
The PSI3 Programmer’s Manual

T. Daniel Crawford,a C. David Sherrill,b Edward F. Valeev,a

Justin T. Fermann,c and C. Brian Kelloggc

aDepartment of Chemistry, Virginia Tech, Blacksburg, Virginia 24061

bCenter for Computational Molecular Science and Technology,
Georgia Institute of Technology, Atlanta, Georgia 30332-0400

cCenter for Computational Quantum Chemistry,
University of Georgia, Athens, Georgia 30602-2525

PSI3 Version: 3.4.0
Created on: February 16, 2009

Report bugs to: psicode@users.sourceforge.net

Contents

1 Introduction 4

2 The PSI3 Source Code 5

2.1 PSI3 SVN Policies: Which Branch Should I Use? 5

2.2 Checking in altered PSI3 binaries or libraries 8

2.3 Adding entirely new code to the main PSI3 repository 8

2.4 Updating checked out code . 10

2.5 Removing code from the repository . 11

2.6 Checking out older versions of the code . 11

2.7 Examining the revision history . 11

2.8 The structure of the PSI3 Source Tree . 12

3 Fundamental PSI3 Functions 13

3.1 The Structure of a PSI3 Module . 13

3.2 The Input Parser . 17

3.2.1 Source Files . 17

3.2.2 Syntax . 18

3.2.3 Sample Use from cscf . 19

3.3 The Binary Input/Output System . 21

3.3.1 The structure and philosophy of the library 21

3.3.2 The user interface . 21

3.3.3 Manipulating the table of contents 23

3.3.4 Using libpsio.a . 23

4 Other PSI3 C Libraries 25

4.1 The Checkpoint File Library . 26

4.1.1 Library Philosophy . 26

4.1.2 Basic Use Instructions . 26

4.1.3 Initialization . 28

4.1.4 Functions for reading information from the checkpoint file 28

4.2 The Integrals-With-Labels Library . 38

4.3 The “Quantum Trio” Library . 38

2

5 Programming Style 38

5.1 On the Process of Writing Software . 39

5.2 Design Issues . 39

5.3 Organization of Source Code . 40

5.4 Formatting the Code . 41

5.5 Naming of Variables . 42

5.6 Printing Conventions . 43

5.7 Commenting Source Code . 43

6 Makefiles in PSI3 45

6.1 Makefile Structure . 45

6.2 PSI Makefiles . 46

6.3 Preparing to Develop New PSI3 Code . 47

7 Code Debugging 47

7.1 Code Re-compilation . 48

7.2 Multiple Source Code Directories . 48

8 Documentation 48

9 Creating New Test Cases 49

10 Special Considerations 50

A PSI3 Reference 51

B Text Files in PSI3 51

3

1 Introduction

The PSI suite of ab initio quantum chemistry programs is the result of an ongoing attempt
by a cadre of graduate students, postdoctoral associates, and professors to produce code
that is efficient but also easy to extend to new theoretical methods. Significant effort has
been devoted to the development of libraries which are robust and easy to use. Some of
the earliest contributions to what is now referred to as “PSI” include a direct configuration
interaction (CI) program (Robert Lucchese, 1976, now at Texas A&M), the well-known
graphical unitary group CI program (Bernie Brooks, 1977-78, now at N.I.H.), and the original
integrals code (Russ Pitzer, 1978, now at Ohio State). From 1978-1987, the package was know
as the BERKELEY suite, and after the Schaefer group moved to the Center for Computational
Quantum Chemistry at the University of Georgia, the package was renamed PSI. Thanks
primarily to the efforts of Curt Janssen (Sandia Labs, Livermore) and Ed Seidl (LLNL), the
package was ported to UNIX systems, and substantially improved with new input formats
and a C-based I/O system.

Beginning in 1999, an extensive effort was begun to develop PSI3 — a PSI suite with a
completely new face. As a result of this effort, all of the legacy Fortran code was removed,
and everything was rewritten in C and C++, including new integral/derivative integral,
coupled cluster, and CI codes. In addition, new I/O libraries have been added, as well
as an improved checkpoint file structure and greater automation of typical tasks such as
geometry optimization and frequency analysis. The package has the capability to deter-
mine wavefunctions, energies, analytic gradients, and various molecular properties based on
a variety of theories, including spin-restricted, spin-unrestricted, and restricted open-shell
Hartree-Fock (RHF, UHF, and ROHF); configuration interaction (CI) (including a variety
of multireference CI’s and full CI); coupled-cluster (CC) including CC with variationaly
optimized orbitals; second-order Møller-Plesset perturbation theory (MPPT) including ex-
plicitly correlated second-order Møller-Plesset energy (MP2-R12); and complete-active-space
self-consistent field (CASSCF) theory. By January 2008, all of the C code in PSI3 was con-
verted to C++ to enable a path toward more object-oriented design and a single-excecutable
framework that will facilitate code reuse and ease efforts at parallelization. At this same time,
all of the legacy I/O routines from PSI2 were removed, greatly streamlining the libciomr.a
library.

The purpose of this manual is to provide a reasonably detailed overview of the source
code and programming philosophy of PSI3, such that programmers interested in contributing
to the code will have an easier task. Section 2 gives a succint explanation of the steps
required to obtain the source code from the main repository at Virginia Tech. (Installation
instructions are given separately in the installation manual or in $PSI3/INSTALL.) Section
3 discusses the essential elements of a C-language PSI3 program, with emphasis on the input
parsing and I/O functions. Section 4 provides documentation of a number of other important
libraries, including the library of functions for reading from the checkpoint file, libchkpt.a,
the Quantum Trio miscellaneous function library, libqt.a, the libiwl.a for reading and
writing one- and two-electron integrals in the “integrals with labels” format. Section 5
offers advice on appropriate programming style for PSI3 code, and section 6 describes the
structure of the package’s Makefiles. Section 6.3 gives a brief overview of the necessary

4

steps to adding a new module to PSI3, section 7 gives some suggestions on debugging it,
and section 8 explains conventions for documenting it. The appendices provide important
reference material, including the currently accepted PSI3 citation and format information
for some of the most important text files used by PSI3 modules.

2 The PSI3 Source Code

The subversion control system (SVN) (subversion.tigris.org) provides a convenient
means by which programmers may obtain the latest (or any previous) version of the PSI3

source from the main repository or a branch version, add new code to the source tree or
modify existing PSI3 modules, and then make changes and additions available to other pro-
grammers by checking the modifications back into the main repository. SVN also provides
a “safety net” in that any erroneous modifications to the code may be easily removed once
they have been identified. This section describes how to use SVN to access and modify
the PSI3 source code. (Note that compilation and installation instructions are given in a
separate document.)

The main repository for the PSI3 Source code is currently maintained by the Crawford
group at Virginia Tech. To check out the code, one must first obtain an SVN account by
emailing crawdad@vt.edu. After you have a login-id and password, you are now ready to
access the repository via a secure, SSL-based WebDAV connection, but first you must decide
which version of the code you need.

The PSI3 SVN repository contains three top-level directories:

• trunk: The main development area.

• branches: Release branches and private development branches are stored here.

• tags: Snapshots of the repository corresponding to public releases are stored here and
should never be modified.

If you have a PSI3 SVN account, you can peruse these directories if you like by pointing web
browser to:

https://sirius.chem.vt.edu/svn/psi3/

2.1 PSI3 SVN Policies: Which Branch Should I Use?

The PSI3 repository is comprised of a main trunk and several release branches. The branch
you should use depends on the sort of work you plan for the codes:

1. For any piece of code already in the most recent release, bug fixes (defined as anything
that doesn’t add functionality — including documentation updates) should be made
only on the most recent stable release branch.

5

http://subversion.tigris.org/
mailto:crawdad@vt.edu

2. The main trunk is reserved for development of new functionality. This allows us to
keep new, possibly unstable code away from public access until the code is ready.

