Oracle Berkeley DB Java Edition

Java Collections Tutorial

Release 3.1

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html

Oracle, Berkeley DB, Berkeley DB Java Edition and Sleepycat are trademarks or registered trademarks of Oracle
Corporation. All rights to these marks are reserved. No third-party use is permitted without the express prior
written consent of Oracle Corporation.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forumiD=273

Published 9/19/2006

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/jeoslicensing.html
http://forums.oracle.com/forums/forum.jspa?forumID=273

Table of Contents

o =Tl iv
Conventions Used in this BOOKc.uviriiiiiiiiiiiiiiiii e e e iv

For More INfOrmation ...o..eeereeiiiiiiiiii et rererereerenaeerannesanees \%

LIPS 1 e e [Tt [o Pt 1
FOATUIES ettt ettt et e e e 1
Developing a DB Collections AppliCationccvveeeiiiiiiieeeereriiieneeeeeennnneeeens 2
Tutorial INErodUCTioNeii i i et e e e e enereneeeenaens 3

2. The BasiC Program ..iiiiiiiieiitiiiiiiettieeiiieeeeeeenrnaeeeeeessnnneeeesensnsesessssnnnnnes 6
Defining Serialized Key and Value Classesiicvvveeeiiiriiineeeeerenineeeerenennnnes 6
Opening and Closing the Database ENvironmentcccceiiiiieeeiineiinnnneennnns 11
Opening and Closing the Class Catalogcceeviiiiiiiiiiiiiiiiieeeeeeeiinneeeenanns 13
Opening and Closing Databases ..cccceeeiiiieiiieeieieiiieeeeeeeiiieeeeeeennneeeeeanns 15
Creating Bindings and ColleCtionscciiiiiiiiiiiiiiiieieiieiiiieeeeeeeennneeeeeanns 17
Implementing the Main Programc.ceeiiiiieeeeiieiiieeeeereerineeeeeeennnneeeenns 20
USING TranSaCiONS tiviiuueeeeeeernueeeeeesennneeeeeesssnseseeesssnssessssssnnnsessesanns 23
Adding Database [temMS ..iiiiiiiiiiiiiiiiii ittt eeeiireeeeeeeeineeeeraaannaeeees 25
Retrieving Database [LemMS ..uiiiiiiiiiiiiiiiiiiiiiiiiiieeereeiieeeereeennanessannns 28
Handling EXCEPLIONS tuuuueiitiiiiiitttiiiiiieeeeeeeieeeeeeeesnseeeessesnnnnessesannnes 30

3. Using Secondary Indices and FOreign KeYscueveiiiiiiiieiiieeiiineeeeeeennnneeeeeanns 32
Opening Secondary Key INAICES .ivvuurriiiiiiiiiiiiiiiiiieeeteeiinneeeeesennaeeeeanns 32
Opening Foreign Key INAIiCES .iiiiiieiiiiiiiiiiteiiieiieeeeereeiineeeeeessnnneeeeanns 36
Creating Indexed ColleCtioNS ...uiiiiiiiieeeiiiriiieeeeeeiieeeeeeeenrnneeeesennnneneens 40
Retrieving 1tems by INAeX KEY ...vviiiiiiiiiiiiiiiiiiiiiiii ittt eeeeiiieeeeeeaannas 42

4, USING ENTILY ClasS@S weviiiiiiinureeeeerineeeeeennneeeeeesesnasecesssnnnnsecesssnnsnsessennes 46
Defining ENtity Classes ..uueiiiiiiiieteeieriiieeeeeeeiieeeeeeeeerneeeeesesnnnnnessenanns 46
Creating Entity Bindings ...ceiiiiiiieiiiiiiiiieeeeriiiieeeeeeeenrneeeeesennnneneesesanns 50
Creating Collections with Entity Bindingsccceiiiiiiiiiiiiiiiiiiiiiiiiiinneeennnn. 53
Using Entities with Collectionsc..eviiiiiiiiiiiiiiiiiiiiii it eeeeiieeeeeaanns 54

D USTNG TUPLES tiniiiiiiiiiiii e ieiiiieteeteeeirneeeeeeeenaeeeeessnnnseesssesnnnnssssesnnnnes 59
Using the Tuple FOrmMateiiiiiiiiiiiiiiiiiiiiiiieiiiiteeeeeenineeeeeesannnneecenanns 59
Using Tuples With KeY Creatorseeeeiiiiiiieeeeereiieeeeerenrineeeesesennnsessannns 60
Creating Tuple Key BindinNgs ...cccueiiiiiiiiiiiiiiriiiiieeeeneiieeeeeeeesnneneesenanns 62
Creating Tuple-Serial Entity Bindingscicvviieiiiiiiiiiiiiiiiiiiieeeeeeeinnneeeenns 64
Using Sorted ColleCtioNS ...iiiiiiieeeeiiieiiieeeeeeerineeeeresennneeeesssnsnnsseeeaannns 67

6. Using Serializable ENtities ..ivvvieiiiiiiiiiiiiiiiiiiieeieeeiieeeeeeeninneeeesesennnneens 69
Using Transient Fields in an ENtity Classceeiiiiiieeiiiiiiiineeeeeneninneeceenns 69
Using Transient Fields in an Entity Bindingccccvvieiiiiiiiiiiiiiiiiiiiieeennnnns 73
Removing the Redundant Value Classeseeeieeiiiereeiereiiineeeeeeennnneeeenanns 75

