
 Concurrency and occam-π  
 

occam Exercises (system control) 
 

Exercise 3: 
 
[The starter file for this is q3.occ in your course/exercises folder.] 
 
This is an exercise on modifying the way we interact with a component without modifying the 
component itself - i.e. treating the component as a `black box'.  In this case, the black box is the 
main process in the demo.occ example (see <wherever>/course/examples): 

 
demo only uses its screen channel – so, kroc users may remove the other two.  [For the moment, 
Transterpreter users must have all three for their main processes.] 
 
This exercise is to produce a new component that produces the same stream of bytes (ASCII) on its 
screen channel, but which also responds to keystrokes delivered to its keyboard channel as 
follows.  If the keystroke is: 
 

• ‘f’ : freeze all output, resuming output (from wherever it left off) only after receiving the 
next keyboard input. (any character); 

• anything else : accept, but ignore. 
 
This new component must be built using an unaltered demo component.  To get the required control, 
we must put something (another process) between the interface pins (external channels) of demo and 
the actual keyboard and screen channels: 
 

 
Design and implement a suitable control process and build the above q3 system. The demo 
process is included in the starter file for this exercise. 

screen 

error 

keyboard 

demo 
control

q3

screen

error

keyboard

demo



[Note:  those using kroc (rather than the Transterpreter just yet) may modify demo and q3 to drop 
the unused channels.  The problem remains the same … but the system diagrams simplify: 
 

 

 
] 
 
Modify the control process a little further so as to see the results from some run-time errors. Not 
that your systems will ever suffer such things – this is just so you have the experience, ☺. Here is 
the new spec – if the system receives:  
 

• ‘f’ : freeze all output, resuming output (from wherever it left off) only after receiving the 
next keyboard input. (any character); 

• ‘d’ : force the system into deadlock – the occam-pi runtime will detect this and exit your 
program; 

• ‘z’ : attempt to divide-by-zero – the occam-pi runtime will detect the error and exit your 
program;  

• ‘v’ : attempt to violate an array index bound – as above;  
• ‘s’ : attempt to execute a STOP;  
• anything else : accept, but ignore. 

 
You will need to think how to force a deadlock. Leaving a process waiting on an external channel 
(e.g. control waiting for keyboard input) is not deadlock … the external event will be accepted. 
For deadlock, all processes must be blocked waiting on internal channels. There is a trivial solution. 
 
Formally, the correct semantics of the STOP primitive is that the process freezes … but that 
processes running in parallel with it carry on unaffected. By default, this is not the way kroc (nor 
the Transterpreter) compiles it!  For pragmatic reasons, we compile it as a (deliberate) run-time 
error and any process executing a STOP crashes the whole system.  Similarly, the correct semantics 
of a process executing any run-time error is that it freezes (like STOP). The default compilation is 
that any process executing any run-time error crashes the whole system – just like STOP. This mode 
of compilation is helpful when developing code – arguably. For the correct semantics of STOP and 
run-time errors, use the compiler “-S” flag (e.g. “kroc –S q3.occ”, that’s an upper case “-S”). 
With the correct semantics, run-time errors are isolated in the processes that make them – arguably 
safer for critical applications. 
 
[By the way, to get a bit more feedback on run-time errors, compile with the debug flag set (e.g. 
“kroc –d q3.occ”, that’s a lower case “-d”, or maybe “kroc –S –d q3.occ”).] 

screen 

keyboard 

control

q3 

demo 

screen
demo



Exercise 4:  
 
[The starter file for this is q4.occ in your course/exercises folder.] 
 
Rebuild the squares pipeline (used in the demo program and given in slide 95 of “basics”) and 
pipeline it into print.stream to make a system that outputs perfect squares — one per line: 
 

 
Don’t rewrite the sub-processes above.  The first three are in the course.module and the other is 
already in your starter file – just instance them.  [Note: those using the Transterpreter will have to 
add external keyboard and error channels.] 
 
Modify this system to tap into the internal channels, using delta processes (in course.module) 
to duplicate lanes to a print.streams multiplexor (in the starter file).  Then, we can see the 
streams at each stage in the pipeline: 

 
Now, add the keyboard channel with a monitor process so we can control this machine!  Get the 
system to respond to keyboard input as follows. If the system receives:  
 

• ‘n’ : reset the numbers process to start counting from zero again; 
• ‘i’ : reset the running sum in the integrate process back to zero again; 
• anything else : accept, but ignore. 

 
Of course, the state values we are being asked to reset are internal to their respective processes and 
cannot be changed from the outside.  Those processes, therefore, must be modified to accept reset 
requests (on extra channels) and perform the resets themselves.  The reset requests will be generated 
by the monitor process: 
 

screen
print.stream 

integratenumbers pairs

q4 

print.streams
q4 

numbers integrate pairs 

screen 



 
For information, the reset channels above have been labelled with the characters that cause them to 
be fired.  They will be integer carrying channels.  Generalise the notion of these resets so that the 
processes may have their relevant states reset to any number sent down those channels.  However, 
for this exercise, the monitor process should only send zeroes. 
 