3. Code that you do not want to put into next major release of PSI3 should be put onto
a separate branch off the main trunk. You will be solely responsible for maintenance
of the new branch, so you should read the SVN manual before attempting this.

Fig. 1 provides a schematic of the SVN revision-control structure and branch labeling. Two
release branches are shown, the current stable branch, named psi-3-4, and a planned future
release, to be named psi-3-5. The tags on the branches indicate release shapshots, where
bugs have been fixed and the code has been or will be exported for public distribution. The
dotted lines in the figure indicate merge points: just prior to each public release, changes
made to the code on the stable release branch will be merged into the main trunk.

Figure 1: PSI3 SVN branch structure with examples of branch- and release-tag labelling.

A frequently encountered problem is what to do about bug fixes that are necessary for
uninterrupted code development of the code on the main trunk. As Rule 1 of the above
policy states, all bug fixes of the code already in the recent stable release must go on the
corresponding branch, not on the main trunk. The next step depends on the severity of the
bug:

1. If the bug fix is critical and potentially affects every developer of the code on the main
trunk, then PSI3 administrators should be notified of the fix. If deemed necessary,
appropriate steps to create a new patch release will be made. Once the next patch
release is created then the bug fixes will be merged onto the main trunk. If the bug
fix doesn’t warrant an immediate new patch release, then you can incorporate the bug
fix into your local copy of the main trunk code manually or using SVN merge features.
This will allow you to continue development until next patch release is created and
the bug fix is incorporated into the main trunk code in the repository. However you
should never merge such changes into the main trunk yourself.

6

2. If the bug fix is not critical (e.g. a documentation update/fix), then you should wait
until next patch release when it will be merged into the main trunk automatically.

The following are some of the most commonly used SVN commands for checking out and
updating working copies of the PSI3 source code.

• To checkout a working copy of the head of the main trunk:

svn co https://sirius.chem.vt.edu/svn/psi3/trunk/ psi3

• To check out a working copy of the head of a specific release branch, e.g., the branch
labelled psi-3-4:

svn co https://sirius.chem.vt.edu/svn/psi3/branches/psi-3-4 psi3

Note that subsequent svn update commands in this working copy will provide updates only
on the chosen branch. Note also that after you have checked out a fresh working copy of the
code you must run the autoconf command to generate a configure script for building the
code. (See the installation manual for configuration, compilation, and testing instructions.)

For each of the above commands, the working copy of your code will be placed in the directory
psi3, regardless of your choice of branch. In this manual, we will refer to this directory from
now on as $PSI3. Subsequent SVN commands are usually run within this top-level directory.

• To update your current working copy to include the latest revisions:

svn update

Notes: (a) This will update only the revisions on your current branch; (b) The old -d and
-P flags required by CVS are not necessary with SVN.

• To convert your working copy to the head of a specific branch:

svn switch https://sirius.chem.vt.edu/svn/psi3/branches/psi-3-4

• To convert your working copy to the head of the main trunk:

svn switch https://sirius.chem.vt.edu/svn/psi3/trunk/

• To find out what branch your working copy is on, run this in your top-level PSI3 source
directory:

svn info | grep URL

This will return the SVN directory from which your working copy was taken, e.g.,

URL: https://sirius.chem.vt.edu/svn/psi3/branches/psi-3-4

Some words of advice:

1. Most SVN commands are reasonably safe,

2. Unlike CVS, you shouldn’t use svn update to see the status of your working copy.
With SVN you should use svn status to see if you’ve modified any files or directories.
If you want a direct comparison with the repository, you should use svn status -u.

3. Read the SVN manual. Seriously.

7

http://svnbook.red-bean.com/

4. If you’re about to start some significant development or bug-fixes, first update your
working copy to the latest version on your branch. In addition, if you do development
over a long period of time (say weeks to months) on a specific module or modules, be
sure to run a svn status -u occasionally. In can be very frustrating to try to check
in lots of changes, only to find out that the PSI3 has changed dramatically since your
last update.

2.2 Checking in altered PSI3 binaries or libraries

If you have changes to Psi binaries or libraries which already exist, one of two series of steps
is necessary to check these changes in to the main repository. The first series may be followed
if all changes have been made only to files which already exist in the current version. The
second series should be followed if new files must be added to the code in the repository.

• No new files need to be added to the repository. We will use libciomr as an example.

1. cd $PSI3/src/lib/libciomr

2. svn ci -m ‘‘Put comments here.’’

• New files must be added to the repository. Again, we use libciomr as an example.
Suppose the new file is named great code.cc .

1. cd $PSI3/src/lib/libciomr

2. svn add great code.cc

3. svn ci -m ‘‘Put comments here.’’

The svn ci command in both of these sequences will examine all of the code in the
current libciomr directory against the current version of the code in the main repository.
Any files which have been altered (and for which no conflicts with newer versions exist!) will
be identified and checked in to the main repository (as well as the new file in the second
situation).

SVN requires that you include a comment on your changes. However, unlike CVS, SVN
prefers that you put your comments on the command-line rather than editing a text file. I
prefer the CVS way, but this is a minor pain compared to all the advantages of SVN, in my
opinion.

2.3 Adding entirely new code to the main PSI3 repository

If the programmer is adding a new executable module or library to the PSI3 repository, a
number of important conventions should be followed:

8

http://svnbook.red-bean.com/

1. Since such changes almost always involve additional functionality, new modules or
libraries should be added only on the main SVN trunk. See section 2.1 for additional
information.

2. The directory containing the new code should be given a name that matches the name
of the installed code (e.g. if the code will be installed as newcode, the directory
containing the code should be named newcode). New executable modules must be
placed in $PSI3/src/bin and libraries in $PSI3/src/lib of the user’s working copy.

3. The Makefile should be converted to an input file for the configure script (Makefile.in
— see any of the current PSI3 binaries for an example) and should follow the conven-
tions set up in all of the current PSI3 Makefiles. This includes use of MakeVars and
MakeRules.

4. New binaries should be added to the list contained in $PSI3/src/bin/Makefile.in

so that they will be compiled automatically when a full compilation of the PSI3 dis-
tribution occurs. This step is included in the sequence below.

5. A documentation page should be included with the new code (see section 8 for more
information). As a general rule, if the code is not ready to have a documentation page,
it is not ready to be installed in PSI3.

6. The configure.ac file must be altered so that users may check out copies of the new
code and so that the configure script will know to create the Makefile for the new
code. These steps are included in the sequence below.

Assume the new code is an executable module and is named great code. The directory
containing the new code must contain only those files which are to be checked in to the
repository! Then the following steps will check in a new piece of code to the main repository:

1. cd $PSI3/src/bin

2. svn add great code

3. svn ci -m ‘‘Put comments here.’’

4. cd $PSI3

5. Edit configure.ac and add great code to the list.

6. svn ci configure.ac -m ‘‘Put comments here.’’

7. autoconf

8. cd $PSI3/src/bin

9. Edit Makefile.in and add great code to the list.

10. svn ci Makefile.in -m ‘‘Put comments here.’’

9

At this point, all of the code has been properly checked in, but you should also test to
make sure that the code can be checked out by other programmers, and that it will compile
correctly. The following steps will store your personal version of the code, check out the new
code, and test-compile it:

1. cd $PSI3/src/bin

2. mv great code great code.bak

3. cd $PSI3/..

4. svn update

5. cd $objdir

6. $PSI3/configure --prefix=$prefix

7. cd src/bin/great code

8. make install

(Note that $prefix and $objdir to the installation and compilation directories defined in the
PSI3 installation instructions.) Your original version of the code remains under great code.bak,
but should be no longer necessary if the above steps work. Note that it is necessary to re-run
configure explicitly, instead of just running config.status, because the latter contains no
information about the new code.

