Oracle Berkeley DB Java Edition

Getting Started with
Transaction Processing

Release 3.1

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html

Oracle, Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle
Corporation. All rights to these marks are reserved. No third-party use is permitted without the express prior
written consent of Oracle Corporation.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forumiD=273

Published 9/19/2006

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html
http://forums.oracle.com/forums/forum.jspa?forumID=273

Table of Contents

o =Tl iv
Conventions Used in this BOOKc.uviriiiiiiiiiiiiiiiii e e e iv

For More INformationeeeeeeietiiiii i e eer e ereneeeeeneeranneanes \%

LIPS [e e [T [o 1
Transaction BeNefifs .ovuuierieiiiii i et e e s e e e e e e aaeens 1

A Note on System Failureeeiiiiiiiiiiiiiiiiiiiiiitiiiieeeeiiieeeeresnnnnnes 2
Application ReqUIrEMENTES ..uviiiiiiitetiiiiiiieeeeiiieeeeeeenineeeeeennnnnneees 2
Multi-threaded AppliCAtioNS ..ciiiiiieiiiiiiiiiittereiiiiteeeeeeireeeeeeeennnnenes 3

T o0}V - 1) | N 1Y PP 4
PerformanCe TUNTNG .iiiiiieeti ittt eeeeiieeeeeeeennaeeeeessnnnseseessnnnnssessasnnns 4

2. ENabling TransaClioNs .ieeeuueeeeieeiiieteeeeeenieeeeeeeernneeeeeessnnneeesesnnnasessesannnnes 5
Opening a Transactional Environment and Databasecccevviiiiieeeeinnnnnnnns 5

T I - L Y- Vot o I - N Lok S 7
Committing @ TranSACTION ...uueeeeeeieiieeeeerennneeeeeeeennneeeeresennaseseesennnneeeens 8
Non-Durable TranSactionseeeeereirerereeeieieriiaereieeeeneeraenneraannens 9

AbOrting @ TranSaCtioN ..vieieeiieitteeeriiieteeeeenineeeeeeernneeeseessnnnneseesannnnnnes 10
AU o T @o 33 1 11 PR 11
TransSactional CUMSOIS ...ueienetereeteeeeerertereneeeeeereaneeraannesenaeesenneseannens 12
Secondary Indices with Transaction Applicationscceeviiiiiiieeieeneiinenennn. 13
Configuring the Transaction SUDSYSEEMeiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeaannns 15

4, CONCUITENCY ttttiennueeeeeeeenueeeeeeessnnseseeessnnssessessnnssessessnnssssesssnnnssesessnnns 17
Which JE Handles are Free-Threadedcceviiniiiiiiiiiiiiiiiiiiiiiiieiiaenanaens 18
Locks, Blocks, and DeadloCKS ...vvveriiiiiiiiiiiiiiiieeiieeeieaieeeeeeaaesassasnnnnnnnnas 18
oY o £ 18

LOCK RESOUICES .uvennntieeeteietereatereneeeeeneereannerennneeannneeannesans 19

TYPES Of LOCKS wvviiieiiintteeieeiiueeeerennnaeeeeesenneescesensnnsscecaannes 19

o Yol S 0 1 1=] = 20

51U € 20

Blocking and Application Performancec.c.cevvveeeiiiiiiieeeeeenennnnns 21

AVOIdING BLOCKS +.uueeetiiiiiiiiiiiiiiieeeteeiiieteeeeeenrnneeeeeaannnnas 22

3 7= T | Uo Yol 143 22

[DI=F: Vo Fo Yol [Q:\ Vo] [- o ol O 23

JE LOCK Management «ueeiiiiieieieeeiiineeeeeeeinneeeeeeeennneeeseeesnnsesesssnnnnaeeenns 24
Managing JE LOCK TimMEOULSuuiitiiiiiietiiiiiiieeeeeeeiiieeeeeeeennnneeeecanns 24

Managing DEAALOCKS ...uveiiiiiiietteiiiiiieteeeeiieeeeeeernaeeeeesenrnneseesanns 24

17 £= T o 26
Supported Degrees of 1S0lationovviieeeiiiiiiiiiiiiiiiiiiiieeneiiieeeeeanns 26

Reading Uncommitted Data ...covvvireiiiiiiiiiieieiiniiiieeeerennnneeeesennnnnnes 27
Committed REAAS ...evneeiriiiiiii it eee e re e eeeerenaeeaenaens 29
Configuring Serializable 1SOlationcceiiiiiiiiiiiiiiiiiiiiiiiiiiiieeenaannes 31
Transactional Cursors and Concurrent Applicationscevvveeeeeieiiieeeeeeennnnns 33
Using Cursors with Uncommitted Datacccveiiiiiiiiiniiiiniiiieeeeeeennnnes 34
REAA/MOAifY /Wit titii ittt ittt eeeeieeeeteaennaeeeessennnneseesaannns 35

5. Backing up and Restoring Berkeley DB, Java Edition Applications 37
NOIMAL RECOVEIY 1vtiiiiiiiitt ittt eeeeiineeeeeeeanraeeeeesessnneesessssnnnessesanns 37

(0 1=Tel (00]] & PP 37

9/19/2006 Using Transactions with JE Page ii

Performing BacKUPS «.ccuueieiietieiiiiiiitieiieeeeieeeeaieeeeneeeeraeeesneeessneeesnnees 38
Performing a HOt BaCKUP «.cuueiiiietiiiiiiiiieieiteriietenieerenneeeenneennnens 38
Performing an Offline BaCKUPceeietieieiiriieiieiiieiieeeenneeeenneeeanneenns 38
Using the DbBackup Helper Class ..c.uvieeeeieieiieiiienieeeenneeeeneeecnneenns 39