7 SUMIMIAIY tttttiiiiineeeeeeeeaaeeeeeeesnnneseseessnnaseseessnnsasssssssnnnsssessssnnnansssesnnes 77
A. API Notes and Detailscveeiiiiieiiiiiiiiiiii i rerereaeeeeeerenaeeranneennes 78
Using Data Bindings ..ccceueiiiiiiiiiitiiieiiiiteeeeeiireeeeeeseirneeeeesensnassescasanns 78
Selecting Binding FOrMatsveeiiiiiiiieiiiiiiiieeeiriiieeeeeecernneeeenanns 79

Selecting Data Bindings ...cccveeiiiiiiiieiiiieiiieeeeeeeeiineeeeeesenneeceenanns 79
Implementing Bindingsccciiiiiieiiiiiiiiieeeerereieeeeeessnnneeeesesannnnes 81

USING BiNAINGS tuvveiiiiiiiiiiiiiiiiiiteeteeeiineeeeeeenrnneeeeessnnnseeeesesnnnnnes 81
Secondary Key Creators .uviiiiiiieeeeeeeeeiiueeeeeeerineseeeesennnneseesensnnseeens 81

9/19/2006 DB Collections Page ii

Using the Java Collections APlccueiiiiiiiiiiiiiiitieiieeeieeeeineeesneeeanneeens 82

USING TranSactionS ...cvieeneiiiriiirinteereeeninreeeeeannneesssessnnessssannanes 82
Transaction ROWDACKeeiiiiiiiiiiiiiiiiiiii it et eeeie e eees 83
Access Method ReStriCtiONS ...vveiiiiiiieiiiiiiiiiiiiiiiiiiiieiieeiiieeeeeeannns 83
Using Stored ColleCtionScieeeiereiieiteerieteeiieeeeneeeenneeesneeeesneeesnnneenns 84
Stored Collection and Access Methodscccevviiiiiiiiiiiiiiiiiieiiiannnnns 84
Stored Collections Versus Standard Java Collectionscccevvviiiiinnnn 85
Other Stored Collection Characteristicscciveiiiiiiiiiiiiiiiieiiiiiinnnnn. 86
Why Java Collections for Berkeley DBccceeiiiieiieiniiriieeienieerennneennns 87
Serialized ObJeCt STOrage ..ccuviiiiiiiiiiiiiii it eiieiierereeeeneeeaaneeeannees 88

9/19/2006

DB Collections Page iii

Preface

Welcome to the Berkeley DB (DB) Collections API. This document provides a tutorial that
introduces the collections API. The goal of this document is to provide you with an efficient
mechanism with which you can quickly become efficient with this API. As such, this
document is intended for Java developers and senior software architects who are looking
for transactionally-protected backing of their Java collections. No prior experience with
DB technologies is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are net hod names. For example: "The
Envi ronment . openDat abase() method returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

i nport com sl eepycat. | e. Envi ronment;
i nport com sl eepycat . j e. Envi ronnent Confi g;
inport java.io.File;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment myDbEnvi r onnent ;

In situations in this book, programming examples are updated from one chapter to the
next in this book. When this occurs, the new code is presented in nonospaced bol d font.
For example:

i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnent Confi g;
inport java.io.File;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment myDbEnv;

Envi ronment Confi g envConfig = new Environnment Config();

envConfig.set All owCreate(true);

myDbEnv = new Environnent (new Fil e("/export/dbEnv"), envConfig);

9/19/2006 DB Collections Page iv

For More Information

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

o Getting Started with Berkeley DB Java Edition
[htip:/ /www.orade.com/technolagy/doaumentation/berkeley-db/ je/ GettingStartedGuide/BerkeleyDB-JE-GSG.pdf]

» Berkeley DB Java Edition Getting Started with Transaction Processing

[http:/ /Ammwv.orade.com/technology/doaumentation/berkeley-db/ je/ TransactionGettingStarted /BerkeleyDB-JE-Txn.pf]

» Berkeley DB Java Edition Javadoc
[http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html]

« Berkeley DB Java Edition Getting Started with the Direct Persistence Layer
[hitp:/ www.orade.com/technalogy/ doaumentation/berkeley-cb/ je/PersistenceAPl/Berkeley DB~ JE-Persistence- GSG.pdf]

9/19/2006 DB Collections Page v

http://www.oracle.com/technology/documentation/berkeley-db/je/GettingStartedGuide/BerkeleyDB-JE-GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/TransactionGettingStarted/BerkeleyDB-JE-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/je/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/je/PersistenceAPI/BerkeleyDB-JE-Persistence-GSG.pdf

9/19/2006 DB Collections Page vi

Chapter 1. Introduction

The Java Collections API is a Java framework that extends the well known Java Collections
[http://java.sun.com/j2se/1.3/docs/guide/collections/] design pattern such that
collections can now be stored, updated and queried in a transactional manner. The Java
Collections APl is a layer on top of DB.

Together the Java Collections APl and Berkeley DB provide an embedded data management
solution with all the benefits of a full transactional storage and the simplicity of a well
known Java API. Java programmers who need fast, scalable, transactional data
management for their projects can quickly adopt and deploy the Java Collections API
with confidence.

This framework was first known as Greybird DB [http://greybird-db.sourceforge.net/]
written by Mark Hayes. Mark collaborated with us to permanently incorporate his excellent
work into our distribution and to support it as an ongoing part of Berkeley DB and Berkeley
DB Java Edition. The repository of source code that remains at SourceForge at version
0.9.0 is considered the last version before incorporation and will remain intact but will
not be updated to reflect changes made as part of Berkeley DB or Berkeley DB Java Edition.

Features

DB provides a Java API that can be roughly described as a map and cursor interface, where
the keys and values are represented as byte arrays. The Java Collections API is a layer
on top of DB. It adds significant new functionality in several ways.