2.4 Updating checked out code

If the code in the main repository has been altered, other users’ working copies will of course
not automatically be updated. In general, it is only necessary to execute the following steps
in order to completely update your working copy of the code:

1. cd $PSI3

2. svn update

This will examine each entry in your working copy and compare it to the most recent
version in the main repository. When the file in the main repository is more recent, your
version of the code will be updated. If you have made changes to your version, but the
version in the main repository has not changed, the altered code will be identified to you
with an “M”. If you have made changes to your version of the code, and one or more newer
versions have been updated in the main repository, SVN will examine the two versions and
attempt to merge them – this process often reveals conflicts, however, and is sometimes
unsuccessful. You will be notified of any conflicts that arise (labelled with a “C”) and you
must resolve them manually.

10

If new directories have been added to the repository, the update above will automatically
add them to your working copy. However, you may need to re-run autoconf and configure
($objdir/config.status --recheck is a convenient command) to be able to build the new
code.

2.5 Removing code from the repository

If alterations of libraries or binaries under Psi involves the deletion of source code files from
the code, these must be explicitly removed through SVN.

The following steps will remove a source code file named bad code.F from a binary
module named great code:

1. cd $PSI3/src/bin/great code

2. svn remove bad code.F

3. svn ci -m ‘‘Put comments here.’’

2.6 Checking out older versions of the code

It is sometimes necessary to check out older versions of a piece of code. Assume we wish to
check out an old version of detci. If this is the case, the following steps will do this:

1. cd $PSI3/src/bin/detci

2. svn co --revision {2002-02-17}

This will check the main repository and provide you with the code as it stood exactly on
February 17th, 2002.

2.7 Examining the revision history

It can be very useful to use cvs to see what recent changes have been made to the code.
Anytime one checks in a new version of a file, SVN requires the user to provide comments on
the changes with the -m flag. These comments go into a log information that may be easily
accessed through SVN. To see what changes have been made recently to the file detci.cc,
one would go into the detci source directory and type

svn log detci.cc

Checking the log files is a very useful way to see what recent changes might be causing new
problems with the code.

11

2.8 The structure of the PSI3 Source Tree

Your working copy of the PSI3 source code includes a number of important subdirectories:

• $PSI3/lib – Source files for OS-independent “library” data. This includes the main
basis set data file (pbasis.dat) and the PSI3 program execution control file (psi.dat),
among others. These files are installed in $prefix/share.

• $PSI3/include – Source files for OS-independent header files, including physconst.h

(whose contents should be obvious from its name), psifiles.h, and ccfiles.h, among
others. These files are installed in $prefix/include.

• $PSI3/src/util – Source code for the utility program tocprint. (Note that the tmpl
module is no longer used and will eventually disappear.)

• $PSI3/src/lib – Source code for the libraries, including libpsio, libipv1, libchkpt,
etc. The include files from the library source are used directly during the compilation of
PSI to avoid problems associated with incomplete installations. Some include files are
architecture-dependent and go in an include subdirectory of the compilation (object)
directory.

• $PSI3/src/bin – Source code for the executable modules.

After compilation and installation, the $prefix directory contains the executable codes
and other necessary files. NB: The files in this area should never be directly modified;
rather, the working copy should be modified and the PSI3 Makefile hierarchy should handle
installation of any changes. The structure of the installation area is:

• $prefix/bin – The main executable directory. This directory must be in your path
in order for the driver program, psi3, to find the modules.

• $prefix/lib – The PSI3 code libraries. (NB: The description of PSI3 Makefiles later
in this manual will explain how to use the libraries.)

• $prefix/include – Header files. These are not actually used during the compilation
of PSI but are useful for inclusion by external programs because they are all in the
same directory.

• $prefix/share – OS-independent data files, including basis set information. (Do not
edit this file directly; any changes you make can be overwritten by subsequent make

commands.)

• $prefix/doc – PSI3 documentation, including installation, programmer, and user
manuals.

12

3 Fundamental PSI3 Functions

Each PSI3 module (e.g. cscf) must perform two specific tasks, regardless of the individual
module’s specific purpose(s): (1) obtaining user input options and (2) writing to and reading
from binary files (e.g. the checkpoint file). PSI3 programs written in the C programming
language make use of two libraries which provide all the tools necessary to carry out these
functions:

• libipv1.a — the input parser

• libpsio.a — the I/O interface

In addition, the libraries libciomr.a and libqt.a provide important functions for memory
allocation, mathematics, and code timing. In the next section, we will discuss the basic
components of a PSI3 C-language program, followed by detailed descriptions of the input
parsing and I/O libraries.

3.1 The Structure of a PSI3 Module

To function as part of the PSI package, a program must incorporate certain required elements.
This section will discuss the header files, global variables, and functions required to integrate
a new C++ module into PSI3. Here is a minimal PSI3 program, whose elements are described
below. Note that we are using C++ namespaces to avoid conflicting names between modules,
as we are moving toward a single-executable design. However, for legacy reasons certain
globals and the gprgid() function need to have C-linkage.

#include <cstdio>

#include <cstdlib>

#include <libipv1/ip_lib.h>

#include <psifiles.h>

#include <libqt/qt.h>

#include <libciomr/libciomr.h>

#include <libchkpt/chkpt.h>

#include <libpsio/psio.h>

extern "C" {

FILE *infile, *outfile;

char *psi_file_prefix;

}

// begin module-specific namespace

namespace psi { namespace MODULE_NAME {

// global variables, function declarations, and

13

// #define statements here

}} // close namespace psi::MODULE_NAME

// main needs to be in the global namespace

// but give it access to the psi::MODULE_NAME namespace

using namespace psi::MODULE_NAME

int main(int argc, char *argv[])

{

psi_start(&infile, &outfile, &psi_file_prefix,

argc-1, argv+1, 0);

ip_cwk_add(":MODULE_NAME"); // MODULE_NAME all caps here

psio_init(); psio_ipv1_config();

/* to start timing, tstart(outfile); */

/* Insert code here */

/* to end timing, tstop(outfile); */

psio_done();

psi_stop(infile, outfile, psi_file_prefix);

}

// this needs to be global namespace also

extern "C" {

char *gprgid(void)

{

char *prgid = "MODULE_NAME";

return(prgid);

}

}

// all other stuff is in a special namespace

namespace psi { namespace MODULE_NAME {

// other stuff below

double some_function(int x) {

// code

}

}} // close namespace psi::MODULE_NAME

14

In the above example, we have included the typical C++ and PSI header files, although
for your specific module you may not need all of these, or perhaps you may need addi-
tional ones (such as string.h or math.h). The PSI include files used in this example are
libipv1/ip lib.h (the input parser, described in section 3.2), psifiles.h (definitions of
all the PSI file numbers for I/O), libqt/qt.h (the “quantum trio” library, containing mis-
cellaneous math and utility functions), libciomr/libciomr.h (the old PSI I/O and math
routines library – although it contains no I/O anymore), libchkpt/chkpt.h (a library for
accessing the checkpoint file to obtain quantities such as the SCF or nuclear repulsion en-
ergy), and libpsio/psio.h (the PSI I/O library, see section 3.3). These include files contain
function declarations for all of the functions contained in those libraries.

Note that all PSI modules require three global variables with C linkage (i.e., inside an
extern C statement): infile, outfile, and psi file prefix. Each PSI module must also
have a C-linkage function called gprgid() defined as shown. The main() function must
be in global scope, and other functions should be inside a namespace with the name of the
module (which is further contained inside a psi namespace). Consult a C++ book if you
are unfamiliar with namespaces.

