart
parallel_interface
switch
and2
or2
xor2
not
led_7segments
led
PAL_video
Encoder

Loading a specific module

module load module_type [module_name]

Once a library has been loaded, specific modules can be instantiated. Themodule_type
is what’s displayed by themodule listcommand. The optional module name Here’s an
example

gpsim> module load led D1

Display loaded modules

Querying modules

2.14 node

node [new_node1 new_node2 ...]
If no new_node is specified then all of the nodes that have been

defined are displayed. If a new_node is specified then it will be

CHAPTER 2. COMMAND LINE INTERFACE 17

added to the node list. See the "attach" and "stimulus" commands
to see how stimuli are added to the nodes.

examples:

node // display the node list
node n1 n2 n3 // create and add 3 new nodes to the list

2.15 processor

processor [new_processor_type [new_processor_name]] | [list] | [dump]

Theprocessorcommand is used to either define a new processor or to query one that
has already been defined. Normally there’s no need to explicitly define the processor
since the symbol file already contains that information. The two exceptions are when
a) the symbolic information is not available or b) you wish to override the processor
specified in the symbol file. (See theload command on how the processor in a symbol
file can be overridden.)

To see a list of the processors supported by gpsim, type ’processor list’. To display
the state of the I/O processor, type ’processor pins’. For now, this will display the pin
numbers and their current state.

examples:
processor // Display the processors you’ve already defined.
processor list // Display the list of processors supported.
processor pins // Display the processor package and pin state
processor p16cr84 fred // Create a new processor.
processor p16c74 wilma // and another.
processor p16c65 // Create one with no name.

2.16 quit

Quit gpsim.

2.17 run

Start (or continue) simulation. The simulation will continue until the next break point
is encountered.

CHAPTER 2. COMMAND LINE INTERFACE 18

2.18 step

step [over | n]

no arguments: step one instruction.
numeric argument: step a number of instructions

"over" argument: step over the next instruction

2.19 symbol

symbol [symbol_name [symbol_type value]]

The symbol command is used to query and define symbols. If no options are specified,
the whole symbol table is displayed. The creation of user defined symbols is limited at
this time (see the online help for the current state of this command).

2.20 stimulus

stimulus [[type] options]

Thestimuluscommand creates a signal that can be tied to a node or an attribute. If no
options are specified then all currently defined stimuli are displayed.

Note that in most cases it is easier to create a stimulus file then to type the command
by hand.

initial_state state at the start and at the rollover
start_cycle simulation cyle when the stimulus will begin

period stimulus period
name specifies the stimulus name

Here’s an example of a stimulus that will generate two pulses and repeat this in 1000
cycles.

stimulus asynchronous_stimulus
The initial state AND the state the stimulus is when
it rolls over
initial_state 0
start_cycle 0
the asynchronous stimulus will roll over in ’period’
cycles. Delete this line if you don’t want a roll over.
period 1000
{ 100, 1,

200, 0,

CHAPTER 2. COMMAND LINE INTERFACE 19

300, 1,
400, 0

}
Give the stimulus a name:
name two_pulse_repeat
end

A stimulus can be queried by typing its name at the command line:

gpsim> two_pulse_repeat
two_pulse_repeat attached to pulse_node

Vth=0V Zth=250 ohms Cth=0 F nodeVoltage= 7.49998e-07V
Driving=0 drivingState=0 drivenState=0 bitState=0
states = 5

100 1
200 0
300 1
400 0
1000 0

initial=0
period=1000
start_cycle=0
Next break cycle=100

Even though this example uses 1’s and 0’s for the data, one can use integers, floating
point numbers, or expressions instead. Integers are useful for supplying a stimulus to
an attribute. Expressions are useful for abstracting the data. See Chapter 6 for more
discussion and examples of stimuli.

2.21 stopwatch

2.22 trace

trace [dump_amount]
trace will print out the most recent "dump_amount" traces.
If no dump_amount is specified, then the entire trace buffer
will be displayed.

2.23 version

version

Display gpsim’s version. Note, this command will probably get replaced by an attribute
with the same (or similar) name.

CHAPTER 2. COMMAND LINE INTERFACE 20

2.24 x

x [file_register] [new_value]
options:

file_register - ram location to be examined or modified.
new_value - the new value written to the file_register.
if no options are specified, then the entire contents
of the file registers will be displayed (dump).

Chapter 3

Graphical User Interface

gpsim also provides a graphical user interface that simplifies some of the drudgery
associated with the cli. It’s possible to open windows to view all the details about your
debug environment. To get the most out of your debugging session, you’ll want to
assemble your code with gpasm (the gnupic assembler) and use the symbolic .cod files
it produces.

3.1 Main window

3.1.1 Menus

File->Open .stc or .cod files.

File->Quit Quit gpsim

Windows->* Open/Close the windows.

