
 Concurrency and occam-π

occam Exercises (Santa Claus)

A classic exercise in concurrency is the “Santa Claus” problem:

“Santa repeatedly sleeps until wakened by either all of his nine reindeer, back from their
holidays, or by a group of three of his ten elves. If awakened by the reindeer, he harnesses
each of them to his sleigh, delivers toys with them and finally unharnesses them (allowing
them to go off on holiday). If awakened by a group of elves, he shows each of the group into
his study, consults with them on toy R&D and finally shows them each out (allowing them to
go back to work). Santa should give priority to the reindeer in the case that there is both a
group of elves and a group of reindeer waiting.”

[J.A.Trono, “A new exercise in concurrency”, SIGCSE Bulletin 26(3), 1994.]

There are several papers on this in the literature. It has been modeled using most concurrency tools
(starting with semaphores and going through monitors, actors, Ada tasking, Java, C#, Polyphonic
C# and, most recently, concurrent Haskell with software transactional memory). It is considered a
hard problem – maybe because of the errors in the (earlier) presented models and their not too easy
to understand (or prove) realizations.

Your task is to produce an occam-pi model that is (a) obviously correct, (b) provably so and (c)
complete with animation so we can see the story unfold. To do the latter, the Santa-Claus system
must signal on external wire(s) to a renderer process(es). Initially, this animation can be simple
lines of text reporting each internal state change that is signaled. No conflicts with the above
informal specification should be observed – e.g. Santa should not be seen consulting with only two
elves, or delivering toys with one or more reindeer still on holiday. Further, your system must never
deadlock, livelock or starve any principals from service – e.g. an elf that wants to consult Santa
must not continually lose out to other elves wanting to consult Santa.

The system can be viewed as a control system for some machine, where the report signals are the
controls and the “Santa Claus” rules specify how the machine must be operated. Breaking the rules
will break the machine – with bad results. All of the above, apart from the starvation issue, can be
formally verified either directly with CSP or with the help of the FDR model checker. 3D graphics
is left as a follow-on exercise.

A (Fairly) Classical occam Model

Obviously, we need a process for santa, each reindeer and each elf. To assemble the elves into
groups of three, a waiting-room holding just that number may help. To assemble the reindeer into
groups of nine, a stable may work; alternatively, since all nine have to assemble, a barrier sync may
do the trick.

However, Santa’s operation of his reindeer and elves are really just the same: when woken up by
either a reindeer party or elf party, he greets them all, works with them for a while and then lets
them go.

A reindeer and elf do much the same thing: they work privately for a while (on holiday or making
toys), assemble to meet Santa (in a stable or waiting room), work together with Santa (delivering
toys or consulting on toy R&D), and then resume their private work.

So, try and reuse code. For instance, a waiting-room and stable could be different instances of the
same process parameterised differently (full with 3, full with 9, room-type). The same is true for
reindeer and elves (where the parameters are their names and agent-type). Note: the room-type (just
VAL INT numbers), names (VAL INT id numbers) and agent-type (VAL INT numbers) are needed
only for reporting purposes; the “full with 3” and “full with 9” parameters impact the internal logic.
Of course, all processes will need channel (and, possibly, barrier) parameters.

Before writing any code, draw the picture! The elves could plug into shared channels serviced by
the waiting-room – yes, they will need two shared channels: one to say “let me in” (which will
block if the room is full) and one that lets an elf know when it gets through to Santa … the waiting-
room process being responsible for contacting Santa when 3 elves are present. The story is the same
for the reindeer, stable and Santa – except for 9 instead of 3.

This model is mostly classical occam (unless you use barrier synchronization). The elves/reindeer
send their names (id numbers) to the waiting-room/stable, which pass them on to Santa. The report
channel is easiest shared by all these parties (the sharing is occam-pi). The reports should be brief
and logical – don’t try to send text here (the look-and-feel, including the actual text shown, is the
responsibility of the renderer process servicing the reports). Here is a possible CASE protocol for
this channel (feel free to go with your own):

 PROTOCOL AGENT.MESSAGE -- an agent is a reindeer or an elf
 CASE
 on.my.own; INT; INT --* kind of agent; id of agent
 ready; INT; INT --* kind of agent; id of agent
 waiting; INT; INT --* kind of agent; id of agent
 work.with.santa; INT; INT --* kind of agent; id of agent
 done.working; INT; INT --* kind of agent; id of agent
 :

 PROTOCOL SANTA.MESSAGE
 CASE
 agent.ready; INT --* kind of agent
 greet; INT; INT --* kind of agent; id of agent
 group.engaged; INT --* kind of agent
 group.disengaged; INT --* kind of agent
 goodbye; INT; INT --* kind of agent; id of agent
 :

 PROTOCOL MESSAGE EXTENDS AGENT.MESSAGE, SANTA.MESSAGE:

Note: the above uses occam-pi’s protocol inheritance (slides 27-37 of “shared-etc”). They make
things neat and safe for channels shared by a variety of process types – in this case two: agents and
santa. An agent is either a reindeer or an elf.

Note: use time-outs to model actual periods of holiday/toy-delivery/toy-making/consultation. The
actual time-out periods should be set randomly between VAL limits. Santa decides on toy-delivery
and consultation periods; the reindeer on holiday periods; the elves on toy-making periods. The
‘course’ library module has a random number generating FUNCTION (documentation at
http://occam-pi.org/occamdoc/frames.html).

Mobile Channel Version

Instead of sending their id numbers, each agent (reindeer and elf) sends the (server-) end of an
unshared channel (constructed once as the agent initiaslises) which it uses to communicate with
Santa. The waiting-room or stable gathers these into a mobile array (of size 3 or 9) and sends that
whole array to Santa. Communication with Santa then becomes explicit (as opposed to being just
implied by the id numbers arriving). When the work with Santa is done, he pings the channel-ends
back down their respective channels to return them to the agents that own them (for use next time).
The latter effect needs a recursive channel type declaration (slides 49-50 of “mobiles”).

Mobile Process Version

This time, each agent (elf and reindeer) is an instance of a mobile process type. They will need
work-station (or holiday-station) processes to host them whilst doing their own thing. The waiting-
room (or stable) hosts them when on the move to Santa. They will need individual santa-stations to
host them when working with Santa. The agents need an initialization channel (to give them their
type, id number, random number seed, etc. following construction), the general report channel and
some channel(s) to communicate directly with Santa. The agents are moved through the (fixed)
network via their hosts, plugging them into channels to Santa only when they get to him.

[Note: I will be happy to help people working on this (and any other) exercise after the course
finishes and I return to the UK. Just contact me at my UK email address: phw@kent.ac.uk]

Peter Welch
(18th. November, 2007)

mailto:phw@kent.ac.uk

	occam Exercises (Santa Claus)