Performing CatastrophiC RECOVEIYuiiiiuiiiiiiiiiiiiiiiiieiieeeieeeeneeeenneenns 41

[0 A = 1 (o1 41

6. SUMMAry and EXamPLES ..ueieeeeirietiriteeeieeeeieeeeaneeeanneeessneeesnaseesneseenneens 43

Anatomy of a Transactional Applicationceeveeiiiieiiiiieiiiiieiiereeeneneeeannens 43

Transaction EXampPle c...eeiiiieiiiiiiiiiii it et et eeneeeeneeeenaeeaaaaes 44
TXNGUIAE. JAVA turetiintteeinteeeeteenneeeennteeenneeesnseeesneeessnnessnnssesneeenns 45
PayloadData.jaVa ..eeeeeueeeeieeeeeieeeenieeeeneeeeineeesnaeeeseeeesneeesnnecesnnees 48
DN =T o = V7 R O 49

9/19/2006

Using Transactions with JE Page iii

Preface

This document describes how to use transactions with your Berkeley DB, Java Edition
applications. It is intended to describe how to transaction protect your application’s data.
The APIs used to perform this task are described here, as are the environment
infrastructure and administrative tasks required by a transactional application. This book
also describes multi-threaded JE applications and the requirements they have for deadlock
detection.

This book is aimed at the software engineer responsible for writing a transactional JE
application.

This book assumes that you have already read and understood the concepts contained in
the Getting Started with Berkeley DB Java Edition guide.

Conventions Used in this Book
The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are net hod nanmes. For example: "The
Envi ronment . openDat abase() method returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory.”

Program examples are displayed in a nonospaced font on a shaded background. For
example:

i nport com sl eepycat . j e. Envi ronment ;

/1 Open the environnment. Allow it to be created if it does not already exist.
Envi ronment myDbEnv;

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in nonospaced bol d font. For example:

i nport com sl eepycat . j e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;
inmport java.io.File;

/1 Open the environnment. Allow it to be created if it does not already exist.
Envi ronment myDbEnv;

Envi ronment Confi g envConfig = new Environment Config();

envConfig.set All owCreate(true);

myDbEnv = new Environnment (new Fi |l e("/export/dbEnv"), envConfig);

9/19/2006 Using Transactions with JE Page iv

Conventions Used in this Book

|:| Finally, notes of special interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a transactional JE application:

Getting Started with Berkeley DB Java Edition
[http:/ /www.orade.com/technology/doaumentation/berkeley-db/ je/ GettingStartedGuide/BerkeleyDB-JE-GSG.pdf]

Berkeley DB Java Edition Javadoc
[http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html]

Berkeley DB Java Edition Collections Tutorial
[http:/ /www.orade.com/technalogy/ documentation/berkeley-db/je/cllections/tutiorial/ BerkeleyDB-JE-Callections. pdf]

Berkeley DB Java Edition Getting Started with the Direct Persistence Layer
[http:/ Amwmwv.orade.com/techndlogy/docmentation/berkeley-db/je/PersistenceAPl/BerkeleyDB-JE-Persistence- GSG.pdf]

9/19/2006

Using Transactions with JE Page v

http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/collections/tutorial/BerkeleyDB-JE-Collections.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/PersistenceAPI/BerkeleyDB-JE-Persistence-GSG.pdf

9/19/2006 Using Transactions with JE Page vi

Chapter 1. Introduction

This book provides a thorough introduction and discussion on transactions as used with
Berkeley DB, Java Edition (JE). It begins by offering a general overview to transactions,
the guarantees they provide, and the general application infrastructure required to obtain
full transactional protection for your data.

This book also provides detailed examples on how to write a transactional application.
Both single threaded and multi-threaded are discussed. A detailed description of various
backup and recovery strategies is included in this manual, as is a discussion on performance
considerations for your transactional application.

You should understand the concepts from the Getting Started with Berkeley DB Java
Edition guide before reading this book.

|:| The examples presented in this book use the Berkeley DB, Java Edition API, not the Direct

Persistence Layer APIl. However, all of the concepts presented here in terms of transactional
benefits, transaction usage, and deadlock handling also apply to the Direct Persistence
Layer.

Transaction Benefits

Transactions offer your application's data protection from application or system failures.
That is, JE transactions offer your application full ACID support:

Atomicity

Multiple database operations are treated as a single unit of work. Once committed,
all write operations performed under the protection of the transaction are saved to
your databases. Further, in the event that you abort a transaction, all write operations
performed during the transaction are discarded. In this event, your database is left
in the state it was in before the transaction began, regardless of the number or type
of write operations you may have performed during the course of the transaction.

Note that JE transactions can span one or more database handles.
Consistency

Your databases will never see a partially completed transaction. This is true even if
your application fails while there are in-progress transactions. If the application or
system fails, then either all of the database changes appear when the application next
runs, or none of them appear.

In other words, whatever consistency requirements your application has will never be
violated by JE. If, for example, your application requires every record to include an
employee ID, and your code faithfully adds that ID to its database records, then JE
will never violate that consistency requirement. The ID will remain in the database
records until such a time as your application chooses to delete it.