3.1.2 Buttons

(These are also found as keyboard bindings in the source windows.)

Step Step one instruction

Over Step until pc is after next instruction

Finish Run to return address

Run Run continuously

Stop Stop execution

Reset Reset CPU

21

CHAPTER 3. GRAPHICAL USER INTERFACE 22

3.1.3 Simulation mode

This controls how gpsim simulates, and how the gui updates.

Never Don’t ever update the gui when simulating. This is the fastest mode.
You’ll have to stop simulation by pressing Ctrl-C in the command
line interface.

x cycles Update the gui every x cycles simulated.

every cycle Update the gui every cycle. (you see everything, if you have filled
up on coffee :-)

x ms animate Here you can slow down simulation with a delay between every
cycle.

realtime This will make gpsim try to synchronize simulation speed with wall
clock time.

3.2 Source Browsers

gpsim provides two views of your source: ’.asm’ and ’.obj’ browsers. The ’.asm’
browser is a color coded display of your pic source.

3.2.1 .asm Browser

When a .cod file with source is loaded, there should be something in this display.
(TODO: add section about high level debugging).

There is an area to the left of the source, where symbols representing the program
counter, breakpoints, etc are displayed. Double clicking in this area toggles break-
points. You can drag these symbols up or down in order to move them and change the
PC or move a breakpoint.

A right button click on the source pops up a menu with six items (the word ’here’ in
some menu items denote the line in source the mouse pointer was on when right mouse
button was clicked.):

Menu item Description

Find PC This menu item will find the PC and changed page tab and scroll the
source view to the current PC.

Run here This sets a breakpoint ’here’and starts running until a breakpoint is
hit.

Move PC here This simply changes PC to the address that line ’here’in source has.

Breakpoint here Set a breakpoint ’here’.

CHAPTER 3. GRAPHICAL USER INTERFACE 23

Profile start here Set a start marker for routine profiling here.

Profile stop here Set a stop marker. (See the section for the profiling window.)

Select symbol. This menu item is only available when some text is selected in the
text widget. What it does is search the list of symbols for the selected
word, and if it is found it is selected in the symbol window. Depend-
ing of type of symbol other things are also done, the same thing as
when selecting a symbol in the symbol window:

• If it is an address, then the opcode and source views display the
address.

• If it’s a register, the register viewer selects the cell.

• If it’s a constant, address, register or ioport, it is selected in the
symbol window.

Find text This opens up a search dialog. Every time you hit the ’Find’ button,
the current notebook page is found and the source in that page is
used.

Settings A dialog with which you can change the fonts used.

Controls A submenu containing the simulation commands. (these are also
found as keyboard bindings (recommended), or in the main window.)

These are the keyboard bindings:

Key command

s,S,F7 Step one instruction.

o,O,F8 Step over instruction

r,R,F9 Run continously.

Escape Stop simulation.

f,F Run to return address

3.2.2 Opcode view - the .obj Browser

This window has two tabs. One with each memory cell on one line and information
about address, hexadecimal value and decoded instruction (i.e. disassembly), and one
with the program memory

displayed with sixteen memory cells per row and a configurable ascii column.

CHAPTER 3. GRAPHICAL USER INTERFACE 24

The Assembly tab you can:

• Double click on a line to toggle breakpoints.

• Use the same keyboard commands as the in the source browser.

• Right click to get a menu where you can change the fonts.

The Opcode tab.

Here the program memory is ordered as columns of sixteen memory cells per column
and as many row as needed to contain all memory.

The seventeenth column contains an ASCII representation of the program memory.
You can configure this column to use one of three different modes:

• One byte per cell

• Two bytes per cell, MSB first.

• Two bytes per cell, LSB first.

You can change fonts with the menu item ’Settings’.

You can set breakpoints on one or more (drag the mouse to select more cells) addresses
with the right click menu.

3.3 Register views

There are two similar register windows. One for the RAM and one for the EEPROM
data, when available.

Here you see all registers in the current processor. Clicking on a cell displays it’s name
and value above the sheet of registers. You can change values by entering it in the entry
(or in the spreadsheet cell).

The following things can be done on one register, or a range of registers. (Selecting
a range of registers is done by holding down left mouse button, moving cursor, and
releasing button.)

• Set and clear breakpoints. Use the right mousebutton menu to pop up a menu
where you can select set read, write, read value and write value breakpoints. You
can also "clear breakpoints", notice the s in "clear breakpoints", every breakpoint
on the registers are cleared.

• Set and clear logging of registers. You can log reads, writes, reads/writes of
specific values and to bits selected by a specified mask. You can select a different
file name with ’set log filename...’. Default is "gpsim.log". You can choose LXT
or ASCII format. LXT can be read with the program gtkwave. ASCII is default.

CHAPTER 3. GRAPHICAL USER INTERFACE 25

• Copy cells. You copy cells by dragging the border of the selected cell(s).