The integer function main() must be able to handle command-line arguments required
by the PSI3 libraries. In particular, all PSI3 modules must be able to pass to the function
psi start() arguments for the user’s input and output filenames, as well as a global file
prefix to be used for naming standard binary and text data files. (NB: the default names for
user input and output are input.dat and output.dat, respectively, though any name may be
used.) The current standard for command-line arguments is for all module-specific arguments
(e.g., --quiet, used in detci) before the input, output, and prefix values. The psi start()

function expects to find only these last three arguments at most, so the programmer should
pass as argv[] the pointer to the first non-module-specific argument. The above example
is appropriate for a PSI3 module that requires no command-line arguments apart from the
input/output/prefix globals. See the PSI3 modules input and detci for more sophisticated
examples. The final argument to psi start() is an integer whose value indicates whether
the output file should be overwitten (1) or appended (0). Most PSI3 modules should choose
to append.

The psi start() function initializes the user’s input and output files and sets the
global variables infile, outfile, and psi file prefix, based on (in order of priority)
the above command-line arguments or the environmental variables PSI INPUT, PSI OUTPUT,
and PSI PREFIX. The value of the global file prefix can also be specified in the user’s input
file. The psi start() function will also initialize the input parser and sets up a default
keyword tree (described in detail in section 3.2). This step is required even if the program
will not do any input parsing, because some of the functionality of the input parser is as-
sumed by libciomr.a and libpsio.a. For instance, opening a binary file via psio open()

(see section 3.3) requires parsing the files section of the user’s input so that a unit number
(e.g. 52) can be translated into a filename. The psi stop() function shuts down the input
parser and closes the user’s input and output files.

Timing information (when the program starts and stops, and how much user, system,
and wall-clock time it requires) can be printed to the output file by adding calls to tstart()

15

and tstop() (from libciomr.a).

The sole purpose of the simple function gprgid() is to provide the input parser a means to
determine the name of the current program. This allows the input parser to add the name of
the program to the input parsing keyword tree. This function is used by libpsio.a, though
the functionality it provides is rarely used.

In all but the most trivial of modules, you will probably need to split your code into
multiple files. The PSI3 convention is to put the main() function, gprgid(), and the
allocation of infile, outfile, and psi file prefix into a file with the same name as that
of the module (and a .cc extension). Other C++ source files should have everything wrapped
within the psi::MODULE NAME namespace. Any module-specific header files should look like
this:

#ifndef _psi_src_bin_MODULE_NAME_h

#define _psi_src_bin_MODULE_NAME_h

// if you need infile, outfile, and psi_file_prefix in the header,

// include them like this:

extern "C" {

extern FILE *infile, *outfile;

extern char *psi_file_prefix;

}

namespace psi { namespace MODULE_NAME {

/* header stuff goes here */

}} // namespace psi::MODULE_NAME

#endif // header guard

If you add infile, etc, to a header file, make sure they are within an extern "C" state-
ment and in the global namespace. Since these variables are defined in MODULE NAME.cc,
you should also precede these variables with extern to tell the compiler they’ve been al-
located in another module (e.g., extern FILE *infile). However, that means you then
wouldn’t be able to include that header file in MODULE NAME.cc, because then you’d
be telling the compiler both that infile, etc, are allocated elsewhere (according to extern

FILE *infile in the header file) and also that it’s allocated in the current file (FILE *infile

in MODULE NAME.cc), an obvious contradition. Most of the official PSI3 modules use a
trick defining or undefining a variable called EXTERN to avoid this apparent paradox and
allow the use of the same header file containing global variables (often called globals.h) in
MODULE NAME.cc and all other C++ source files.

As always, you are encouraged to avoid use of global variables when at all possible. It
is customary to wrap variables that would otherwise be global into data structures such

16

as MOInfo (for things like the number of orbitals) and Params (for user-specified parame-
ters). In the next stage of PSI development, these commonly-used data structures will be
standardized as new C++ objects for maximum code re-use and flexibility.

3.2 The Input Parser

The input parsing library is built for the purpose of reading in the contents of an input file
with the syntax of input.dat and storing the contents specific to certain keywords supplied.
To perform such a task libipv1.a has three parts: (1) the parser; (2) the lexical scanner;
(3) keyword storage and retrieval.

The format of input.dat follows certain rules which should probably referred to as the
PSI input grammar. There is a description of most of those rules in PSI3 User’s Manual. A
complete definition of the PSI input grammar is encoded in parse.y (see below). To read a
grammar we need a parser – the first component of libipv1.a. Then the identified lexical
elements of input.dat (keywords and keyword values) need to be scanned for presence of
“forbidden” characters (e.g. a space may not be a part of a string unless the string is placed
between parentheses). This task is performed by the lexical scanner — the second component
of libipv1.a. Finally, scanned-in pairs of keyword-value(s) are stored in a hierarchical data
structure (a tree). When a particular option is needed, the set of stored keywords and values
is searched for the one queried and the value returned. In this way, options of varying type
can be assigned, i.e. rather than having a line of integers, each corresponding to a program
variable, mnemonic character string variables can be parsed and interpreted into program
variables. It’s also easier to implement default options, allowing a more spartan input deck.
The set of input-parsing routines in libipv1.a is really not complicated to use, but the
manner in which data is stored is somewhat painful to grasp at first.

The following is a list of the names of the individual source files in libipv1 and a
summary of their contents. After that is a list of the syntax of specific functions and their
use. Last is a simple illustration of the use of this library, taken mostly from cscf.

3.2.1 Source Files

• Header files

– ip error.h Defines for error return values.

– ip global.h cpp macros to make Curt happy.

– ip lib.h #include’s everything.

– ip types.h Various structures and unions specific to libipv1.

• Other Source

– parse.y Yacc source encoding the PSI input grammar. Read by yacc (or bison)
– a parser generator program.

17

– scan.l Lex source describing lexical elements allowed in input.dat. Read by
lex (or flex) – a lexer generator program.

– *.gbl, *.lcl cpp macros to mimic variable argument lists.

• C source

– ip alloc.cc Allocates keyword tree elements.

– ip cwk.cc Routines to manipulate the current working keyword tree.

– ip data.cc Routines to handle reading of arrays and scaler keyword assignments
in input.

– ip error.cc Error reporting functions.

– ip karray.cc Other things to deal with keyword arrays.

– ip print.cc Routines to print sections of the keyword tree.

– ip read.cc All the file manipulation routines. Reading of input.dat and build-
ing the keyword tree from which information is later plucked.

3.2.2 Syntax

ip cwk.cc

void ip cwk clear();

Clears current working keyword. Used when initializing input or switching from one section
to another (:DEFAULT and :CSCF to :INTCO, for instance).

void ip cwk add(char *kwd);

Adds kwd to the list of current working keywords. Allows parsing of variables under that
keyword out of the input file (files) which has (have) been read or will be read in the future
using ip append. The keyword kwd can only be removed from the list of current working
keywords by purging the entire list using ip cwk clear. You must ensure that they keyword
strings begin with a colon.

ip data.cc

int ip count(char *kwd, int *count, int n);

Counts the elements in the n’th element of the array kwd.

int ip boolean(char *kwd, int *bool, int n);

Parses n’th element of kwd as boolean (true, 1, yes; false, 0, no) into 1 or 0 returned in bool.

int ip exist(char *kwd, int n);

Returns 1 if n’th element of kwd exists. Unfortunately, n must be 0.

int ip data(char *kwd, char *conv, void *value, int n [, int o1, ..., int on]);

Looks for keyword kwd, finds the value associated with it, converts it according to the format
specification given in conv, and stores the result in value. Note that value is a void * so

18

this routine can handle any data type, but it is the programmer’s responsibility to ensure
that the pointer passed to this routine is of the appropriate pointer type for the data. The
value found by the input parser depends on the value of n and any optional additional ar-
guments. n is the number of additional arguments. If n is 0, then there are no additional
arguments, and the keyword has only one value associated with it. If the keyword has an
array associated with it, then n is 1 and the one additional argument is which element of the
array to pick. If kwd specifies an array of arrays, then n is 2, the first additional argument is
the number of the first array, and the second argument is the number of the element within
that array, etc. Deep in here, the code calls a sscanf(read, conv, value);, so that’s the
real meaning of variables.