« Animplementation of the Java Collections interfaces (Map, SortedMap, Set, SortedSet,
and Iterator) is provided.

« Transactions are supported using the conventional Java transaction-per-thread model,
where the current transaction is implicitly associated with the current thread.

« Transaction runner utilities are provided that automatically perform transaction retry
and exception handling.

» Keys and values are represented as Java objects rather than byte arrays. Bindings are
used to map between Java objects and the stored byte arrays.

» The tuple data format is provided as the simplest data representation, and is useful
for keys as well as simple compact values.

« The serial data format is provided for storing arbitrary Java objects without writing
custom binding code. Java serialization is extended to store the class descriptions
separately, making the data records much more compact than with standard Java
serialization.

» Custom data formats and bindings can be easily added. XML data format and XML
bindings could easily be created using this feature, for example.

9/19/2006 DB Collections Page 1

http://java.sun.com/j2se/1.3/docs/guide/collections/
http://greybird-db.sourceforge.net/

Developing a DB Collections
Application

Note that the Java Collections API does not support caching of programming language
objects nor does it keep track of their stored status. This is in contrast to "persistent
object” approaches such as those defined by ODMG [http://www.odmg.org/] and JDO
(JSR 12). Such approaches have benefits but also require sophisticated object caching.
For simplicity the Java Collections API treats data objects by value, not by reference,
and does not perform object caching of any kind. Since the Java Collections API is a thin
layer, its reliability and performance characteristics are roughly equivalent to those of
Berkeley DB, and database tuning is accomplished in the same way as for any Berkeley
DB database.

Developing a DB Collections Application

There are several important choices to make when developing an application using the
Java Collections API.

1. Choose the Format for Keys and Values

For each database you may choose a binding format for the keys and values. For
example, the tuple format is useful for keys because it has a deterministic sort order.
The serial format is useful for values if you want to store arbitrary Java objects. In
some cases a custom format may be appropriate. For details on choosing a binding
format see Using Data Bindings (page 78).

2. Choose the Binding for Keys and Values

With the serial data format you do not have to create a binding for each Java class
that is stored since Java serialization is used. But for other formats a binding must

be defined that translates between stored byte arrays and Java objects. For details
see Using Data Bindings (page 78).

3. Choose Secondary Indices and Foreign Key Indices

Any database that has unique keys may have any number of secondary indices. A
secondary index has keys that are derived from data values in the primary database.
This allows lookup and iteration of objects in the database by its index keys. A foreign
key index is a special type of secondary index where the index keys are also the
primary keys of another primary database. For each index you must define how the
index keys are derived from the data values using a Secondar yKeyCr eat or . For details
see the Secondar yDat abase, Secondar yConfi g and Secondar yKeyCr eat or classes.

4. Choose the Collection Interface for each Database

The standard Java Collection interfaces are used for accessing databases and secondary
indices. The Map and Set interfaces may be used for any type of database. The Iterator
interface is used through the Set interfaces. For more information on the collection
interfaces see Using Stored Collections (page 84).

Any number of bindings and collections may be created for the same database. This allows
multiple views of the same stored data. For example, a data store may be viewed as a
Map of keys to values, a Set of keys, or a Collection of values. String values, for example,

9/19/2006 DB Collections Page 2

http://www.odmg.org/

Tutorial Introduction

may be used with the built-in binding to the String class, or with a custom binding to
another class that represents the string values differently.

It is sometimes desirable to use a Java class that encapsulates both a data key and a data
value. For example, a Part object might contain both the part number (key) and the part
name (value). Using the Java Collections API this type of object is called an "entity". An
entity binding is used to translate between the Java object and the stored data key and
value. Entity bindings may be used with all Collection types.

Please be aware that the provided Java Collections API collection classes do not conform
completely to the interface contracts defined in the j ava. util package. For example,
all iterators must be explicitly closed and the si ze() method is not available. The
differences between the Java Collections API collections and the standard Java collections
are documented in Stored Collections Versus Standard Java Collections (page 85).

Tutorial Introduction

Most of the remainder of this document illustrates the use of the Java Collections API by
presenting a tutorial that describes usage of the API. This tutorial builds a shipment
database, a familiar example from classic database texts.

The examples illustrate the following concepts of the Java Collections API:
o Object-to-data bindings

» The database environment

» Databases that contain key/value records

» Secondary index databases that contain index keys

« Java collections for accessing databases and indices

» Transactions used to commit or undo database changes

The examples build on each other, but at the same time the source code for each example
stands alone.

e The Basic Program (page 6)

» Using Secondary Indices and Foreign keys (page 32)
e Using Entity Classes (page 46)

e Using Tuples (page 59)

o Using Serializable Entities (page 69)

The shipment database consists of three database stores: the part store, the supplier
store, and the shipment store. Each store contains a number of records, and each record
consists of a key and a value.

9/19/2006 DB Collections Page 3

Tutorial Introduction

Store Key Value
Part Part Number Name, Color, Weight, City
Supplier Supplier Number Name, Status, City
Shipment Part Number, Supplier Quantity

Number

In the example programs, Java classes containing the fields above are defined for the key
and value of each store: Part Key, Part Dat a, Suppl i er Key, Suppl i er Dat a, Shi pnent Key and
Shi pnent Dat a. In addition, because the Part's Weight field is itself composed of two fields
— the weight value and the unit of measure — it is represented by a separate Wi ght class.
These classes will be defined in the first example program.

In general the Java Collections API uses bindings to describe how Java objects are stored.
A binding defines the stored data syntax and the mapping between a Java object and the
stored data. The example programs show how to create different types of bindings, and
explains the characteristics of each type.