• Fill cells. Move mouse to lower right corner of the frame of the selected cell(s),
and drag it. The one cell’s contents will be copied to the other cells.

• Watch them. Select the "Add Watch" menu item.

The cells have different background colors depending on if they represent:

• File Register (e.g. RAM): light cyan.

• Special Function Registers (e.g. STATUS,TMR0): dark cyan

• aliased register (e.g. the INDF located at address 0x80 is the same as the one
located at address 0x00): gray

• invalid register: black. If all sixteen registers in a row are invalid, then the row is
not shown.

• a register with one or more breakpoints: red. Logged registers are also red.

gpsim dynamically updates the registers as the simulation proceeds. Registers that
change value between updates of the window during simulation are highlighted with a
blue foreground color.

The menu also has a ’settings’ item where you can change the font used.

3.4 Symbol view

This window, as its name suggests, displays symbols. All of the special function reg-
isters will have entries in the symbol viewer. If you’re using .cod files then you’ll
additionally have file registers (that are defined in cblocks), equates, and address la-
bels.

You can filter out some symbol types using the buttons in the top of the window, and
you can sort the rows by clicking on the column buttons (the ones reading ’symbol’,
’type’ and ’address’).

You can add the symbol to the watch window by right-clicking and selecting the "Add
to watch window" menu item. This will add the ram register with address equal to the
symbols value to the watch window.

The symbol viewer is linked to the other windows. For example, if you click on a
symbol and:

• If it is an address, then the opcode and source views display the address.

• If it’s a register, the register viewer selects the cell.

CHAPTER 3. GRAPHICAL USER INTERFACE 26

3.5 Watch view

This is not a output-only window as the name suggests (change name?). You can both
view and change data. Double-clicking on a bit toggles the bit. You add variables
here by marking them in a register viewer and select “Add watch” from menu. The
right-click menu has the following items:

• Remove watch

• Set register value

• Clear Breakpoints

• Set break on read

• Set break on write

• Set break on read value

• Set break on write value

• Columns...

"Columns...” opens up a window where you can select which of the following data to
display:

• BP

• Type

• Name

• Address

• Dec

• Hex

• Bx (bits of word)

You can sort the list of watches by clicking on the column buttons. Clicking twice sorts
the list backwards.

3.6 Stack viewer

This window displays current stack. Selecting an entry makes the code windows dis-
play the return address. Double clicking sets a breakpoint on the return address.

CHAPTER 3. GRAPHICAL USER INTERFACE 27

3.7 Breadboard

Here you can create/modify and examine the environment around the pic. Pins are
displayed as an arrow. The direction of the arrow indicates if its an input or output pin.
The color of the arrow indicates its state (green=low, red=high).

You can’t instantiate pic processors from here, you’ll have to do that from the command
line, or from a .stc file.

Your can create nodes by clicking on the "new node" button. (A node is ’a piece of
wire’ to which you can connect stimulus.) You can see the list of created nodes under
the "nodes" item in the upper-left tree widget.

You can create connections to nodes by clicking on a pin, and then clicking on the
button "Connect stimulus to node". This will bring up a list of nodes. Choose one by
double-clicking on the one you like.

If you click on a pin that is already connected to a node, then you’ll see the node and
its connections in the lower left part of the window. You can disconnect a stimulus by
clicking on it and pressing the "remove stimulus" button.

When you want to add a module to the simulation, you first have to specify the library
which contains the module you want. Click on the "add library" button and enter
the library name (e.g. "libgpsim_modules.so"). Now you can click the "add module"
button. Select the module you want from the list by double-clicking on it. Enter a name
for the module (this has to be unique, and not used before). You now have to position
the module. Move the mouse pointer to where you’d like the module, and left-click.

If you middle-click on a pin, you’ll see how the pin is connected. Press the "trace all"
to see all at

once, and "clear traces" to remove all (you’ll only remove the graphical trace, not the
connection!). If the tracing doesn’t work, try moving the packages so that there are
more space around the pins.

When you are done, you can save by clicking the "save configuration" button. You can
then load this file from the command line like this (assuming the .cod file with your
source is called "mycode.cod", and the file you just saved was called "mynets.stc":

gpsim -s mycode.cod -c mynets.stc

You can’t load only the .stc file since this doesn’t contain the processor type and code.
You can create (with an editor) your own .stc file (e.g. my_project.stc) and in that file
put a command "load c mynets.stc" after you have loaded the .cod file. You then only
have to load this file (gpsim -c my_project.stc).

3.8 Trace viewer

This window shows the trace of instructions executed. See 5.

CHAPTER 3. GRAPHICAL USER INTERFACE 28

3.9 Profile viewer

This window show execution count for program memory addresses. The profile win-
dow must be opened before starting simulation, because the traceing is not enabled by
default.

Instruction profile

This shows the number of times each instruction are executed.