New processes, numbers2 and integrate2, must be made that accept the new reset signals and 
respond appropriately.  Maintain the same style of implementation as before.  Don’t modify any 
internal processes … but insert an extra one somewhere to do the job.  For example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[Note: just instance prefix, delta and succ when you write the above – their declarations are in 
the course.module included at the start of your starter file.  Look in your starter file for a component 
that might be suitable for the one missing above.] 
 
Now, do something very similar for a running-sum-resettable integrate2. 

print.streams

numbers2 integrate2

screen

pairs 

keyboard 

‘n’ 
‘i’

monitor

q4 

numbers2 

reset 

out 

succ

prefix(0) 

??? 



Extend the behaviour of monitor so that the system has an additional control:  
 

• ‘n’ : reset the numbers process to start counting from zero again; 
• ‘i’ : reset the running sum in the integrate process back to zero again;  
• ‘p’ : flip the behaviour of the pairs process so that its adder changes to a subtractor – a 

subsequent ‘p’ flips it back again.  [Note: in its flipped mode, the modified pairs2 process 
becomes a differentiator so that the stream of numbers produced are the same (bar a bit of 
slosh) as those coming from numbers2.] 

• anything else : accept, but ignore. 
 
We just need an additional channel to a modified pairs: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One way is to bring the new reset channel into a modified plus process inside pairs2 – which 
flips between adding and subtracting as resets arrive.  A neater way is to leave the existing sub-
components alone, but introduce an extra component into the circuit to achieve the required effect. 
[A process suitable for this new component has been described in the course.] 
 
Let’s carry on.   Extend the behaviour of monitor so that the system has freeze control: 
 

• ‘n’ : reset the numbers process to start counting from zero again; 
• ‘i’ : reset the running sum in the integrate process back to zero again;  
• ‘p’ : flip the behaviour of the pairs process so that its adder changes to a subtractor – a 

subsequent ‘p’ flips it back again.  [Note: in its flipped mode, the modified pairs process 
becomes a differentiator so that the stream of numbers produced are the same (bar a bit of 
slosh) as those coming from numbers.] 

• ‘f’ : freeze all output, resuming output (from wherever it left off) only after receiving the 
next keyboard input. (any character); 

• anything else : accept, but ignore. 

print.streams

numbers2 integrate2

screen

pairs2 

keyboard

q4 

‘n’ 
‘i’ 

‘p’

monitor



This is similar to Exercise 3 – but careful you don’t introduce deadlock.  You are on your own here 
– draw your own network diagram before writing any code! 
 
Finally, let’s introduce speed control:  
 

• ‘n’ : reset the numbers process to start counting from zero again; 
• ‘i’ : reset the running sum in the integrate process back to zero again;  
• ‘p’ : flip the behaviour of the pairs process so that its adder changes to a subtractor – a 

subsequent ‘p’ flips it back again.  [Note: in its flipped mode, the modified pairs process 
becomes a differentiator so that the stream of numbers produced are the same (bar a bit of 
slosh) as those coming from numbers.] 

• ‘f’ : freeze all output, resuming output (from wherever it left off) only after receiving the 
next keyboard input. (any character); 

• ‘+’ : double the rate of output of lines of text (up to a maximum of 256 lines/second);  
• ‘-’ : halve the rate of output of lines of text (down to a minimum of 1 line/second); 
• anything else : accept, but ignore. 

 
Leave the definition of print.streams alone.  Just instance it with a delay of minus one (-1); it 
plays no part now in controlling speed. 
 
Specify, implement and place a new component (speed.control) to manage speed control. This 
new component sets an initial speed of 32 lines per second.  Note: the system cannot, of course, 
generate output faster than the receiving device (e.g. a terminal screen) can take it. The new control 
process may ignore this problem – i.e. if the receiving device can only display 200 lines per second, 
speed settings beyond that will be automatically cut back to 200 (with no loss of data). This is fine! 
 
The new component should also provide feedback to the user when a ‘+’ or ‘-’ tries to push the 
output speed over its limits: the attempt should be ignored and an error message generated. To keep 
things simple and not interfere with the columns of numbers being output, this error message should 
be a single BELL character (ASCII code 7) sent to the error output channel (which now needs to be 
introduced to the main process parameter list, if not there already).  The BELL character is provided 
(as a BYTE constant) by the course.module.  BYTEs output on the error channel do not need 
flushing – they are delivered to the user’s terminal (window) without delay.  Their effect varies 
depending on how the terminal has been set up.  Some terminals will emit a short beep.  Others will 
flash the screen by momentarily inverting the colours on the screen. 
 
One last piece of low-level help: processing the character input from the keyboard channel is more 
neatly handled though the CASE/ELSE construct of occam-pi, rather than the IF.  The CASE/ELSE 
construct is described in the occam-pi reference wiki: 
 
  https://www.cs.kent.ac.uk/research/groups/sys/wiki/OccamPiReference 
 
and in slides 38-46 of the “shared-etc” slides. 