Isolation

9/19/2006

Using Transactions with JE Page 1

Transaction Benefits

While a transaction is in progress, your databases will appear to the transaction as if
there are no other operations occurring outside of the transaction. That is, operations
wrapped inside a transaction will always have a clean and consistent view of your
databases. They never have to see updates currently in progress under the protection
of another transaction. Note, however, that isolation guarantees can be increased
and relaxed from the default setting. See Isolation (page 26) for more information.

o Durability

Once committed to your databases, your modifications will persist even in the event
of an application or system failure. Note that like isolation, your durability guarantee
can be relaxed. See Non-Durable Transactions (page 9) for more information.

A Note on System Failure

From time to time this manual mentions that transactions protect your data against
'system or application failure.’ This is true up to a certain extent. However, not all failures
are created equal and no data protection mechanism can protect you against every
conceivable way a computing system can find to die.

Generally, when this book talks about protection against failures, it means that transactions
offer protection against the likeliest culprits for system and application crashes. So long
as your data modifications have been committed to disk, those modifications should
persist even if your application or OS subsequently fails. And, even if the application or
OS fails in the middle of a transaction commit (or abort), the data on disk should be either
in a consistent state, or there should be enough data available to bring your databases
into a consistent state (via a recovery procedure, for example). You may, however, lose
whatever data you were committing at the time of the failure, but your databases will
be otherwise unaffected.

Of course, if your disk fails, then the transactional benefits described in this book are
only as good as the backups you have taken.

Finally, by following the programming examples shown in this book, you can write your
code so as to protect your data in the event that your code crashes. However, no
programming APl can protect you against logic failures in your own code; transactions
cannot protect you from simply writing the wrong thing to your databases.

Application Requirements

In order to use transactions, your application has certain requirements beyond what is
required of non-transactional protected applications. They are:

« Transaction subsystem.

In order to use transactions, you must explicitly enable the transactional subsystem
for your application, and this must be done at the time that your environment is first
created.

e Transaction handles.

9/19/2006 Using Transactions with JE Page 2

Transaction Benefits

In order to obtain the atomicity guarantee offered by the transactional subsystem
(that is, combine multiple operations in a single unit of work), your application must
use transaction handles. These handles are obtained from your Environment objects.
They should normally be short-lived, and their usage is reasonably simple. To complete
a transaction and save the work it performed, you call its comm t () method. To
complete a transaction and discard its work, you call its abort () method.

In addition, it is possible to use auto commit if you want to transactional protect a
single write operation. Auto commit allows a transaction to be used without obtaining
an explicit transaction handle. See Auto Commit (page 11) for information on how to
use auto commit.

» Database open requirements.

Your application must transaction protect the database opens, and any secondary
index associations, if subsequent operations on the databases are to be transaction
protected. The database open and secondary index association are commonly
transaction protected using auto commit.

« Deadlock detection.

Typically transactional applications use multiple threads of control when accessing
the database. Any time multiple threads are used on a single resource, the potential
for lock contention arises. In turn, lock contention can lead to deadlocks. See Locks,
Blocks, and Deadlocks (page 18) for more information.

Therefore, transactional applications must frequently include code for detecting and
responding to deadlocks. Note that this requirement is not specific to transactions -
you can certainly write concurrent non-transactional JE applications. Further, not
every transactional application uses concurrency and so not every transactional
application must manage deadlocks. Still, deadlock management is so frequently a
characteristic of transactional applications that we discuss it in this book. See
Concurrency (page 17) for more information.

Multi-threaded Applications

JE is designed to support multi-threaded applications, but their usage means you must
pay careful attention to issues of concurrency. Transactions help your application’s
concurrency by providing various levels of isolation for your threads of control. In addition,
JE provides mechanisms that allow you to detect and respond to deadlocks (but strictly
speaking, this is not limited to just transactional applications).

Isolation means that database modifications made by one transaction will not normally
be seen by readers from another transaction until the first commits its changes. Different
threads use different transaction handles, so this mechanism is normally used to provide
isolation between database operations performed by different threads.

Note that JE supports different isolation levels. For example, you can configure your
application to see uncommitted reads, which means that one transaction can see data
that has been modified but not yet committed by another transaction. Doing this might

9/19/2006 Using Transactions with JE Page 3

Recoverability

mean your transaction reads data "dirtied" by another transaction, but which subsequently
might change before that other transaction commits its changes. On the other hand,
lowering your isolation requirements means that your application can experience improved
throughput due to reduced lock contention.

For more information on concurrency, on managing isolation levels, and on deadlock
detection, see Concurrency (page 17).

Recoverability

An important part of JE's transactional guarantees is durability. Durability means that
once a transaction has been committed, the database modifications performed under its
protection will not be lost due to system failure.

JE supports a normal recovery that runs against a subset of your log files. This is a routine
procedure used whenever your environment is first opened upon application startup, and
it is intended to ensure that your database is in a consistent state. JE also supports archival
backup and recovery in the case of catastrophic failure, such as the loss of a physical disk
drive.

This book describes several different backup procedures you can use to protect your
on-disk data. These procedures range from simple offline backup strategies to hot failovers.
Hot failovers provide not only a backup mechanism, but also a way to recover from a fatal
hardware failure.

This book also describes the recovery procedures you should use for each of the backup
strategies that you might employ.

For a detailed description of backup and restore procedures, see the Getting Started with
Berkeley DB Java Edition guide.

Performance Tuning

From a performance perspective, the use of transactions is not free. Depending on how
you configure them, transaction commits usually require your application to perform disk
I70 that a non-transactional application does not perform. Also, for multi-threaded
applications, the use of transactions can result in increased lock contention due to extra
locking requirements driven by transactional isolation guarantees.