Instruction range profile

Here you can group ranges of instruction into one entry.

The right click menu contains:

Remove range Remove an entry.

Add range... Open a disalog from where you can add a range of instructions as
an entry.

Add all labels Add all code labels as ranges.

Snapshot to plot Open a window containing a graph of the data. From this new
window you can also save (postscript) or print it.

Register profile

This shows the number of reads or writes the simulator does on register.

Routine profile

Here you can see statistics about execution time for a selected routine. You mark the
entry and exit points from the source browser (profile start/stop). If the routine you
want to measure have multiple entry and/or exit points, then you have to put a marker
on every entry point as well as (and especially) every exit point. Othervise you will get
bad data.

When you have done that, gpsim will (as simulation goes by) store the execution times
of that routine and calculate min/max/average/etc. You can also use the menu item
’Plot distribution’ to open a window displaying a histogram of the data. From this new
window you can also save (in postscript) or print it.

You can also measure call period by switching the ’entry’ and ’exit’ points. If also
want the time from reset (or some equal point) to the first ’entry’, then you must also
put an ’entry’ point there.

CHAPTER 3. GRAPHICAL USER INTERFACE 29

3.10 Stopwatch

The stopwatch window shows a cycle counter and a re-settable counter. The cycle
counter is the same as the one in the register window. It basically counts instructions.

The other counter counts at the same rate as the cycle counter, but can be cleared by
clicking the "clear" button (or preset by entering a number in the entry box).

The up/down indicator denotes the direction the counter counts.

The rollover value specifies the range the cycle counter can be in (a modulo counter).
For example, if the rollover value is specified to be 0x42, then whenever the resettable
counter reaches 0x42 it will rollover to zero. If the counter is counting down, then
when it reaches 0 the next state will be 0x41. If you don’t want is like this, then set the
rollover value to something large.

Chapter 4

Controlling the Flow: Break
Points

One of gpsim’s strong features is the flexibility provided with break points. Most sim-
ulators are limited to execution type break points.

If you want to set break points on registers, on execution cycles, invalid program lo-
cations, stack over flows, etc. then you’re usually forced to debug your code with an
ICE.

4.1 Execution Break Points

An execution break point is one that will halt a running program when the program
memory address at which it is set is encountered. For example, if you were debugging
a mid-ranged PIC and wished to stop execution when ever an interrupt occurs, you
could set a break point at program memory address 0x04:

gpsim> break e 4

(To be more precise, an interrupt doesn’t have to occur for this break point to be en-
countered - errant code could have branched here too).

The break point occurs BEFORE the instruction executes. Other simulators such as
MPLAB break after the instruction executes. In many cases this distinction is insignif-
icant. However, if the break is set on a ’goto’ or ’call’ instruction, then it’s convenient
to stop before the branch occurs. This way it’s easy to determine from where a brance
occurred.

4.1.1 Invalid Instruction Break Points

gpsim automatically will halt execution if a program attempts to venture beyond its
bounds. Program memory locations that are not defined by your source code will be

30

CHAPTER 4. CONTROLLING THE FLOW: BREAK POINTS 31

initialized with an ’Invalid Instruction’. These are quite visible when you disassemble
the program.

4.2 Register Break Points

gpsim provides the ability to break whenever a register accessed, either read or written
or both. Furthermore, it’s possible to break whenever a specific value is written to or
read from a register.

4.3 Cycle Break Points

Cycle break points allow the program to be halted at a specific instruction cycle. Sup-
pose you have a 20 Mhz pic and want to break after one second of simulation time.
You could set a break at the 5 millionth instruction cycle.1

1There are 4 clock cycles per instruction. Also, a future feature of gpsim will provide you with the ability
to set break points in terms of seconds.

Chapter 5

Trace: What has happen?

Inspecting the current state of your program is sometimes insufficient to determine the
cause of a bug. Often times it’s useful to know the conditions that led up to the current
state. gpsim provides a history or trace of everything that occurs - whether you want it
or not - to help you diagnose these otherwise difficult to analyze bugs.

What’s traced notes

program counter adresses executed
instructions opcode
register read value and location
register write value and location
cycle counter current value

skipped instructions addresses skipped
status register during implicit modification

interrupts
break points type

resets type

The ’trace’ command will dump the contents of the trace buffer.

A large circular buffer (whose size is hard coded) stores the information for the trace
buffer. When it fills, it will wrap around and write over the old history. The contents
of the trace buffer are parsed into frames, where one frame corresponds to a simulation
cycle.