int ip string(char *kwd, char **value, int n, [int o1, ..., int on]);

Parses the string associated with kwd stores it in value. The role of n and optional arguments
is the same as that described above for ip data().

int ip value(char *kwd, ip value t **ip val, int n);

Grabs the section of keyword tree at kwd and stores it in ip val for the programmer’s use -
this is usually not used, since you need to understand the structure of ip value t.

int ip int array(char *kwd, int *arr, int n);

Reads n integers into array arr.

ip read.cc

void ip set uppercase(int uc);

Sets parsing to case sensitive if uc==0, I think.

void ip initialize(FILE *in, FILE *out);

Calls yyparse(); followed by ip cwk clear(); followed by ip internal values();. This
routine reads the entire input deck and stores it into the keyword tree for access later.

void ip append(FILE *in, FILE *out);

Same thing as ip initialize();, except this doesn’t clear the cwk first. Used for parsing
another input file, such as intco.dat.

void ip done();

Frees up the keyword tree.

ip read.cc

void ip print tree(FILE *out, ip keyword tree t *tree);

Prints out tree to out. If tree is set to NULL, then the current working keyword tree will
be printed out. This function is useful for debugging problems with parsing.

3.2.3 Sample Use from cscf

These are two slightly simplified pieces of (former versions of) actual code.

From cscf.cc:

19

#include <libipv1/ip_lib.h>

#include <libpsio/psio.h>

int main(int argc,char* argv[])

{

using namespace psi::cscf;

...

psi_start(&infile,&outfile,&psi_file_prefix,argc-1, argv+1, 0);

ip_cwk_add(":SCF");

From scf input.cc:

errcod = ip_string("LABEL",&alabel,0);

if(errcod == IPE_OK) fprintf(outfile," label = %s\n",alabel);

reordr = 0; /* this sets the default that will be used in case the

user hasn’t specified this keyword */

errcod = ip_boolean("REORDER",&reordr,0);

if(reordr) {

errcod = ip_count("MOORDER",&size,0);

for(i=0; i < size ; i++) {

errcod = ip_data("MOORDER","%d",&iorder[i],1,i);

errchk(errcod,"MOORDER");

}

}

second_root = 0;

if (twocon) {

errcod = ip_boolean("SECOND_ROOT",&second_root,0);

}

if(iopen) {

errcod = ip_count("SOCC",&size,0);

if(errcod == IPE_OK && size != num_ir) {

fprintf(outfile,"\n SOCC array is the wrong size\n");

fprintf(outfile," is %d, should be %d\n",size,num_ir);

exit(1);

}

if(errcod != IPE_OK) {

fprintf(outfile,"\n try adding some electrons buddy!\n");

fprintf(outfile," need SOCC\n");

ip_print_tree(outfile,NULL);

20

exit(1);

}

3.3 The Binary Input/Output System

3.3.1 The structure and philosophy of the library

Almost all PSI3 modules must exchange data with raw binary (also called “direct-access”)
files. However, rather than using low-level C or Fortran functions such as read() or write(),
PSI3 uses a flexible, but fast I/O system that gives the programmer and user control over
the organization and storage of data. Some of the features of the PSI I/O system, libpsio,
include:

• A user-defined disk striping system in which a single binary file may be split across
several physical or logical disks.

• A file-specific table of contents (TOC) which contains file-global starting and ending
addresses for each data item.

• An entry-relative page/offset addressing scheme which avoids file-global file pointers
which can limit file sizes.

The TOC structure of PSI binary files provdes several advantages over older I/O sys-
tems. For example, data items in the TOC are identified by keyword strings (e.g., "Nuclear
Repulsion Energy") and the global address of an entry is known only to the TOC itself,
never to the programmer. Hence, if the programmer wishes to read or write an entire TOC
entry, he/she is required to provide only the TOC keyword and the entry size (in bytes) to
obtain the data. Furthermore, the TOC makes it possible to read only pieces of TOC entries
(say a single buffer of a large list of two-electron integrals) by providing the appropriate
TOC keyword, a size, and a starting address relative to the beginning of the TOC entry. In
short, the TOC design hides all information about the global structure of the direct access
file from the programmer and allows him/her to be concerned only with the structure of
individual entries. The current TOC is written to the end of the file when it is closed.

Thus the direct-access file itself is viewed as a series of pages, each of which contains an
identical number of bytes. The global address of the beginning of a given entry is stored on
the TOC as a page/offset pair comprised of the starting page and byte-offset on that page
where the data reside. The entry-relative page/offset addresses which the programmer must
provide work in exactly the same manner, but the 0/0 position is taken to be the beginning
of the TOC entry rather than the beginning of the file.

3.3.2 The user interface

All of the functions needed to carry out basic I/O are described in this subsection. Proper
declarations of these routines are provided by the header file psio.h. Note that before any

21

open/close functions may be called, the input parsing library, libipv1 must be initialized
so that the necessary file striping information may be read from user input, but this is
hidden from the programmer in lower-level functions. NB, ULI is used as an abbreviation
for unsigned long int in the remainder of this manual.

int psio init(void): Before any files may be opened or the basic read/write functions
of libpsio may be used, the global data needed by the library functions must be initialized
using this function.

int psio ipv1 config(void): For the library to operate properly, its configuration
must be read from the input file or from user’s .psirc file. This call MUST immediately
follow int psio init();.

int psio done(void): When all interaction with the direct-access files is complete, this
function is used to free the library’s global memory.

int psio open(ULI unit, int status): Opens the direct access file identified by unit.
The status flag is a boolean used to indicate if the file is new (0) or if it already exists and
is being re-opened (1). If specified in the user input file, the file will be automatically opened
as a multivolume (striped) file, and each page of data will be read from or written to each
volume in succession.

int psio close(ULI unit, int keep): Closes a direct access file identified by unit.
The keep flag is a boolean used to indicate if the file’s volumes should be deleted (0) or
retained (1) after being closed.

int psio read entry(ULI unit, char *key, char *buffer, ULI size): Used to read
an entire TOC entry identified by the string key from unit into the array buffer. The num-
ber of bytes to be read is given by size, but this value is only used to ensure that the read
request does not exceed the end of the entry. If the entry does not exist, an error is printed
to stderr and the program will exit.

int psio write entry(ULI unit, char *key, char *buffer, ULI size): Used to
write an entire TOC entry idenitified by the string key to unit into the array buffer.
The number of bytes to be written is given by size. If the entry already exists and its data
is being overwritten, the value of size is used to ensure that the write request does not exceed
the end of the entry.

int psio read(ULI unit, char *key, char *buffer, ULI size, psio address sadd,

psio address *eadd): Used to read a fragment of size bytes of a given TOC entry identi-
fied by key from unit into the array buffer. The starting address is given by the sadd and
the ending address (that is, the entry-relative address of the next byte in the file) is returned
in *eadd.

int psio write(ULI unit, char *key, char *buffer, ULI size, psio address sadd,

psio address *eadd): Used to write a fragment of size bytes of a given TOC entry iden-
tified by key to unit into the array buffer. The starting address is given by the sadd and
the ending address (that is, the entry-relative address of the next byte in the file) is returned
in *eadd.

The page/offset address pairs required by the preceeding read and write functions are

22

supplied via variables of the data type psio address, defined by:

typedef struct {

ULI page;

ULI offset;

} psio_address;

The PSIO ZERO defined in a macro provides a convenient input for the 0/0 page/offset.