There is therefore a performance tuning component to transactional applications that is
not applicable for non-transactional applications (although some tuning considerations
do exist whether or not your application uses transactions). Where appropriate, these
tuning considerations are introduced in the following chapters.

9/19/2006 Using Transactions with JE Page 4

Chapter 2. Enabling Transactions

In order to use transactions with your application, you must turn them on. To do this you
must:

« Turn on transactions for your environment. You do this by using the
Envi ronment Confi g. set Transacti onal () method, or by using the
je.env.isTransactional je.properties parameter.

« Transaction-enable your databases. You do this by using the
Dat abaseConfi g. set Transacti onal () method, and then opening the database from
within a transaction. Note that the common practice is for auto commit to be used to
transaction-protect the database open. To use auto-commit, you must still enable
transactions as described here, but you do not have to explicitly use a transaction
when you open your database. An example of this is given in the next section.

Opening a Transactional Environment and Database

To enable transactions for your environment, you must initialize the transactional
subsystem:

package je.txn;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Environment nyEnv = nul | ;

try {
Envi ronment Confi g nyEnvConfig = new Environnent Config();
myEnvConfi g. set Transacti onal (true);

nmyEnv = new Environnment (new Fil e("/ny/env/ honme"),
myEnvConfi g) ;

} catch (DatabaseException de) {
/] Exception handling goes here

}

You then create and open your database(s) as you would for a non-transactional system.
The only difference is that you must set Dat abaseConfi g. set Transactional () totrue.
Note that your database open must be transactional-protected. However, if you do not
give the openDat abase() method a transaction handle, then the open is automatically
protected using auto commit. Typically auto commit is used for this purpose. For example:

9/19/2006 Using Transactions with JE Page 5

Opening a Transactional
Environment and Database

package je.txn;

i nport com sl eepycat . | e. Dat abase;

i nport com sl eepycat . | e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Dat abase nyDat abase = nul | ;
Environment nyEnv = nul | ;
try {
Envi ronment Confi g nyEnvConfig = new Environnent Config();
myEnvConfi g. set Transacti onal (true);
myEnv = new Environnment (new Fil e("/ny/env/ honme"),
myEnvConfi g) ;

/] Open the database. Create it if it does not already exist.
Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Transactional (true);
myDat abase = nmyEnv. openDat abase(nul |,
"sanpl eDat abase",
dbConfig);

} catch (DatabaseException de) {
/] Exception handling goes here

}

|:| Never close a database that has active transactions. Make sure all transactions are resolved
(either committed or aborted) before closing the database.

9/19/2006 Using Transactions with JE Page 6

Chapter 3. Transaction Basics

Once you have enabled transactions for your environment and your databases, you can
use them to protect your database operations. You do this by acquiring a transaction
handle and then using that handle for any database operation that you want to participate
in that transaction.

You obtain a transaction handle using the Envi r onnent . begi nTransacti on() method.

Once you have completed all of the operations that you want to include in the transaction,
you must commit the transaction using the Transaction. commit () method.

If, for any reason, you want to abandon the transaction, you abort it using
Transaction. abort().

Any transaction handle that has been committed or aborted can no longer be used by
your application.

Finally, you must make sure that all transaction handles are either committed or aborted
before closing your databases and environment.

|:| If you only want to transaction protect a single database write operation, you can use auto
commit to perform the transaction administration. When you use auto commit, you do not
need an explicit transaction handle. See Auto Commit (page 11) for more information.

For example, the following example opens a transactional-enabled environment and
database, obtains a transaction handle, and then performs a write operation under its
protection. In the event of any failure in the write operation, the transaction is aborted
and the database is left in a state as if no operations had ever been attempted in the
first place.

package je.txn;

i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat. | e. Dat abaseConfi g;

i nport com sl eepycat. je. Dat abaseEntry;

i nport com sl eepycat. je. Dat abaseExcepti on;
i nport com sl eepycat. je. Environnent;

i nport com sl eepycat. je. Envi ronnent Confi g;
i nport com sl eepycat.je. Transacti on;

inport java.io.File;

Dat abase myDat abase = nul | ;

Envi ronment myEnv = nul | ;

try {
Envi ronment Confi g myEnvConfig = new Environnent Config();
myEnvConfi g. set Transactional (true);

9/19/2006 Using Transactions with JE Page 7

Committing a Transaction

myEnv = new Environnent (new Fil e("/ ny/env/ honme"),
myEnvConfi g) ;

/] Open the database. Create it if it does not already exist.
Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Transactional (true);
myDat abase = nyEnv. openDat abase(nul |,
"sanpl eDat abase",
dbConfig);

String keyString = "thekey";
String dataString = "thedata";
Dat abaseEntry key =
new Dat abaseEnt ry(keyString. get Bytes("UTF-8"));
Dat abaseEntry data =
new Dat abaseEntry(dataString. get Bytes("UTF-8"));

Transaction txn = nyEnv. begi nTransaction(null, null);

try {
myDat abase. put (txn, key, data);

txn.comit();
} catch (Exception e) {
if (txn !=null) {
txn. abort();
txn = null;

}

} catch (DatabaseException de) {
/] Exception handling goes here
}

Committing a Transaction

In order to fully understand what is happening when you commit a transaction, you must
first understand a little about what JE is doing with its log files. Logging causes all database
write operations to be identified in log files (remember that in JE, your log files are your
database files; there is no difference between the two). Enough information is written
to restore your entire BTree in the event of a system or application failure, so by
performing logging, JE ensures the integrity of your data.