Here’s an example of a trace output:

gpsim> trace
0x00000000000026F6 p18f452 0x001C 0x1003 iorwf reg3,w,0

32

CHAPTER 5. TRACE: WHAT HAS HAPPEN? 33

Read: 0x00 from reg3(0x0003)
Wrote: 0xE7 to W(0x0FE8) was 0xE7
Wrote: 0x18 to status(0x0FD8) was 0x18

0x00000000000026F7 p18f452 0x001E 0xE1F4 bnz $-0x16 ;(0x8)
0x00000000000026F8 p18f452 0x0008 0x3E00 incfsz reg,f,0

Read: 0xE4 from reg(0x0000)
Wrote: 0xE5 to reg(0x0000) was 0xE4

0x00000000000026F9 p18f452 0x000A 0xD004 bra $+0xa ;(0x00014) 0x00000000000026FA p18f452 0x0014 0x0004 clrwdt
0x00000000000026FB p18f452 0x0016 0x5000 movf reg,w,0

Read: 0xE5 from reg(0x0000)
Wrote: 0xE5 to W(0x0FE8) was 0xE7
Wrote: 0x18 to status(0x0FD8) was 0x18

0x00000000000026FC p18f452 0x0018 0x1001 iorwf reg1,w,0
Read: 0x03 from reg1(0x0001)

Wrote: 0xE7 to W(0x0FE8) was 0xE5
Wrote: 0x18 to status(0x0FD8) was 0x18

Each trace frame begins with a new simulation cycle. Typically this will include a
simulated instruction. Here’s each of the fields:

64-bit simulation cycle processor PC opcode instruction
0x00000000000026F6 p18f452 0x001C 0x1003 iorwf reg3,w,0

Other events that occur during the trace frame are indented. Typically these will be
register read or write traces. The read traces show the value read. Write traces show
the value written and the value that was previously in the register.

Chapter 6

Simulating the Real World:
Stimuli

Stimuli are extremely useful, if not necessary, for simulations. They provides a means
for simulating interactions with the real world.

The gpsim stimuli capability is designed to be accurate, efficient and flexible. The
models for the PIC’s I/O pins mimic the real devices. For example, the open collector
output on port A of an PIC16C84 can only drive low. Multiple I/O pins may tied to
one another so that the open collector on port A can get a pull up resistor from port B.
The overhead for stimuli only occurs when a stimulus changes states. In other words,
stimuli are not polled to determine their state.

Analog stimuli are also available. It’s possible to create voltage references and sources
to simulate almost any kind of real world thing. For example, it’s possible to combine
two analog stimuli together to create signals like DTMF tones.

6.1 How They Work

In the simplest case, a stimulus acts a source for an I/O pin on a pic. For example,
you may want to simulate a clock and measure its period using TMR0. In this case,
the stimulus is the source and the TMR0 input pin on the pic is the load. In gpsim you
would create a stimulus for the clock using the stimulus command and connect it to the
I/O pin using the node command.

In general, you can have several ’sources’ and several ’loads’ that are interconnected
with nodes1. A good analogy is a spice circuit. The spice netlist corresponds to a
node-list in gpsim and the spice elements correspond to the stimuli sources and loads.
This general approach makes it possible to create a variety of simulation environments.
Here’s a list of different ways in which stimuli may be connected:

1Although, gpsim is currently limited to ’one-port’ devices. In other words, it is assumed that ground
serves as a common reference for the sources and the loads.

34

CHAPTER 6. SIMULATING THE REAL WORLD: STIMULI 35

1. Stimulus connected to one I/O pin

2. Stimulus connected to several I/O pins

3. Several stimuli connected to one I/O pin

4. Several stimuli connected to several I/O pins

5. I/O pins connected to I/O pins

The general technique for implementing stimuli is as follows:

1. Define the stimulus or stimuli.

2. Define a node.

3. Attach the stimuli to the node.

More often then not, the stimulus definition will reside in a file.

6.1.1 Contention among stimuli

One of the problems with this nodal approach to modeling stimuli is that it’s possible
for contention to exist. For example, if two I/O pins are connected to one another and
driving in the opposite directions, there will be contention. gpsim resolves contention
with attribute summing. Each stimulus - even if it’s an input - has an effect on the
node. This effect is given a weight. When a node is updated, gpsim will simply add the
weights of all the stimuli together and assign that numeric value to the node. A weight
value of zero corresponds to no load. A large positive weight is used by a stimulus to
drive the node positive, while a large negative weight is used to drive it negative.

Attribute summing is useful for pull up resistors. In the port A open collector / port B
weak pull-up connection example, gpsim assigns a relatively small weight to the pull
up resistor and a large negative weight to the open collector if it is active or no weight if
it’s not driving. Capacitive effects (which are not currently supported) can be simulated
with dynamically changing weight values.

6.2 I/O Pins

gpsim models I/O pins as stimuli. Thus anywhere a stimulus is used, an I/O pin may
be substituted. For example, you may want to tie two I/O pins to one another; like a
port B pull up resistor to a port A open collector. gpsim automatically creates the I/O
pin stimuli whenever a processor is created. All you need to do is to specify a node and
then attach the stimuli to it. The names of these stimuli are formed by concatenating
the port name with the bit position of the I/O pin. For example, bit 3 in port B is called
portb3.