The following tables show the record values that are used in all the example programs in

the tutorial.

Number Name Color Weight City

P1 Nut Red 12.0 grams London
P2 Bolt Green 17.0 grams Paris
P3 Screw Blue 17.0 grams Rome
P4 Screw Red 14.0 grams London
P5 Cam Blue 12.0 grams Paris
P6 Cog Red 19.0 grams London
Number Name Status City

S1 Smith 20 London

S2 Jones 10 Paris

S3 Blake 30 Paris

S4 Clark 20 London

S5 Adams 30 Athens

9/19/2006 DB Collections Page 4

Tutorial Introduction

Part Number Supplier Number Quantity
P1 S1 300
P1 S2 300
P2 S1 200
P2 S2 400
P2 S3 200
P2 S4 200
P3 S1 400
P4 S1 200
P4 S4 300
P5 S1 100
P5 S4 400
P6 S1 100

9/19/2006 DB Collections Page 5

Chapter 2. The Basic Program

The Basic example is a minimal implementation of the shipment program. It writes and
reads the part, supplier and shipment databases.

The complete source of the final version of the example program is included in the Berkeley
DB distribution.

Defining Serialized Key and Value Classes

The key and value classes for each type of shipment record — Parts, Suppliers and
Shipments — are defined as ordinary Java classes. In this example the serialized form of
the key and value objects is stored directly in the database. Therefore these classes must
implement the standard Java java.io.Serializable interface. A compact form of Java
serialization is used that does not duplicate the class description in each record. Instead
the class descriptions are stored in the class catalog store, which is described in the next
section. But in all other respects, standard Java serialization is used.

An important point is that instances of these classes are passed and returned by value,
not by reference, when they are stored and retrieved from the database. This means that
changing a key or value object does not automatically change the database. The object
must be explicitly stored in the database after changing it. To emphasize this point the
key and value classes defined here have no field setter methods. Setter methods can be
defined, but it is important to remember that calling a setter method will not cause the
change to be stored in the database. How to store and retrieve objects in the database
will be described later.

Each key and value class contains a toString method that is used to output the contents
of the object in the example program. This is meant for illustration only and is not required
for database objects in general.

Notice that the key and value classes defined below do not contain any references to
com sl eepycat packages. An important characteristic of these classes is that they are
independent of the database. Therefore, they may be easily used in other contexts and
may be defined in a way that is compatible with other tools and libraries.

The Part Key class contains only the Part's Number field.

Note that Part Key (as well as Suppl i er Key below) contain only a single String field. Instead
of defining a specific class for each type of key, the String class by itself could have been
used. Specific key classes were used to illustrate strong typing and for consistency in the
example. The use of a plain String as an index key is illustrated in the next example
program. It is up to the developer to use either primitive Java classes such as String and
Integer, or strongly typed classes. When there is the possibility that fields will be added
later to a key or value, a specific class should be used.

9/19/2006 DB Collections Page 6

Defining Serialized Key and Value
Classes

inport java.io.Serializable;

public class PartKey inplenments Serializable

{
private String nunber;
publ i c PartKey(String nunber) {
this. nunber = nunber;
}
public final String getNunber() {
return nunber;
}
public String toString() {
return "[PartKey: nunmber=" + nunber + ']";
}
}

The Part Dat a class contains the Part's Name, Color, Weight and City fields.

inport java.io.Serializable;

public class PartData inplenents Serializable
{

private String nane;

private String color;

private Wi ght weight;

private String city;

public PartData(String name, String color, Weight weight, String city)

{
this.name = nane;
this.color = color;
this.wei ght = weight;
this.city = city;
}
public final String getNanme()
{
return nang;
}
public final String getColor()
{
return color;
}

public final Weight getWeight()

9/19/2006 DB Collections Page 7

Defining Serialized Key and Value
Classes

}

{
}

public final String getCity()
{

return weight;

return city;
}
public String toString()
{
return "[PartData: name=" + nane +
" color=" + color +
" weight=" + weight +
"city=" +city +']";
}

The Wi ght class is also defined here, and is used as the type of the Part's Weight field.
Just as in standard Java serialization, nothing special is needed to store nested objects
as long as they are all Serializable.

inport java.io.Serializable;

public class Wight inplements Serializable

{
public final static String GRAMS = "grams";
public final static String OUNCES = "ounces";
private doubl e amount;
private String units;
publ i ¢ Wi ght (doubl e amount, String units)
{
this.amount = anount;
this.units = units;
}
public final double getAnpunt()
{
return anount;
}
public final String getUnits()
{
return units;
}
public String toString()
9/19/2006 DB Collections Page 8

Defining Serialized Key and Value
Classes

[

return "[" + anount + +units +']";

}

The Suppl i er Key class contains the Supplier's Number field.

inport java.io.Serializable;

public class SupplierKey inplenents Serializable

{
private String nunber;
publ i ¢ SupplierKey(String nunber)
{
thi s. nunber = nunber;
}
public final String getNunber()
{
return nunber;
}
public String toString()
{
return "[SupplierKey: nunber=" + number + ']';
}
}

The Suppl i er Dat a class contains the Supplier's Name, Status and City fields.

inport java.io.Serializable;

public class SupplierData inplements Serializable

{

private String nane;
private int status;
private String city;

public SupplierData(String name, int status, String city)

{
this. nane = nane;
this.status = status;
this.city = city;
}
public final String getName()
{
return name;
}

9/19/2006 DB Collections Page 9

Defining Serialized Key and Value
Classes

public final int getStatus()

{
return status;
}
public final String getCity()
{
return city;
}
public String toString()
{
return "[SupplierData: name=" + name +
" status=" + status +
"city=" +city +']";
}