Remember that all write activity made to your database is identified in JE's logs as the
writes are performed by your application. However, JE maintains logs in memory.
Eventually this information is written to disk, but especially in the case of a transactional
application this data may be held in memory until the transaction is committed, or JE
runs out of buffer space for the logging information.

When you commit a transaction, the following occurs:

9/19/2006 Using Transactions with JE Page 8

Committing a Transaction

» A commit record is written to the log. This indicates that the modifications made by
the transaction are now permanent. By default, this write is performed synchronously
to disk so the commit record arrives in the log files before any other actions are taken.

« Any log information held in memory is (by default) synchronously written to disk. Note
that this requirement can be relaxed, depending on the type of commit you perform.
See Non-Durable Transactions (page 9) for more information.

Note that a transaction commit only writes the BTree's leaf nodes to JE's log files. All
other internal BTree structures are left unwritten.

« All locks held by the transaction are released. This means that read operations
performed by other transactions or threads of control can now see the modifications
without resorting to uncommitted reads (see Reading Uncommitted Data (page 27)
for more information).

To commit a transaction, you simply call Transaction. commit().

Remember that transaction commit causes only the BTree leaf nodes to be written to JE's
log files. Any other modifications made to the the BTree as a result of the transaction’s
activities are not written to the log file. This means that over time JE's normal recovery
time can greatly increase (remember that JE always runs normal recovery when it opens
an environment).

For this reason, JE by default runs the checkpointer thread. This background thread runs
a checkpoint on a periodic interval so as to ensure that the amount of data that needs
to be recovered upon environment open is minimized. In addition, you can also run a
checkpoint manually. For more information, see Checkpoints (page 37).

Note that once you have committed a transaction, the transaction handle that you used
for the transaction is no longer valid. To perform database activities under the control
of a new transaction, you must obtain a fresh transaction handle.

Non-Durable Transactions

As previously noted, by default transaction commits are durable because they cause the
modifications performed under the transaction to be synchronously recorded in your
on-disk log files. However, it is possible to use non-durable transactions.

You may want non-durable transactions for performance reasons. For example, you might
be using transactions simply for the isolation guarantee. In this case, you might want to
relax the synchronized write to disk that JE normally performs as part of a transaction
commit. Doing so means that your data will still make it to disk; however, your application
will not necessarily have to wait for the disk 1/0 to complete before it can perform another
database operation. This can greatly improve throughput for some workloads.

There are several ways to relax the synchronized write requirement for your transactions:

« Specify true to the Envi ronnent Mit abl eConfi g. set TxnNoSync() method. This causes
JE to not synchronously force any data to disk upon transaction commit. That is, the

9/19/2006 Using Transactions with JE Page 9

Aborting a Transaction

modifications are held entirely inside the JVM and the modifications are not forced
to the file system for long-term storage. Note, however, that the data will eventually
make it to the filesystem (assuming no application or OS crashes) as a part of JE's
management of its logging buffers and/or cache.

This form of a commit provides a weak durability guarantee because data loss can
occur due to an application, JVM, or OS crash.

This behavior is specified on a per-environment handle basis. In order for your
application to exhibit consistent behavior, you need to specify this for all of the
environment handles used in your application.

You can achieve this behavior on a transaction by transaction basis by using
Transact i on. conmi t NoSync() to commit your transaction, or by specifying t r ue to the
Transacti onConfi g. set NoSync() method when starting the transaction.

» Specify true to the Envi ronnent Confi g. set TxnWi t eNoSync() method. This causes data
to be synchronously written to the OS's file system buffers upon transaction commit.
The data will eventually be written to disk, but this occurs when the operating system
chooses to schedule the activity; the transaction commit can complete successfully
before this disk 1/0 is performed by the OS.

This form of commit protects you against application and JVM crashes, but not against
OS crashes. This method offers less room for the possibility of data loss than does
Envi ronment Confi g. set TxnNoSync() .

This behavior is specified on a per-environment handle basis. In order for your
application to exhibit consistent behavior, you need to specify this for all of the
environment handles used in your application.

You can achieve this behavior on a transaction by transaction basis by using
Transaction. conmi t WiteNoSync() to commit your transaction, or by specifying true
to TransactionConfig. set Wi teNoSync() method when starting the transaction.

Aborting a Transaction

When you abort a transaction, all database modifications performed under the protection
of the transaction are discarded, and all locks currently held by the transaction are
released. In this event, your data is simply left in the state that it was in before the
transaction began performing data modifications.

Note that aborting a transaction may result in disk /0. It is possible that during the course
of your transaction, logging data and/or database records were written to backing files
on disk. For this reason, JE notes that the abort occurred in its log files so that at a
minimum the database can be brought into a consistent state at recovery time.

Also, once you have aborted a transaction, the transaction handle that you used for the
transaction is no longer valid. To perform database activities under the control of a new
transaction, you must obtain a fresh transactional handle.

9/19/2006 Using Transactions with JE Page 10

Auto Commit

To abort a transaction, call Transacti on. abort ().

Auto Commit

While transactions are frequently used to provide atomicity to multiple database
operations, it is sometimes necessary to perform a single database operation under the
control of a transaction. Rather than force you to obtain a transaction, perform the single
write operation, and then either commit or abort the transaction, you can automatically
group this sequence of events using auto commit.

To use auto commit:

1. Open your environment and your databases so that they support transactions. See
Enabling Transactions (page 5) for details.

2. Do not provide a transactional handle to the method that is performing the database
write operation.

Note that auto commit is not available for cursors. You must always open your cursor
using a transaction if you want the cursor's operations to be transactional protected. See
Transactional Cursors (page 12) for details on using transactional cursors.