Here’s a list of the types of I/O pin stimuli that are supported:

CHAPTER 6. SIMULATING THE REAL WORLD: STIMULI 36

I/O Pin Type Function

INPUT_ONLY Only accepts input (like MCLR)
BI_DIRECTIONAL Can be a source or a load (most I/O pins)

BI_DIRECTIONAL_PU PU=Pullup resistor (PORTB)
OPEN_COLLECTOR Can only drive low (RA4 on c84)

There is no special pin type for analog I/O pins. All pic analog inputs are multiplexed
with digital inputs. The I/O pin definition will always be for the digital input. gpsim
automatically knows when I/O pin is analog input.

6.3 Asynchronous Stimuli

Asynchronous stimuli are analog or digital stimuli that can change states at any given
instant (limited to the resolution of the cycle counter). They can be defined to be
repetitive too.

parameter function

start_cycle The # of cycles before the stimulus starts
cycles[] An array of cycle #’s
data[] Stimulus state for a cycle
period The # of cycles for one period

initial_state The initial state before data[0]

When the stimulus is first initialized, it will be driven to the ’initial state’ and will
remain there until the cpu’s instruction cycle counter matches the specified ’start’ cycle.
After that, the two arrays ’cycles[]’ and ’data[]’ define the stimulus’ outputs. The
size of the arrays are the same and correspond to the number of events that are to be
created. So the event number, if you will, serves as the index into these arrays. The
’cycles[]’ array define when the events occur while the ’data[]’ array defines the states
the stimulus will enter. The ’cycles[]’ are measured with respect to the ’start’ cycle.
The asynchronous stimulus can be made periodic by specifying the number of cycles
in the ’period’ parameter.

Here’s an example that generates three pulses and then repeats:

stimulus asynchronous_stimulus # or we could’ve used asy
The initial state AND the state the stimulus is when
it rolls over
initial_state 1
all times are with respect to the cpu’s cycle counter
start_cycle 100
the asynchronous stimulus will roll over in ’period’

CHAPTER 6. SIMULATING THE REAL WORLD: STIMULI 37

cycles. Delete this line if you don’t want a roll over.
period 5000
Now the cycles at which stimulus changes states are
specified. The initial cycle was specified above. So
the first cycle specified below will toggle this state.
In this example, the stimulus will start high.
At cycle 100 the stimulus ’begins’. However nothing happens
until cycle 200+100.
{ 200, 0,

300, 1,
400, 0,
600, 1,
1000, 0,
3000, 1 }

Give the stimulus a name:
name asy_test
Finally, tell the command line interface that we’re done
with the stimulus
end

6.3.1 Analog Asynchronous Stimuli

Analog Asynchronous Stimuli are identical to Synchronous Stimuli except the data
points are floating point numbers.

Chapter 7

Modules

gpsim has been designed to debug microprocessors. However, microprocessors are
always a part of a system. And invariably, the bugs one often encounters are those
that are a result of interfacing with a system. Modules provide users with a way to
extend gpsim and simulate a system. For example, thesystemmay be a processor with
a few pull up resistors and switches or it may be a processor and an LCD display.
gpsim provides a few modules that one may use either for debugging or as templates
for creating new modules.

7.1 gpsim Modules

gpsim provides the following modules:

binary_indicator
pullup

pulldown
usart

parallel_interface
switch
and2
or2
xor2
not

led_7segments
led

PAL_video
Encoder

38

CHAPTER 7. MODULES 39

7.2 Writing new modules

A module is a library of code. On Windows the library is a .DLL and Unix a shared
library. There are few details that module must adhere to, but in general the module
has full access to gpsim’s API.

Chapter 8

Symbolic Debugging

gpsim maintains a symbol table.

<write me>

40

Chapter 9

Macros

<write me>

41

Chapter 10

Hex Files

The target code simulated by gpsim can be supplied by a hex file, or more specifically
an Intel Hex file. gpsim accepts the format of hex provided by gpasm and mpasm. The
hex file does not provide any symbolic information. It’s recommended that hex files
only be used if 1) you suspect there’s a problem with the way .cod files are generated
by your assembler or compiler OR 2) your assembler or compiler doesn’t generate
.cod files. Also, you must supply a processor when loading hex files. See the load
command.

42

Chapter 11

The ICD

gpsim supports (partly) the first version of the ICD (as opposed to ICD2 (the round
hockey-puck shaped one)).

Special configuration of the code

Read the MPLAB ICD USER’s GUIDE.

Here’s the short version:

• disable at least: brown out detection, low voltage programming and all code
protection. It is probably good to turn of the watchdog too. see the MPLAB ICD
USER’s GUIDE for more information.

• have a NOP as the first instruction.

• Don’t touch RB6 or RB7.

• Don’t use the last stack level.