The Shi pnent Key class contains the keys of both the Part and Supplier.

inport java.io.Serializable;

public class ShipnentKey inplenents Serializable

{
private String partNunber;
private String supplierNunber;
publ i ¢ Shi pnent Key(String partNurmber, String supplierNunber)
{
this. part Nunber = part Nunber;
this.supplierNunber = supplierNunber;
}
public final String getPartNumber ()
{
return partNumber;
}
public final String getSupplierNunber()
{
return supplierNunber;
}
public String toString()
{
return "[Shi pment Key: supplier=" + supplierNunber +
" part=" + partNumber + ']';
9/19/2006 DB Collections Page 10

Opening and Closing the
Database Environment

}

The Shi pnent Dat a class contains only the Shipment's Quantity field. Like Part Key and
Suppl i er Key, Shi pment Dat a contains only a single primitive field. Therefore the Integer
class could have been used instead of defining a specific value class.

inport java.io.Serializable;

public class ShipnentData inplements Serializable

{
private int quantity;
publ i ¢ Shi prment Data(int quantity)
{
this.quantity = quantity;
}
public final int getQuantity()
{
return quantity;
}
public String toString()
{
return "[ShipmentData: quantity=" + quantity + ']";
}
}

Opening and Closing the Database Environment

This section of the tutorial describes how to open and close the database environment.
The database environment manages resources (for example, memory, locks and
transactions) for any number of databases. A single environment instance is normally used
for all databases.

The Sanpl eDat abase class is used to open and close the environment. It will also be used
in following sections to open and close the class catalog and other databases. Its
constructor is used to open the environment and its cl ose() method is used to close the
environment. The skeleton for the Sanpl eDat abase class follows.

i nport com sl eepycat. je. Dat abaseExcepti on;
i nport com sl eepycat. je. Environnent;

i nport com sl eepycat. je. Envi ronnent Confi g;
inport java.io.File;

inport java.io.FileNot FoundExcepti on;

public class Sanpl eDat abase
{

private Environnent env;

9/19/2006 DB Collections Page 11

Opening and Closing the
Database Environment

publ i ¢ Sanpl eDat abase(String honeDirectory)
throws Dat abaseException, FileNotFoundException
{

}

public void close()
t hrows Dat abaseException
{

}
}

The first thing to notice is that the Environment class is in the com.sleepycat.je package,
not the com.sleepycat.collections package. The com.sleepycat.je package contains all
core Berkeley DB functionality. The com.sleepycat.collections package contains extended
functionality that is based on the Java Collections API. The collections package is layered
on top of the com.sleepycat.je package. Both packages are needed to create a complete
application based on the Java Collections API.

The following statements create an Envi ronment object.

public Sanpl eDat abase(String homeDirectory)
throws Dat abaseException, FileNot FoundException

{
System out. println("Opening environnent in: " + homeDirectory);
Envi ronment Confi g envConfig = new Environment Config();
envConfig. set Transactional (true);
envConfig. set All owCreate(true);
env = new Environnent (new Fil e(honmeDirectory), envConfig);

}

The Envi ronnment Confi g class is used to specify environment configuration parameters.
The first configuration option specified — set Transacti onal () — is set to true to create
an environment where transactional (and non-transactional) databases may be opened.
While non-transactional environments can also be created, the examples in this tutorial
use a transactional environment.

set Al | owCreat e() is set to true to specify that the environment's files will be created if
they don't already exist. If this parameter is not specified, an exception will be thrown
if the environment does not already exist. A similar parameter will be used later to cause
databases to be created if they don't exist.

When an Envi ronment object is constructed, a home directory and the environment
configuration object are specified. The home directory is the location of the environment's
log files that store all database information.

The following statement closes the environment. The environment should always be closed
when database work is completed to free allocated resources and to avoid having to run

9/19/2006 DB Collections Page 12

Opening and Closing the Class
Catalog

recovery later. Closing the environment does not automatically close databases, so
databases should be closed explicitly before closing the environment.

public void close()
t hrows Dat abaseException

{
}

The following getter method returns the environment for use by other classes in the
example program. The environment is used for opening databases and running transactions.

env. cl ose();

public class Sanpl eDat abase

{
publ ic final Environment getEnvironnent()
{ return env;
}

\ e

Opening and Closing the Class Catalog

This section describes how to open and close the Java class catalog. The class catalog is
a specialized database store that contains the Java class descriptions of the serialized

objects that are stored in the database. The class descriptions are stored in the catalog
rather than storing them redundantly in each database record. A single class catalog per
environment must be opened whenever serialized objects will be stored in the database.

The Sanpl eDat abase class is extended to open and close the class catalog. The following
additional imports and class members are needed.

i nport com sl eepycat. bi nd. serial . Storedd assCat al og;
i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat. | e. Environment;

i nport com sl eepycat . j e. Envi ronnent Confi g;

inport java.io.File;

i nport java.io.FileNot FoundExcepti on;

public class Sanpl eDat abase
{

private Environnent env;
private static final String CLASS CATALOG = "java class_catal og";

private Storedd assCatal og javaCatal og;

9/19/2006 DB Collections Page 13

Opening and Closing the Class
Catalog

}

While the class catalog is itself a database, it contains metadata for other databases and
is therefore treated specially by the Java Collections API. The St oredd assCat al og class
encapsulates the catalog store and implements this special behavior.