For example, the following uses auto commit to perform the database write operation:

package je.txn;

i nport com sl eepycat. j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Dat abase nyDat abase = nul | ;
Environment nyEnv = nul | ;
try {
Envi ronment Confi g nyEnvConfig = new Environnent Config();
nmyEnvConfi g. set Transacti onal (true);
nmyEnv = new Envi ronnment (new Fil e("/ny/env/ hone"),
myEnvConfi g) ;

/] Qpen the database. Create it if it does not already exist.
Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Transactional (true);
nyDat abase = myEnv. openDat abase(nul |,
"sanpl eDat abase",

9/19/2006 Using Transactions with JE Page 11

Transactional Cursors

dbConfig);

String keyString = "thekey";
String dataString = "thedata";
Dat abaseEntry key =
new Dat abaseEnt ry(keyString. get Bytes("UTF-8"));
Dat abaseEntry data =
new Dat abaseEnt ry(dataString. get Bytes("UTF-8"));

/] Performthe wite. Because the database was opened to
/] support transactions, this wite is performed using auto commt.
myDat abase. put (nul |, key, data);

} catch (DatabaseException de) {
/] Exception handling goes here

}
Transactional Cursors

You can transaction-protect your cursor operations by specifying a transaction handle at
the time that you create your cursor. Beyond that, you do not ever provide a transaction
handle directly to a cursor method.

Note that if you transaction-protect a cursor, then you must make sure that the cursor
is closed before you either commit or abort the transaction. For example:

package je.txn;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat . | e. Dat abaseConfi g;

i nport com sl eepycat. | e. Dat abaseEnt ry;
inport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;
i nport com sl eepycat. | e. LockMode;

i nport com sl eepycat.je. OperationStat us;

i nport com sl eepycat.je. Transacti on;

inport java.io.File;

Dat abase nyDat abase = nul | ;
Environment nyEnv = nul | ;

try {

/| Database and environment opens omtted

9/19/2006 Using Transactions with JE Page 12

Secondary Indices with
Transaction Applications

String replacenentData = "new data";

Transaction txn = nyEnv. begi nTransaction(null, null);
Cursor cursor = null;
try {

/1 Use the transaction handle here

cursor = db.openCursor(txn, null);

Dat abaseEntry key, data;

Dat abaseEntry key, data;
whi | e(cursor. get Next (key, data, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

dat a. set Dat a(repl acenent Dat a. get Byt es(" UTF-8"));

/1 No transaction handle is used on the cursor read or wite
/'l met hods.

cursor. put Current (data);

}

cursor. close();
cursor = null;
txn.comit();
} catch (Exception e)
if (cursor !'= nul
cursor. cl ose(

{

)
);

}

if (txn !=null) {

txn. abort();
txn = null;

{

}

} catch (DatabaseException de) {
/] Exception handling goes here
}

Secondary Indices with Transaction Applications

You can use transactions with your secondary indices so long as you open the secondary
index so that it is transactional.

All other aspects of using secondary indices with transactions are identical to using
secondary indices without transactions. In addition, transaction-protecting secondary
cursors is performed just as you protect normal cursors — you simply have to make sure
the cursor is opened using a transaction handle, and that the cursor is closed before the
handle is either either committed or aborted. See Transactional Cursors (page 12) for
details.

9/19/2006 Using Transactions with JE Page 13

Secondary Indices with
Transaction Applications

Note that when you use transactions to protect your database writes, your secondary
indices are protected from corruption because updates to the primary and the secondaries
are performed in a single atomic transaction.

For example:

package je.txn;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat . j e. Dat abaseType;

i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat . e. Envi ronment ;

i nport com sl eepycat. j e. Envi ronnent Confi g;

i nport com sl eepycat . j e. Secondar yDat abase;

i nport com sl eepycat . e. Secondar yConfi g;

i nport java.io.FileNot FoundExcepti on;

/1 Environment and prinary database opens onitted.

SecondaryConfi g mySecConfig = new SecondaryConfig();
mySecConfi g. set Al | owCreate(true);
mySecConfi g. set Transacti onal (true);

Secondar yDat abase mySecDb = nul | ;
try {
/1 A fake tuple binding that is not actually inplenented anywhere.
/1 The tuple binding is dependent on the data in use.
/] See the Getting Started Cuide for details
Tupl eBi ndi ng nyTupl eBi ndi ng = new MyTupl eBi ndi ng() ;

/1 Open the secondary. Ful | NameKeyCreator is not actually inplenented
/'l anywhere. See the Cetting Started Cuide for details.
Ful | NameKeyCr eat or keyCreat or = new Ful | NameKeyCr eat or (myTupl eBi ndi ng) ;

Il Set the key creator on the secondary config object.
mySecConfi g. set KeyCr eat or (keyCreat or) ;

/1 Performthe actual open. Because this database is configured to be

/] transactional, the open is automatically wapped in a transaction.

Il - nyEnv is the environnent handle.

Il - nyDb is the primary database handl e.

String secDbNane = "nySecondaryDat abase";

mySecDb = myEnv. openSecondary(nul |, secDbNane, null, nyDb, nySecConfig);
} catch (DatabaseException de) {

9/19/2006 Using Transactions with JE Page 14

Configuring the Transaction
Subsystem

/] Exception handling goes here ...
}

Configuring the Transaction Subsystem

When you configure your transaction subsystem, you need to consider your transaction
timeout value. This value represents the longest period of time a transaction can be
active. Note, however, that transaction timeouts are checked only when JE examines its
lock tables for blocked locks (see Locks, Blocks, and Deadlocks (page 18) for more
information). Therefore, a transaction's timeout can have expired, but the application
will not be notified until JE has a reason to examine its lock tables.