• Don’t use these registers and program words:
Processor Register Program

-870/1/2 0x70, 0xBB-0xBF 0x6E0-0x7FF
-873/4 0x6D, 0x1fD, 0xEB-0xF0, 0x1Eb-0x1F0 0xEE0-0xFFF
-876/7 0x70, 0x1Eb-0x1Ef 0x1F00-0x1FFF

icdprog

Download and install icdprog.

Use icdprog to program the target with the hex file (icdprog mycode.hex).

43

CHAPTER 11. THE ICD 44

ICD usage

Start gpsim like this:

gpsim -d /dev/ttyS0 -s mycode.cod

, assuming the ICD is connected to the first serial port.

Now you can type ’icd’ to see some information:

**gpsim> icd
ICD version "2.31.00" was found.
Target controller is 16F877 rev 13.
Vdd: 5.2 Vpp: 13.3
Debug module is present

2.31 is the firmware version. I have only tried this particular version...

You can step, reset, run, halt, set the breakpoint and read file registers. It works both
from the gui and the cli.

ICD TODO

• MPLAB has a setting for target cpu frequency, I have only tried with a 20MHz
crystal, so there may be adjustments to be made to the serial port timeout settings
in gpsim.

• The source, disassembly, watch, symbol and RAM windows works. And the rest
doesn’t. I guess the breadboard should be able to work at least for the pic, but it
doesn’t.

• eeprom support

• modifying data

• Fix the UI to give more feedback about what’s happening during long delays.

• Better error detection. gpsim doesn’t always see that the target is not functional.

Chapter 12

Theory of Operation

This section is only provided for those who may be interested in how gpsim operates.
The information in here is ’mostly’ accurate. However, as gpsim evolves so do the
details of the theory of operation. Use the information provided here as a high level
introduction and use the (well commented :]) source to learn the details.

12.1 Background

gpsim is written mostly in C++. Why? Well the main reason is to easily implement
a hierarchical model of a pic. If you think about a microcontroller, it’s really easy to
modularize the various components. C++ lends itself well to this conceptualization.
Furthermore Microchip, like other microcontroller manufacturers, has created families
of devices that are quite similar to one another. Again, the C++ provides ’inheritance’
that allows the relationships to be shared among the various models of pics.

12.2 Instructions

There’s a base class for the 14-bit instructions (I plan to go one step further and cre-
ate a base class from which all pic instructions can be derived). It primarily serves
two purposes: storage that is common for each instruction and a means for generically
accessing virtual functions. The common information consists of a name - or more
specifically the instruction mnemonic, the opcode, and a pointer to the processor own-
ing the instruction. Some of the virtual functions are ’execute’ and ’name’. As the hex
file is decoded, instances of the instructions are created and stored in an array called
program_memory. The index into this array is the address at which the instruction
resides. To execute an instruction the following code sequence is invoked:

program_memory[pc.value]->execute();

45

CHAPTER 12. THEORY OF OPERATION 46

which says, get the instruction at the current program counter (pc.value) and invoke
via the virtual function execute(). This approach allows execution break points to be
easily set. A special break point instruction can replace the one residing in the program
memory array. When ’execute’ is called the break point can be invoked.

12.3 General File Registers

A file register is simulated by the ’file_register’ class. There is one instance of a
’file_register’ object for each file register in the PIC. All of the registers are collected
together into an array called ’registers’ which is indexed by the registers’ correspond-
ing PIC addresses. The array is linear and not banked like it is in the PIC. (Banking is
handled during the simulation.)

12.4 Special File Registers

Special file registers are all of the other registers that are not general file registers.
This includes the core registers like status and option and also the peripheral registers
like eeadr for the eeprom. The special file registers are derived from the general file
registers and are also stored in the ’registers’ array. There is one instance for each
register - even if the register is accessible in more than one bank. So for example,
there’s only one instance for the ’status’ register, however it may be accessed through
the ’registers’ array in more than one place.

All file registers are accessed by the virtual functions ’put’ and ’get’. This is done
for two main reasons. First, it conveniently encapsulates the breakpoint overhead (for
register breakpoints) in the file register and not in the instruction. Second, and more
important, it allows derived classes to implement the put and get more specifically. For
example, a ’put’ to the indf register is a whole lot different than a put to the intcon
register. In each case, the ’put’ initiates an action beyond simply storing a byte of data
in an array. It also allows the following code sequence to be easily implemented:

movlw trisa ;Get the address of tris
movwf fsr
movf indf,w ;Read trisa indirectly

12.5 Example of an instruction

Here’s an example of the code for the movf instruction that illustrates what has been
discussed above. Somewhere in gpsim the code sequence:

program_memory[pc.value]->execute();

CHAPTER 12. THEORY OF OPERATION 47

is executed. Let’s say that the pc is pointing to a movf instruction. The ->execute()
virtual function will invoke MOVF::execute. I’ve added extra comments (that aren’t in
the main code) to illustrate in detail what’s happening.