The following statements open the class catalog by creating a Dat abase and a
St oredC assCat al og object. The catalog database is created if it does not already exist.

publ i ¢ Sanpl eDat abase(String honeDirectory)
throws Dat abaseException, FileNot FoundException

{
Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Transacti onal (true);
dbConfi g.set Al | owCreat e(true);
Dat abase catal ogDb = env. openDat abase(nul I, CLASS CATALOG, dbConfi g);
javaCatal og = new Storedd assCat al og(cat al ogDb) ;
}

public final StoredC assCatal og getC assCatal og() {
return javaCatal og;

}

The Dat abaseConfi g class is used to specify configuration parameters when opening a
database. The first configuration option specified — set Transacti onal () — is set to true
to create a transactional database. While non-transactional databases can also be created,
the examples in this tutorial use transactional databases.

set Al l owCr eat e() is set to true to specify that the database will be created if it does not
already exist. If this parameter is not specified, an exception will be thrown if the database
does not already exist.

The first parameter of the openDat abase() method is an optional transaction that is used
for creating a new database. If null is passed, auto-commit is used when creating a
database.

The second parameter of openDat abase() specifies the database name and must not be
a null.

The last parameter of openDat abase() specifies the database configuration object.

Lastly, the St oredC assCat al og object is created to manage the information in the class
catalog database. The St oredd assCat al og object will be used in the sections following
for creating serial bindings.

9/19/2006 DB Collections Page 14

Opening and Closing Databases

The get 0 assCat al og method returns the catalog object for use by other classes in the
example program.

When the environment is closed, the class catalog is closed also.

public void close()
throws Dat abaseException
{

j avaCat al og. cl ose();
env. cl ose();

}

The St oredd assCat al 0g. cl ose() method simply closes the underlying class catalog
database and in fact the Dat abase. cl ose() method may be called instead, if desired. The
catalog database, and all other databases, must be closed before closing the environment.

Opening and Closing Databases

This section describes how to open and close the Part, Supplier and Shipment databases.
A database is a collection of records, each of which has a key and a value. The keys and
values are stored in a selected format, which defines the syntax of the stored data. Two
examples of formats are Java serialization format and tuple format. In a given database,
all keys have the same format and all values have the same format.

The Sanpl eDat abase class is extended to open and close the three databases. The following
additional class members are needed.

public class Sanpl eDat abase

{
private static final String SUPPLI ER STORE = "supplier_store";
private static final String PART STORE = "part _store";
private static final String SH PVMENT _STORE = "shi pnent _store";
private Database supplier Db;
private Database part Db;
private Database shi pment Db;

}

For each database there is a database name constant and a Dat abase object.

The following statements open the three databases by constructing a Database object.

public Sanpl eDat abase(String honeDirectory)
t hrows Dat abaseException, FileNot FoundException

{

Dat abaseConfi g dbConfig = new Dat abaseConfig();
dbConfi g. set Transacti onal (true);
dbConfig.set Al l owCreate(true);

9/19/2006 DB Collections Page 15

Opening and Closing Databases

partDb = env.openDat abase(nul |, PART_STORE, dbConfig);
suppl i erDb = env. openDat abase(nul |, SUPPLIER STORE, dbConfig);
shi pnent Db = env. openDat abase(nul |, SH PMENT_STORE, dbConfig);

}

The database configuration object that was used previously for opening the catalog
database is reused for opening the three databases above. The databases are created if
they don't already exist. The parameters of the openDat abase() method were described
earlier when the class catalog database was opened.

The following statements close the three databases.

public void close()
t hrows Dat abaseException

{
part Db. cl ose();
suppl i er Db. cl ose();
shi pnent Db. cl ose();
j avaCat al og. cl ose();
env. cl ose();
}
All databases, including the catalog database, must be closed before closing the
environment.

The following getter methods return the databases for use by other classes in the example

program.
public class Sanpl eDat abase
{
public final Database getPartDatabase()
{
return part Db;
}
public final Database get Suppli erDatabase()
{
return suppli erDb;
}
public final Database get Shi pment Dat abase()
{
return shi pnent Db;
}
}

9/19/2006 DB Collections Page 16

Creating Bindings and Collections

Creating Bindings and Collections

Bindings translate between stored records and Java objects. In this example, Java
serialization bindings are used. Serial bindings are the simplest type of bindings because
no mapping of fields or type conversion is needed. Tuple bindings — which are more
difficult to create than serial bindings but have some advantages — will be introduced
later in the Tuple example program.

Standard Java collections are used to access records in a database. Stored collections use
bindings transparently to convert the records to objects when they are retrieved from
the collection, and to convert the objects to records when they are stored in the collection.

An important characteristic of stored collections is that they do not perform object
caching. Every time an object is accessed via a collection it will be added to or retrieved
from the database, and the bindings will be invoked to convert the data. Objects are
therefore always passed and returned by value, not by reference. Because Berkeley DB
is an embedded database, efficient caching of stored raw record data is performed by
the database library.

The Sanpl eVi ews class is used to create the bindings and collections. This class is separate
from the Sanpl eDat abase class to illustrate the idea that a single set of stored data can
be accessed via multiple bindings and collections, or views. The skeleton for the

Sanpl eVi ews class follows.

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;

i nport com sl eepycat . bi nd. seri al . O assCat al og;

i nport com sl eepycat . bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat. col | ections. StoredEntrySet;
i nport com sl eepycat. col | ections. StoredMap;

public class SanpleViews

{
private StoredMap part Map;
private StoredMap suppli er Map;
private StoredMap shi pment Map;

publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)
{
}

}

A St or edMap field is used for each database. The StoredMap class implements the standard
Java Map interface, which has methods for obtaining a Set of keys, a Col | ecti on of values,
or a Set of Map. Entry key/value pairs. Because databases contain key/value pairs, any
Berkeley DB database may be represented as a Java map.