Be aware that some transactions may be inappropriately timed out before the transaction
has a chance to complete. You should therefore use this mechanism only if you know your
application might have unacceptably long transactions and you want to make sure your
application will not stall during their execution. (This might happen if, for example, your
transaction blocks or requests too much data.)

Note that by default transaction timeouts are set to 0 seconds, which means that they
never time out.

To set the maximum timeout value for your transactions, use the

Envi ronment Conf i g. set TxnTi meout () method. This method configures the entire
environment; not just the handle used to set the configuration. Further, this value may
be set at any time during the application’s lifetime.

This value can also be set using the j e.txn. tineout property in your JE properties file.
For example:

package je.txn;

i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Environment nyEnv = nul | ;

try {
Envi ronment Confi g nyEnvConfig = new Environnent Config();
myEnvConfi g. set Transacti onal (true);

/] Configure a maxi numtransaction tinmeout of 1 second.
myEnvConf i g. set TxnTi meout (1000000) ;

myEnv = new Environnment (new Fil e("/ny/env/honme"),
myEnvConfi g) ;

9/19/2006 Using Transactions with JE Page 15

Configuring the Transaction
Subsystem

[/ From here, you open your databases, proceed with your
/] database operations, and respond to deadl ocks as
[/ is normal (onmitted for brevity).

9/19/2006 Using Transactions with JE Page 16

Chapter 4. Concurrency

JE offers a great deal of support for multi-threaded applications even when transactions
are not in use. Many of JE's handles are thread-safe and JE provides a flexible locking
subsystem for managing databases in a concurrent application. Further, JE provides a
robust mechanism for detecting and responding to deadlocks. All of these concepts are
explored in this chapter.

Before continuing, it is useful to define a few terms that will appear throughout this
chapter:

Thread of control

Refers to a thread that is performing work in your application. Typically, in this book
that thread will be performing JE operations.

Locking

When a thread of control obtains access to a shared resource, it is said to be locking
that resource. Note that JE supports both exclusive and non-exclusive locks. See
Locks (page 18) for more information.

Free-threaded

Data structures and objects are free-threaded if they can be shared across threads of
control without any explicit locking on the part of the application. Some books,
libraries, and programming languages may use the term thread-safe for data structures
or objects that have this characteristic. The two terms mean the same thing.

For a description of free-threaded JE objects, see Which JE Handles are
Free-Threaded (page 18).

Blocked

When a thread cannot obtain a lock because some other thread already holds a lock
on that object, the lock attempt is said to be blocked. See Blocks (page 20) for more
information.

Deadlock

Occurs when two or more threads of control attempt to access conflicting resource
in such a way as none of the threads can any longer may further progress.

For example, if Thread A is blocked waiting for a resource held by Thread B, while at
the same time Thread B is blocked waiting for a resource held by Thread A, then
neither thread can make any forward progress. In this situation, Thread A and Thread
B are said to be deadlocked.

For more information, see Deadlocks (page 22).

9/19/2006

Using Transactions with JE Page 17

Which JE Handles are
Free-Threaded

Which JE Handles are Free-Threaded

The following describes to what extent and under what conditions individual handles are
free-threaded.

e Environnent

This class is free-threaded.
o Database

This class is free-threaded.
e Secondar yDat abase

This class is free-threaded.
» Cursor

If the cursor is a transactional cursor, it can be used by multiple threads of control so
long as the application serializes access to the handle. If the cursor is not a
transactional cursor, it can not be shared across multiple threads of control at all.

e SecondaryCursor
Same conditions apply as for Cursor handles.
« Transaction

This class is free-threaded.

|:| All classes found in the bind APIs (com sl eepycat . bi nd. *) are free-threaded.

Locks, Blocks, and Deadlocks

It is important to understand how locking works in a concurrent application before
continuing with a description of the concurrency mechanisms JE makes available to you.
Blocking and deadlocking have important performance implications for your application.
Consequently, this section provides a fundamental description of these concepts, and
how they affect JE operations.

Locks

When one thread of control wants to obtain access to an object, it requests a lock for
that object. This lock is what allows JE to provide your application with its transactional
isolation guarantees by ensuring that:

« no other thread of control can read that object (in the case of an exclusive lock), and

9/19/2006 Using Transactions with JE Page 18

Locks, Blocks, and Deadlocks

» no other thread of control can modify that object (in the case of an exclusive or
non-exclusive lock).

Lock Resources
When locking occurs, there are conceptually three resources in use:
1. The locker.

This is the thing that holds the lock. In a transactional application, the locker is a
transaction handle. For non-transactional operations, the locker is the current thread.

2. The lock.

This is the actual data structure that locks the object. In JE, a locked object structure
in the lock manager is representative of the object that is locked.

3. The locked object.

The thing that your application actually wants to lock. In a JE application, the locked
object is usually a database record.

JE has not set a limit for the maximum number of these resources you can use. Instead,
you are only limited by the amount of memory available to your application.

The following figure shows a transaction handle, Txn A, that is holding a lock on database
record 002. In this graphic, Txn Ais the locker, and the locked object is record 002. Only
a single lock is in use in this operation.

N\
Txn A

N\

Types of Locks

JE applications support both exclusive and non-exclusive locks. Exclusive locks are granted
when a locker wants to write to an object. For this reason, exclusive locks are also
sometimes called write locks.