void MOVF::execute(void)
{

unsigned int source_value;

// All instructions are ’traced’ (discussed below). It’s sufficient
//to only store the opcode. However, even this may be unnecessary since
//the progam counter is also traced. Expect this to disappear in the
//future...
trace.instruction(opcode);

// ’source’ is a pointer to a ’file_register’ object. It is initialized
//by reading the ’registers’ array. Note that the index depends on the
//’rp’ bits (actually just one bit) in the status register. Time is
// saved by caching rp as opposed to decoding the status register.
source = cpu->registers[cpu->rp | opcode®_IN_INSTRUCTION_MASK];

// We have no idea which register we are trying to access and how it
//should be accessed or if there’s a breakpoint set on it. No problem,
//the virtual function ’get’ will resolve all of those details
// and ’do the right thing’.
source_value = source->get();

// If the destination is W, then the constructor has already initialized
//’destination’. Otherwise the destination and source are the same.
if(opcode&DESTINATION_MASK)

destination = source; // Result goes to source

// Write the source value to the destination. Again, we have no idea
// where the destination may be or
// or how the data should be written there.
destination->put(source_value);

// The movf instruction will set Z (zero) bit in the status register
//if the source value was zero.
cpu->status.put_Z(0==source_value);

// Finally, advance the pc by one.
cpu->pc.increment();

}

CHAPTER 12. THEORY OF OPERATION 48

12.6 Trace

Everything that is simulated is traced -all of the time. The trace buffer is one huge
circular buffer of integers. Information is or’ed with a trace token and then is stored
in the trace buffer. No attempt is made to associate the items in the trace buffer while
the simulator is simulating a PIC. Thus, if you look at the raw buffer you’ll see stuff
like: cycle counter = ..., opcode fetch = ..., register read = ..., register write = ..., etc.
However, this information is post processed to ascertain what happened and when it
happened. It’s also possible to use this information to undo the simulation, or in other
words you can step backwards. I don’t have this implemented yet though.

12.7 Breakpoints

Breakpoints fall into three categories: execution, register, and cycle.

Execution:

For execution breakpoints a special instruction appropriately called ’Breakpoint_Instruction’
is created and placed into the program memory array at the location the break point is
desired. The original instruction is saved in the newly created breapoint instruction.
When the break point is cleared, the original instruction is fetched from the break point
instruction and placed back into the program memory array.

Note that this scheme has zero overhead. The simulation is only affected when the
breakpoint is encountered.

Register:

There are at least four different breakpoint types that can be set on a register: read any
value, write any value, read a specific value, or write a specific value. Like the execu-
tion breakpoints, there are special breakpoint registers that replace a register object. So
when the user sets a write breakpoint at register 0x20 for example, a new breakpoint
object is created and insert into the file register array at location 0x20. When the sim-
ulator attempts to access register location 0x20, the breakpoint object will be accessed
instead.

Note that this scheme too has zero overhead, accept when a breakpoint is encountered.

Cycle:

Cycle breakpoints allow gpsim to alter execution at a specific instruction cycle. This is
useful for running your simulation for a very specific amount of time. Internally, gpsim
makes extensive use of the cycle breakpoints. For example, the TMR0 object can be
programmed to generate a periodic cycle break point.

CHAPTER 12. THEORY OF OPERATION 49

Cycle break points are implemented with a sorted doubly-linked list. The linked list
contains two pieces of information (besides the links): the cycle at which the break is
to occur and the call back function1 that’s to be invoked when the cycle does occur.
The break logic is extremely simple. Whenever the cycle counter is advanced (that is,
incremented), it’s compared to the next desired cycle break point. If there’s NO match,
then we’re done. So the overhead for cycle breaks is the time required to implement
a comparison. If there IS a match, then the call back function associated with this
break point is invoked and the next break point in the doubly-linked list serves as the
reference for the next cycle break.

1A call back function is a pointer to a function. In this context, gpsim is given a pointer to the function
that’s to be invoked (called) whenever a cycle break occurs.

COPYING

The document is part of gpsim.

gpsim is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

gpsim is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with gpsim;
see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

50

Index

attach, 9

break, 9, 10
bus, 9

clear, 9, 11

disassemble, 9, 12
dump, 9, 12

echo, 12

frequency, 9, 12

GNU, 50

help, 9, 13

icd, 9, 13
instructions, 45

License, 50
list, 9, 13
load, 9, 13
log, 9

macros, 14
module, 9, 15

NO WARRANTY, 50
node, 9, 16

processor, 9, 17

quit, 9, 17

registers, 46
run, 9, 17

set, 9

step, 9, 18
Stimulus, 34
stimulus, 9, 18
stopwatch, 9, 19
symbol, 9, 18

trace, 9, 19

version, 9

x, 9, 20

51