3.3.3 Manipulating the table of contents

In addition, to the basic open/close/read/write functions described above, the programmer
also has a limited ability to directly manipulate or examine the data in the TOC itself.

int psio tocprint(ULI unit, FILE *outfile): Prints the TOC of unit in a readable
form to outfile, including entry keywords and global starting/ending addresses. (tocprint
is also the name of a PSI3 utility module which prints a file’s TOC to stdout.)

int psio toclen(ULI unit, FILE *outfile): Returns the number of entries in the
TOC of unit.

int psio tocdel(ULI unit, char *key): Deletes the TOC entry corresponding to
key. NB that this function only deletes the entry’s reference from the TOC itself and
does not remove the corresponding data from the file. Hence, it is possible to introduce data
”holes” into the file.

int psio tocclean(ULI unit, char *key): Deletes the TOC entry corresponding to
key and all subsequent entries. As with psio tocdel(), this function only deletes the entry
references from the TOC itself and does not remove the corresponding data from the file.
This function is still under construction.

3.3.4 Using libpsio.a

The following code illustrates the basic use of the library, as well as when/how the psio init(),
psio ipv1 config(), and psio done() functions should be called in relation to initializa-
tion of libipv1. (See section 3.1 later in the manual for a description of the basic elements
of PSI3 program.)

#include <cstdio>

#include <cstdlib>

#include <libipv1/ip_lib.h>

#include <libpsio/psio.h>

#include <libciomr/libciomr.h>

extern "C" {

FILE *infile, *outfile;

23

char *psi_file_prefix;

}

using namespace psi::MODULE_NAME;

int main(int argc, char* argv[])

{

int i, M, N;

double enuc, *some_data;

psio_address next; /* Special page/offset structure */

psi_start(&infile,&outfile,&psi_file_prefix,argc-1, argv+1, 0);

ip_cwk_add(":MODULE_NAME"); // MODULE_NAME in all caps

tstart(outfile);

/* Initialize the I/O system */

psio_init(); psio_ipv1_config();

/* Open the file and write an energy */

psio_open(31, PSIO_OPEN_NEW);

enuc = 12.3456789;

psio_write_entry(31, "Nuclear Repulsion Energy", (char *) &enuc,

sizeof(double));

psio_close(31,1);

/* Read M rows of an MxN matrix from a file */

some_data = init_matrix(M,N);

psio_open(91, PSIO_OPEN_OLD);

next = PSIO_ZERO;/* Note use of the special macro */

for(i=0; i < M; i++)

psio_read(91, "Some Coefficients", (char *) (some_data + i*N),

N*sizeof(double), next, &next);

psio_close(91,0);

/* Close the I/O system */

psio_done();

tstop(outfile);

ip_done();

psi_stop(infile, outfile, psi_file_prefix);

exit(0);

}

extern "C" {

char *gprgid()

24

{

char *prgid = "CODE_NAME";

return(prgid);

}

}

The interface to the PSI3 I/O system has been designed to mimic that of the old wreadw()

and wwritw() routines of libciomr (see the next section of this manual). The table of
contents system introduces a few complications that users of the library should be aware of:

• As pointed out earlier, deletion of TOC entries is allowed using psio tocdel() and
psio tocclean(). However, since only the TOC reference is removed from the file and
the corresponding data is not, a data hole will be left in the file if the deleted entry
was not the last one in the TOC. A utility function designed to ”defrag” a PSI file
may become necessary if such holes ever present a problem.

• One may append data to an existing TOC entry by simply writing beyond the entry’s
current boundary; the ending address data in the TOC will be updated automatically.
However, no safety measures have been implemented to prevent one from overwriting
data in a subsequent entry thereby corrupting the TOC. This feature/bug remains
because (1) it is possible that such error checking functions may slow the I/O codes
significantly; (2) it may be occasionally desirable to overwrite exiting data, regardless
of its effect on the TOC. Eventually a utility function which checks the validity of the
TOC may be needed if this becomes a problem, particularly for debugging purposes.

4 Other PSI3 C Libraries

There are several other PSI C libraries besides the previously-mentioned libipv1.a, libpsio.a,
and libciomr.a:

libchkpt.a This library provides many routines for reading from and writing to the “check-
point” file, file32. There is generally a different function associated with each quantity
in file32 (such as the SCF energy, nuclear repulsion energy, geometry, basis set infor-
mation, etc). This library uses the libpsio.a library to do its input and output. It
replaces an older library libfile30.a which served the same purpose but which used
the old I/O from libciomr.a.

libiwl.a The new format for storing two-electron integrals is IWL, or “integrals with
labels.” The library libiwl.a provides functions for reading and writing files in the
IWL format. The code was written with the goal that it could be easily modified to
allow for more than 256 basis functions. Its current limit is 32768 basis functions.

libqt.a This is the “Quantum Trio” library, which contains a number of very experimental
functions or functions which don’t otherwise fit anywhere else.

25

In this section we will consider these libraries in greater detail.

4.1 The Checkpoint File Library

4.1.1 Library Philosophy

The libchkpt.a library is a collection of functions used to access the PSI3 checkpoint file
(file32) – the file which contains all most frequently used information about the computa-
tion such as molecular geometry, basis set, HF determinant, etc. Previously, the checkpoint
file was a fixed-format file which is accessed using the old PSI3 I/O system. However, this
changed in the spring of 2002 to use the new libpsio.a I/O system to access the checkpoint
file, and it is now free format. That is, any programmer can add content to the file at will.
The old checkpoint file interface has been updated to access the new underlying I/O system.
It is mandatory that the checkpoint file is accessed via the libchkpt.a functions only.

4.1.2 Basic Use Instructions

Following the philosophy that a programmer who wants to read, say, the number of atoms
and the irrep labels from the checkpoint file should not have to use fifty lines of code to
do so, libchkpt.a was written. Following a call to a single command, chkpt init(),
the programmer can extract many useful bits of info from the checkpoint file relatively
painlessly. libchkpt.a is dependent upon libipv1.a and libpsio.a and thus requires
that the input parser and I/O system each be initialized so that the proper file name labels
may be referenced. An example of a minimal program that sets up the input parser, initilizes
a special structure within the libchkpt.a library, and reads the SCF HF energy, eigenvector
and eigenvalues is given below. In order to illustrate the writing capability of the library
routines, a dummy correlated energy is written to the checkpoint file and then read back
again within the code.

#include <cstdio>

#include <cstdlib>

#include <libipv1/ip_lib.h>

#include <libciomr/libciomr.h>

#include <libpsio/psio.h>

#include <libchkpt/chkpt.h>

extern "C" {

FILE *infile, *outfile;

char *psi_file_prefix;

}

using namespace psi::MODULE_NAME;

int main(int argc, char* argv[])

26

{

int nmo;

double escf, etot;

double *evals;

double **scf;

psi_start(&infile, &outfile, &psi_file_prefix,

argc-1, argv+1, 0);

ip_cwk_add(":MODULE_NAME"); // MODULE_NAME all caps here

psio_init(); psio_ipv1_config();

/* to start timing, tstart(outfile); */

/*------------------------------------

now initialize the checkpoint structure

and begin reading info

------------------------------------*/

chkpt_init(PSIO_OPEN_OLD);

escf = chkpt_rd_escf();

evals = chkpt_rd_evals();

scf = chkpt_rd_scf();

nmo = chkpt_rd_nmo();

chkpt_wt_etot(-1000.0);

etot = chkpt_rd_etot();

chkpt_close();

/*--

print out info to see what has been read in

--*/

fprintf(outfile,"\n\n\tEscf = %20.10lf\n",escf);

fprintf(outfile,"\tEtot = %20.10lf\n",etot);

fprintf(outfile,"SCF EIGENVECTOR\n");

eivout(scf,evals,nmo,nmo,outfile);

psio_done();

tstop(outfile);

psi_stop(infile,outfile,psi_file_prefix);

}

27

/*---

dont forget to add the obligatory gprgid section

---*/

extern "C" {

char *gprgid()

{

char *prgid = ":MODULE_NAME";

return(prgid);

}

}

4.1.3 Initialization

int chkpt init()

Initializes the checkpoint struct to allow other chkpt * functions to perform their duties.

