
 Concurrency and occam-π

occam Exercises (preliminary)

Exercise 1:

[For all these exercises, starter files are given in your exercises folder. The file for this one is
q1.occ.]

S0 and S1 are two processes that output a stream of (INT) numbers:

S0
out

S1
out

S0 outputs the even numbers (0, 2, 4, 6, …) and S1 outputs the odd numbers (1, 3, 5, 7, …). Your
starter file declares PROCs for S0 and S1, but their bodies are only SKIP (do nothing). Edit those
bodies so they do what they are supposed to do.

print.stream is a process that prints an input stream of (INT) numbers to a (BYTE) output
channel, which will below be connected to the screen! output channel of the q1 process:

print.stream prints one number per line with a delay of (at least) delay microseconds after
each line. The full coding is given in your starter file.

in out
print.stream (delay)

The last process given in your starter file is q1, whose header contains the standard (BYTE)
channels (keyboard?, screen! and error!) currently required by the Transterpreter. Test
your S0 process by changing the SKIP (initially in the body of q1) into the following circuit:

q1

error

keyboard

screen
print.stream (100000)

S0

Choose your own name for the channel connecting S0 and print.stream. Compile and run this
process. Then, change it to test S1.

/Continued …

alternate is a process with two (INT) input channels and one (INT) output channel:

in1

in0
alternate

out

Again, the given body of alternate is just a SKIP. Change this to the following behaviour. It
assumes an infinite stream of numbers offered to its input channels. alternate first takes a
number from its in0? channel and outputs it on out!. Then, it takes a number from its in1?
channel and outputs it on out!. It repeats these two operations for ever.

Test this by modifying your q1 process to the following circuit:

q1

error

alternate

screen
print.stream (100000)

S1

keyboard
S0

which should display a column of all the numbers (0, 1, 2, 3, 4, 5, 6, 7, …).

Next – without changing any of the processes S0, S1, alternate or print.stream – modify
your q1 system so that the column of numbers printed excludes all multiples of 5. [Hint: define,
implement and insert a suitable filter process somewhere in the q1 network.]

Next, modify print.stream so that it takes an extra (VAL INT) parameter that specifies the
number of columns of output produced. For example, if given the argument 3, it would tabulate its
first 3 inputs on a single line, then the next 3, then the next 3, etc.

Finally, modify your q1 process to use your modified print.stream.

Exercise 2:

In the same style as the integrate process studied in the course, design and implement a
differentiate process that undoes the effect of the former – i.e. if we build the pipleline:

integrate differentiate
c ba

the stream of numbers emerging from channel c will be the same as that which flowed in on channel
a.

Hint1: integrate was built to do running sums – differentiate needs to do running
differences.

Hint2: differentiate can be built as a network of three processes. You will certainly need a
minus process, modified from the plus process given in the course slides. You need two more
from the set: delta, tail and prefix. [Note: differentiate can also be built as a fairly
simple serial process – but, for this exercise, that is banned! The purpose of the exercise is to
exercise you in parallel design.]

Note: all the processes given in the ‘Legoland’ slides are in the course.lib – you do not need to
retype them. Your starter file imports them into your program in its first two lines. You will need to
introduce the minus process since that is not in course.lib.

Test your differentiate process by building the pipeline:

q2

error

keyboard

screen
print.stream (100000)

differentiateintegrate

numbers

which should, of course, produce the screen output: 0, 1, 2, 3, 4, 5, …

Warning: make sure the initial 0 is produced!

	occam Exercises (preliminary)