An exclusive lock prevents any other locker from obtaining any sort of a lock on the object.
This provides isolation by ensuring that no other locker can observe or modify an exclusively
locked object until the locker is done writing to that object.

9/19/2006 Using Transactions with JE Page 19

Locks, Blocks, and Deadlocks

Non-exclusive locks are granted for read-only access. For this reason, non-exclusive locks
are also sometimes called read locks. Since multiple lockers can simultaneously hold read
locks on the same object, read locks are also sometimes called shared locks.

A non-exclusive lock prevents any other locker from modifying the locked object while
the locker is still reading the object. This is how transactional cursors are able to achieve
repeatable reads; by default, the cursor's transaction holds a read lock on any object that
the cursor has examined until such a time as the transaction is committed or aborted.

In the following figure, Txn Aand Txn B are both holding read locks on record 002, while
Txn Cis holding a write lock on record 003:

N\
Txn A
N\
N\
Txn B \
~ \L‘

Lock Lifetime

A locker holds its locks until such a time as it does not need the lock any more. What this
means is:

1. A transaction holds any locks that it obtains until the transaction is committed or
aborted.

2. All non-transaction operations hold locks until such a time as the operation is
completed. For cursor operations, the lock is held until the cursor is moved to a new
position or closed.

Blocks

Simply put, a thread of control is blocked when it attempts to obtain a lock, but that
attempt is denied because some other thread of control holds a conflicting lock. Once
blocked, the thread of control is temporarily unable to make any forward progress until
the requested lock is obtained or the operation requesting the lock is abandoned.

Be aware that when we talk about blocking, strictly speaking the thread is not what is
attempting to obtain the lock. Rather, some object within the thread (such as a cursor)
is attempting to obtain the lock. However, once a locker attempts to obtain a lock, the
entire thread of control must pause until the lock request is in some way resolved.

For example, if Txn A holds a write lock (an exclusive lock) on record 002, then if Txn B
tries to obtain a read or write lock on that record, the thread of control in which Txn B
is running is blocked:

9/19/2006 Using Transactions with JE Page 20

Locks, Blocks, and Deadlocks

N\
Txn A

N\

Txn B \
- \
L |

Y
002 003

However, if Txn A only holds a read lock (a shared lock) on record 002, then only those
handles that attempt to obtain a write lock on that record will block.

N\
Txn A

~N
~N

/\ Read locks ™
acquired ~

/\ /Write lock

~
Txn C blocked

Blocking and Application Performance

Multi-threaded applications typically perform better than simple single-threaded
applications because the application can perform one part of its workload (updating a
database record, for example) while it is waiting for some other lengthy operation to
complete (performing disk or network 1/0, for example). This performance improvement
is particularly noticeable if you use hardware that offers multiple CPUs, because the
threads can run simultaneously.

That said, concurrent applications can see reduced workload throughput if their threads
of control are seeing a large amount of lock contention. That is, if threads are blocking
on lock requests, then that represents a performance penalty for your application.

Consider once again the previous diagram of a blocked write lock request. In that diagram,
Txn Ccannot obtain its requested write lock because Txn A and Txn B are both already
holding read locks on the requested record. In this case, the thread in which Txn Cis
running will pause until such a time as Txn Ceither obtains its write lock, or the operation
that is requesting the lock is abandoned. The fact that Txn Cs thread has temporarily
halted all forward progress represents a performance penalty for your application.

Moreover, any read locks that are requested while Txn Cis waiting for its write lock will
also block until such a time as Txn C has obtained and subsequently released its write
lock.

9/19/2006 Using Transactions with JE Page 21

Locks, Blocks, and Deadlocks

Avoiding Blocks

Reducing lock contention is an important part of performance tuning your concurrent JE
application. Applications that have multiple threads of control obtaining exclusive (write)
locks are prone to contention issues. Moreover, as you increase the numbers of lockers
and as you increase the time that a lock is held, you increase the chances of your
application seeing lock contention.

As you are designing your application, try to do the following in order to reduce lock
contention:

» Reduce the length of time your application holds locks.

Shorter lived transactions will result in shorter lock lifetimes, which will in turn help
to reduce lock contention.

In addition, by default transactional cursors hold read locks until such a time as the
transaction is completed. For this reason, try to minimize the time you keep
transactional cursors opened, or reduce your isolation levels - see below.

» If possible, access heavily accessed (read or write) items toward the end of the
transaction. This reduces the amount of time that a heavily used record is locked by
the transaction.

« Reduce your application’s isolation guarantees.

By reducing your isolation guarantees, you reduce the situations in which a lock can
block another lock. Try using uncommitted reads for your read operations in order to
prevent a read lock being blocked by a write lock.

In addition, for cursors you can use degree 2 (read committed) isolation, which causes
the cursor to release its read locks as soon as it is done reading the record (as opposed
to holding its read locks until the transaction ends).

Be aware that reducing your isolation guarantees can have adverse consequences for
your application. Before deciding to reduce your isolation, take care to examine your
application’s isolation requirements. For information on isolation levels, see
Isolation (page 26).

« Consider your data access patterns.

Depending on the nature of your application, this may be something that you can not
do anything about. However, if it is possible to create your threads such that they
operate only on non-overlapping portions of your database, then you can reduce lock
contention because your threads will rarely (if ever) block on one another's locks.

Deadlocks

A deadlock occurs when two or more threads of control are blocked, each waiting on a
resource held by the other thread. When this happens, there is no possibility of the threads

9/19/2006 Using Transactions with JE Page 22

Locks, Blocks, and Deadlocks

ever making forward pr