Arguments: the libpsio status marker PSIO OPEN OLD; also requires that the input
parser be initialized so that it can open the checkpoint file.

Returns: zero. Perhaps this will change some day.

int chkpt close()

Closes the checkpoint file, frees memory, etc.

Arguments: none, but chkpt init must already have been called for this to work.
Returns: zero. Perhaps this, too, will change one day.

4.1.4 Functions for reading information from the checkpoint file

This section gives an overview of many of the most widely used functions from libchkpt.a.
For more details and descriptions of newer functions that are not yet described here, see the
doxygen generated documentation at
http://www.psicode.org/doc/libs/doxygen/html.

Functions that return char*

char *chkpt rd corr lab()

Reads in a label from the checkpoint file which describes the wavefunction used to get the
correlated energy which is stored in the checkpoint file (see chkpt rd ecorr()).

Arguments: takes no arguments.
Returns: a string, like ”CISD”, or ”MCSCF” or some other wavefunction designa-

tion.

char *chkpt rd label()

Reads the main the checkpoint file label.

28

http://www.psicode.org/doc/libs/doxygen/html

Arguments: takes no arguments.
Returns: calculation label.

char *chkpt rd sym label()

Reads the label for the point group.

Arguments: takes no arguments.
Returns: point group label.

Functions that return char**

char **chkpt rd irr labs()

Read in the symmetry labels for all irreps in the point group in which the molecule is
considered.

Arguments: takes no arguments.
Returns: an array of labels (strings) which denote the irreps for the point group in

which the molecule is considered, regardless of whether there exist any
symmetry orbitals which transform as that irrep.

char **chkpt rd hfsym labs()

Read in the symmetry labels only for those irreps which have basis functions.

Arguments: takes no arguments.
Returns: an array of labels (strings) which denote the irreps which have basis func-

tions (in Cotton ordering). For DZ or STO-3G water, for example, in C2v

symmetry, this would be an array of three labels: ”A1”, ”B1”, and ”B2”.

Functions that return int

int chkpt rd iopen()

Reads in the dimensionality (up to a sign) of ALPHA and BETA vectors of two-electron
coupling coefficients for open shells (see chkpt rd ccvecs()). Note : iopen = MM * (MM
+ 1), where MM is the total number of irreps containing singly occupied orbitals.

Arguments: takes no arguments.
Returns: the +/- dimensionality of ALPHA and BETA vectors of coupling coeffi-

cients for open shells.

int chkpt rd max am()

Reads in the maximum orbital quantum number of AOs in the basis.

Arguments: takes no arguments.
Returns: the maximum orbital quantum number of AOs in the basis.

int chkpt rd mxcoef()

Reads the value of the constant mxcoef.

29

Arguments: takes no arguments.
Returns: the sum of the squares of the number of symmetry orbitals for each irrep.

This gives the number of elements in the non-zero symmetry blocks of the
SCF eigenvector. For STO-3G water mxcoef= (4 ∗ 4) + (0 ∗ 0) + (1 ∗ 1) +
(2 ∗ 2) = 21.

int chkpt rd nao()

Reads in the total number of atomic orbitals (read: Cartesian Gaussian functions).

Arguments: takes no arguments.
Returns: total number of atomic orbitals.

int chkpt rd natom()

Reads in the total number of atoms.

Arguments: takes no arguments.
Returns: total number of atoms.

int chkpt rd ncalcs()

Reads in the total number of calculations in the checkpoint file (was always 1 in old libfile30.a,
probably still is for now).

Arguments: takes no arguments.
Returns: total number of calculations in the checkpoint file.

int chkpt rd nirreps()

Reads in the total number of irreducible representations in the point group in which the
molecule is being considered.

Arguments: takes no arguments.
Returns: total number of irreducible representations.

int chkpt rd nmo()

Reads in the total number of molecular orbitals (may be different from the number of basis
functions).

Arguments: takes no arguments.
Returns: total number of molecular orbitals.

int chkpt rd nprim()

Reads in the total number of primitive Gaussian functions (only primitives of symmetry
independent atoms are counted!).

Arguments: takes no arguments.
Returns: total number of primitive Gaussian functions.

int chkpt rd nshell()

Reads in the total number of shells. For example, DZP basis set for carbon atom (contraction
scheme [9s5p1d/4s2p1d]) has a total of 15 basis functions, 15 primitives, and 7 shells. Shells
of all atoms are counted (not only of the symmetry independent; compare chkpt rd nprim).

30

Arguments: takes no arguments.
Returns: total number of shells.

int chkpt rd nso()

Reads in the total number of symmetry-adapted basis functions (read: Cartesian or Spherical
Harmonic Gaussians).

Arguments: takes no arguments.
Returns: total number of SOs.

int chkpt rd nsymhf()

Reads in the total number of irreps in the point group in which the molecule is being
considered which have non-zero number of basis functions. For STO-3G or DZ water, for
example, this is three, even though nirreps is 4 (compare int chkpt rd nirreps()).

Arguments: takes no arguments.
Returns: total number of irreducible representations with a non-zero number of

basis functions.

int chkpt rd num unique atom()

Reads in the number of symmetry unique atoms.

Arguments: takes no arguments.
Returns: number of symmetry unique atoms.

int chkpt rd num unique shell()

Reads in the number of symmetry unique shells.

Arguments: takes no arguments.
Returns: number of symmetry unique shells.

int chkpt rd phase check()

Reads the phase flag, which is 1 if the orbital phases have been checked and is 0 otherwise
(phase checking just helps ensure the arbitrary phases of the orbitals are consistent from one
geometry to the next, which helps various guessing or extrapolation schemes).

Arguments: takes no arguments.
Returns: flag.

int chkpt rd ref()

Reads the reference type from the flag in the checkpoint file. 0 = RHF, 1 = UHF, 2 =
ROHF, 3 = TCSCF.

Arguments: takes no arguments.
Returns: flag indicating the reference.

int chkpt rd rottype()

Reads the rigid rotor type the molecule represents. 0 = asymmetric, 1 = symmetric, 2 =
spherical, 3 = linear, 6 = atom.

Arguments: takes no arguments.
Returns: rigid rotor type.

31

Functions that return int*

int *chkpt rd am2canon shell order()

Reads in the the mapping array from the angmom-ordered to the canonical (in the order of
appearance) list of shells.

Arguments: takes no arguments.
Returns: an array nshell long that maps shells from the angmom-ordered to the

canonical (in the order of appearance) order.

chkpt rd atom position()

Reads in symmetry positions of atoms. Allowed values are as follows:

• 1 - atom in a general position

• 2 - atom on the c2z axis

• 4 - atom on the c2y axis

• 8 - atom on the c2x axis

• 16 - atom in the inversion center

• 32 - atom in the sigma xy plane

• 64 - atom in the sigma xz plane

• 128 - atom in the sigma yz plane

This data is sufficient to define stabilizers of the nuclei.

Arguments: takes no arguments.
Returns: an array of symmetry positions of atoms.

int *chkpt rd clsdpi()

Reads in an array which has an element for each irrep of the point group of the molecule
(n.b. not just the ones with a non-zero number of basis functions). Each element contains
the number of doubly occupied MOs for that irrep.

Arguments: takes no arguments.
Returns: the number of doubly occupied MOs per irrep.

int *chkpt rd openpi()

Reads in an array which has an element for each irrep of the point group of the molecule
(n.b. not just the ones with a non-zero number of basis functions). Each element contains
the number of singly occupied MOs for that irrep.

Arguments: takes no arguments.
Returns: the number of singly occupied MOs per irrep.