The following statements create the key and data bindings using the Seri al Bi ndi ng class.

9/19/2006 DB Collections Page 17

Creating Bindings and Collections

publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)

{
Cl assCatal og catal og = db. get d assCatal og();
Ent ryBi ndi ng partKeyBi nding =
new Seri al Bi ndi ng(catal og, PartKey.class);
Ent ryBi ndi ng part Val ueBi ndi ng =
new Seri al Bi ndi ng(catal og, PartData.class);
Ent ryBi ndi ng suppl i er KeyBi nding =
new Seri al Bi ndi ng(catal og, SupplierKey.class);
Ent ryBi ndi ng suppl i er Val ueBi ndi ng =
new Seri al Bi ndi ng(catal og, SupplierData.class);
Ent ryBi ndi ng shi pment KeyBi ndi ng =
new Seri al Bi ndi ng(catal og, Shi pmentKey. cl ass);
Ent ryBi ndi ng shi pnent Val ueBi ndi ng =
new Seri al Bi ndi ng(catal og, Shi pnent Dat a. cl ass);
}

The first parameter of the Seri al Bi ndi ng constructor is the class catalog, and is used to
store the class descriptions of the serialized objects.

The second parameter is the base class for the serialized objects and is used for type
checking of the stored objects. If nul | or Qbj ect. cl ass is specified, then any Java class
is allowed. Otherwise, all objects stored in that format must be instances of the specified
class or derived from the specified class. In the example, specific classes are used to
enable strong type checking.

The following statements create standard Java maps using the St or edMap class.
publ i ¢ Sanpl eVi ews(Sanpl eDat abase db)

{
partMap =
new St oredMap(db. get Part Dat abase(),
part KeyBi ndi ng, partVal ueBi ndi ng, true);
suppl i erMap =
new St oredMap(db. get Suppl i er Dat abase(),
suppl i er KeyBi ndi ng, suppli erVal ueBi ndi ng, true);
shi pnent Map =
new St or edMap(db. get Shi pnent Dat abase(),
shi pnent KeyBi ndi ng, shi pnent Val ueBi ndi ng, true);
}

The first parameter of the St or edMap constructor is the database. In a StoredMap, the
database keys (the primary keys) are used as the map keys. The Index example shows
how to use secondary index keys as map keys.

The second and third parameters are the key and value bindings to use when storing and
retrieving objects via the map.

9/19/2006 DB Collections Page 18

Creating Bindings and Collections

The fourth and last parameter specifies whether changes will be allowed via the collection.
If false is passed, the collection will be read-only.

The following getter methods return the stored maps for use by other classes in the
example program. Convenience methods for returning entry sets are also included.

public class SanpleVi ews

{
public final StoredVap getPartMap()
{
return partMp;
}
public final StoredMap getSupplierMp()
{
return supplierMap;
}
public final StoredMap get Shi pnent Map()
{
return shi pnent Map;
}
public final StoredEntrySet getPartEntrySet()
{
return (StoredEntrySet) partMp.entrySet();
}
public final StoredEntrySet getSupplierEntrySet()
{
return (StoredEntrySet) supplierMap.entrySet();
}
public final StoredEntrySet get ShipmentEntrySet ()
{
return (StoredEntrySet) shipment Map. entrySet();
}
}

Note that StoredMap and StoredEntrySet are returned rather than just returning Map and
Set. Since StoredMap implements the Map interface and StoredEntrySet implements the
Set interface, you may ask why Map and Set were not returned directly.

St or edMap, StoredEntrySet, and other stored collection classes have a small number of
extra methods beyond those in the Java collection interfaces. The stored collection types
are therefore returned to avoid casting when using the extended methods. Normally,
however, only a Map or Set is needed, and may be used as follows.

9/19/2006 DB Collections Page 19

Implementing the Main Program

Sanpl eDat abase sd = new Sanpl eDat abase(new String("/home"));
Sanpl eViews views = new Sanpl eVi ews(sd);

Map partMap = views. get Part Map();

Set supplierEntries = views.getSupplierEntrySet();

Implementing the Main Program

The main program opens the environment and databases, stores and retrieves objects
within a transaction, and finally closes the environment databases. This section describes
the main program shell, and the next section describes how to run transactions for storing
and retrieving objects.

The Sanpl e class contains the main program. The skeleton for the Sanpl e class follows.

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport java.io.FileNot FoundExcepti on;

public class Sanple

{

}

private Sanpl eDat abase db;
private SanpleViews views;

public static void main(String args)
{
}

private Sanple(String honeDir)

throws Dat abaseException, FileNot FoundException
{
}

private void close()

t hrows Dat abaseException
{
}

private void run()
throws Exception

{

}

The main program uses the Sanpl eDat abase and Sanpl eVi ews classes that were described
in the preceding sections. The mai n method will create an instance of the Sanpl e class,
and call its run() and cl ose() methods.

9/19/2006

DB Collections Page 20

Implementing the Main Program

The following statements parse the program's command line arguments.

public static void main(String[] args)

{
Systemout. println("\nRunning sanple: " + Sanple.class);
String homeDir = "./tnp";
for (int i =0; i <args.length; i += 1)
{
String arg = args[i];
if (args[i].equals("-h") & i < args.length - 1)
{
i += 1
honeDir = args[i];
}
el se
{
Systemerr.println("Usage:\n java " +
Sanpl e. cl ass. get Nane() +
"“\n [-h <home-directory>]");
Systemexit(2);
}
}
}

The usage command is:

java com sl eepycat . exanpl es. bdb. shi pnent . basi c. Sanpl e
[-h <home-directory>]

The - h command is used to set the honeDi r variable, which will later be passed to the
Sanpl eDat abase() constructor. Normally all Berkeley DB programs should provide a way
to configure their database environment home directory.

The default for the home directory is . / t np — the tmp subdirectory of the current directory
where the sample is run. The home directory must exist before running the sample. To
re-create the sample database from scratch, delete all files in the home directory before
running the sample.

The home directory was described previously in Opening and Closing the Database
Environment (page 11).

Of course, the command line arguments shown are only examples and a real-life application
may use different techniques for configuring these options.

9/19/2006 DB Collections Page 21

Implementing the Main Program

The following statements create an instance of the Sanpl e class and call its run() and
cl ose() methods.

public static void main(String args)

{
Sanpl e sample = null;
try
{
sanpl e = new Sanpl e(homeDir);
sanpl e.run();
~:L:atch (Exception e)
{ e.printStackTrace();
}
finally
{
if (sanple !'=null)
{
try
{
sanpl e. cl ose();
}catch (Exception e)
{ Systemerr.println("Exception during database close:");
e.printStackTrace();
}
1
}
}

The Sanpl e() constructor will open the environment and databases, and the run() method
will run transactions for storing and retrieving objects. If either of these throws an
exception, then the program was unable to run and should normally terminate. (Transaction
retries are handled at a lower level and will be described later.) The first cat ch statement
handles such exceptions.

The final | y statement is used to call the cl ose() method since an attempt should always
be made to close the environment and databases cleanly. If an exception is thrown during
close and a prior exception occurred above, then the exception during close is likely a
side effect of the prior exception.

The Sanpl e() constructor creates the Sanpl eDat abase and Sanpl eVi ews objects.

private Sanple(String honeDir)
throws Dat abaseException, FileNot FoundException
{

db = new Sanpl eDat abase(honeDir);

9/19/2006 DB Collections Page 22

Using Transactions

views = new Sanpl eVi ews(db);

}

Recall that creating the Sanpl eDat abase object will open the environment and all
databases.

To close the database the Sanpl e. cl ose() method simply calls Sanpl eDat abase. cl ose() .

private void close()
t hrows Dat abaseException
{

}

The run() method is described in the next section.

db. cl ose();

Using Transactions

DB transactional applications have standard transactional characteristics: recoverability,
atomicity and integrity (this is sometimes also referred to generically as ACID properties).
The Java Collections API provides these transactional capabilities using a
transaction-per-thread model. Once a transaction is begun, it is implicitly associated
with the current thread until it is committed or aborted. This model is used for the
following reasons.

« The transaction-per-thread model is commonly used in other Java APIs such as J2EE.

« Since the Java collections API is used for data access, there is no way to pass a
transaction object to methods such as Map. put .

The Java Collections API provides two transaction APIs. The lower-level API is the
Current Transact i on class. It provides a way to get the transaction for the current thread,
and to begin, commit and abort transactions. It also provides access to the Berkeley DB
core API Transacti on object. With Current Transacti on, just as in the com.sleepycat.je
API, the application is responsible for beginning, committing and aborting transactions,
and for handling deadlock exceptions and retrying operations. This APl may be needed
for some applications, but it is not used in the example.

The example uses the higher-level Transact i onRunner and Transact i onWor ker APIs, which
are build on top of Current Transacti on. Transacti onRunner. run() automatically begins
a transaction and then calls the Transacti onWr ker . doWr k() method, which is
implemented by the application.

The Transact i onRunner. run() method automatically detects deadlock exceptions and
performs retries by repeatedly calling the Transact i onWr ker . doWr k() method until the
operation succeeds or the maximum retry count is reached. If the maximum retry count
is reached or if another exception (other than Deadl ockExcepti on) is thrown by
Transact i on\Wor ker . doWor k() , then the transaction will be automatically aborted.
Otherwise, the transaction will be automatically committed.

9/19/2006 DB Collections Page 23

Using Transactions

Using this high-level API, if Transacti onRunner . run() throws an exception, the application
can assume that the operation failed and the transaction was aborted; otherwise, when
an exception is not thrown, the application can assume the operation succeeded and the
transaction was committed.

The Sanpl e. run() method creates a Transact i onRunner object and calls its run() method.

i nport com sl eepycat. col | ections. Transacti onRunner;
i nport com sl eepycat. col | ections. Transacti on\r ker ;

public class Sanple

{
private Sanpl eDat abase db;
private void run()
throws Exception
{
Transacti onRunner runner = new TransactionRunner (db. get Environment ());
runner. run(new Popul at eDat abase());
runner. run(new Print Dat abase());
}
private class Popul at eDat abase i npl enents Transact i on\r ker
{
public void doWrk()
throws Exception
{
}
}
private class PrintDatabase inplenments TransactionWrker
{
public void doWrk()
throws Exception
{
}
}
}

The run() method is called by mai n() and was outlined in the previous section. It first
creates a Transact i onRunner, passing the database environment to its constructor.

It then calls Transacti onRunner.run() to execute two transactions, passing instances of
the application-defined Popul at eDat abase and Pri nt Dat abase nested classes. These classes
implement the Transacti onWr ker . doWr k() method and will be fully described in the
next two sections.

For each call to Transact i onRunner. run(), a separate transaction will be performed. The
use of two transactions in the example — one for populating the database and another
for printing its contents — is arbitrary. A real-life application should be designed to create

9/19/2006 DB Collections Page 24

Adding Database Items

transactions for each group of operations that should have ACID properties, while also
taking into account the impact of transactions on performance.

The advantage of using Tr ansact i onRunner is that deadlock retries and transaction begin,
commit and abort are handled automatically. However, a Transacti