32

int *chkpt rd orbspi()

Reads in the number of MOs in each irrep.

Arguments: takes no arguments.
Returns: the number of MOs in each irrep.

int *chkpt rd shells per am()

Reads in the number of shells in each angmom block.

Arguments: takes no arguments.
Returns: the number of shells in each angmom block.

chkpt rd sloc()

Read in an array of pointers to the first AO from each shell.

Arguments: takes no arguments.
Returns: Read in an array nshell long of pointers to the first AO from each shell.

chkpt rd sloc new()

Read in an array of pointers to the first basis function (not AO as chkpt rd sloc does) from
each shell.

Arguments: takes no arguments.
Returns: an array nshell long of pointers to the first basis function from each shell.

int *chkpt rd snuc()

Reads in an array of pointers to the nuclei on which shells are centered.

Arguments: takes no arguments.
Returns: an array nshell long of pointers to the nuclei on which shells are centered.

int *chkpt rd snumg()

Reads in array of the numbers of the primitive Gaussians in the shells.

Arguments: takes no arguments.
Returns: an array nshell long of the numbers of the primitive Gaussians in shells.

int *chkpt rd sprim()

Reads in pointers to the first primitive from each shell.

Arguments: takes no arguments.
Returns: an array nshell long of pointers to the first primitive from each shells.

chkpt rd sopi()

Read in the number of symmetry-adapted basis functions in each symmetry block.

Arguments: takes no arguments.
Returns: an array nirreps long of the numbers of symmetry orbitals in symmetry

blocks.

int *chkpt rd stype()

Reads in angular momentum numbers of the shells.

33

Arguments: takes no arguments.
Returns: Returns an array nshell long of the angular momentum numbers of the

shells.

int *chkpt rd symoper()

Read in the mapping array between ”canonical” ordering of the symmetry operations of the
point group and the one defined in symmetry.h.

Arguments: takes no arguments.
Returns: a mapping array nirrep long

int *chkpt rd ua2a()

Read in the mapping array from the symmetry-unique atom list to the full atom list.

Arguments: takes no arguments.
Returns: a mapping array num unique atom long

int *chkpt rd us2s()

Read in the mapping array from the symmetry-unique shell list to the full shell list.

Arguments: takes no arguments.
Returns: a mapping array num unique shell long

Functions that return int**

int **chkpt rd ict()

Reads the transformation properties of the nuclei under the operations allowed for the par-
ticular symmetry point group in which the molecule is considered.

Arguments: takes no arguments.
Returns: a matrix of integers. Each row corresponds to a particular symmetry op-

eration, while each column corresponds to a particular atom. The value
of ict[2][1], then, should be interpreted in the following manner: ap-
plication of the third symmetry operation of the relavant point group,
the second atom is placed in the location originally occupied by the atom
number ict[2][1].

int **chkpt rd shell transm()

Reads in the transformation matrix for the shells. Each row of the matrix is the orbit of the
shell under symmetry operations of the point group.

Arguments: takes no arguments.
Returns: a matrix of nshell*nirreps integers.

Functions that return double

double chkpt rd ecorr()

Reads in the correlation energy stored in the checkpoint file. To get some information (a la-
bel) on the type of correlated wavefunction used to get this energy, see chkpt rd corr lab().

34

Arguments: takes no arguments.
Returns: the correlation energy.

double chkpt rd enuc()

Reads in the nuclear repulsion energy

Arguments: takes no arguments.
Returns: the nuclear repulsion energy.

double chkpt rd eref()

Reads in the reference energy (may be different from HF energy).

Arguments: takes no arguments.
Returns: the reference energy.

double chkpt rd escf()

Reads in the SCF HF energy.

Arguments: takes no arguments.
Returns: the SCF HF energy.

double chkpt rd etot()

The total energy, be it HF, CISD, CCSD, or whatever! This is the preferred function to use
for geometry optimization via energies, printing energies in analysis, etc., since this value is
valid whatever the calculation type.

Arguments: takes no arguments.
Returns: The total energy.

Functions that return double*

double *chkpt rd evals()

double *chkpt rd alpha evals()

double *chkpt rd beta evals()

Reads in the (spin-restricted HF, α UHF, and β UHF) eigenvalues: the orbital energies.

Arguments: take no arguments.
Returns: an array of all of the SCF eigenvalues, ordered by irrep, and by increasing

energy within each irrep. (i.e. for STO-3G water, the four a1 eigenvalues
all come first, and those four are ordered from lowest energy to highest
energy, followed by the single b1 eigenvalue, etc. — Pitzer ordering)

double *chkpt rd exps()

Reads in the exponents of the primitive Gaussian functions.

Arguments: takes no arguments.
Returns: an array of doubles.

double *chkpt rd zvals()

Reads in nuclear charges.

35

Arguments: takes no arguments.
Returns: an array natom long of nuclear charges (as doubles).

Functions that return double**

double **chkpt rd blk scf(int irrep)

double **chkpt rd alpha blk scf(int irrep)

double **chkpt rd beta blk scf(int irrep)

Reads in a symmetry block of the (RHF, α UHF, β UHF) eigenvector.

Arguments: int irrep, designates the desired symmetry block
Returns: a square matrix has orbspi[irrep] rows. The eigenvectors are stored

with the column index denoting MOs and the row index denoting SOs:
this means that scf vector[i][j] is the contribution of the ith SO to
the jth MO.

double **chkpt rd ccvecs()

Reads in a matrix rows of which are ALPHA (ccvecs[0]) and BETA (ccvecs[1]) matrices of
coupling coefficients for open shells stored in lower triangular form. Coupling coefficients
are defined NOT as in C.C.J.Roothaan Rev. Mod. Phys. 32, 179 (1960) as it is stated in
the manual pages for CSCF, but according to Pitzer (no reference yet) and are **different**
from those in Yamaguchi, Osamura, Goddard, and Schaefer’s book ”Analytic Derivative
Methods in Ab Initio Molecular Electronic Structure Theory”.
The relationship between the Pitzer’s and Yamaguchi’s conventions is as follows : ALPHA
= 1-2*a , BETA = 1+4*b , where a and b are alpha’s and beta’s for open shells defined on
pp. 69-70 of Dr. Yamaguchi’s book.

Arguments: takes no arguments.
Returns: double **ccvecs, a matrix 2 by abs(iopen) rows of which are coupling

coefficient matrices for open-shells in packed form. For definition of iopen
see chkpt rd iopen().

chkpt rd contr full()

Reads in the normalized contraction coefficients.

Arguments: takes no arguments.
Returns: a matrix MAXANGMOM (a constant defined in ???) by the total number of

primitives nprim; each primitive Gaussian contributes to only one shell
(and one basis function, of course), so most of these values are zero.

double **chkpt rd geom()

Reads in the cartesian geometry.

Arguments: takes no arguments.
Returns: The cartesian geometry is returned as a matrix of doubles. The row index

is the atomic index, and the column is the cartesian direction index (x=0,
y=1, z=2). Therefore, geom[2][0] would be the x-coordinate of the third
atom.

36

chkpt rd lagr()

chkpt rd alpha lagr()

chkpt rd beta lagr()

Reads in an (RHF, α UHF, β UHF) Lagrangian matrix in MO basis.

Arguments: takes no arguments.
Returns: a matrix nmo by nmo.

double **chkpt rd scf()

double **chkpt rd alpha scf()

double **chkpt rd beta scf()

Reads in the (RHF, α UHF, β UHF) eigenvector.

Arguments: takes no arguments.
Returns: a square matrix of dimensions nmo by nmo (see: chkpt rd nmo()). The

symmetry blocks of the SCF vector appear on the diagonal of this matrix.

chkpt rd schwartz()

Reads in the table of maxima of Schwartz integrals (ij—ij) for each shell doublet.

Arguments: takes no arguments.
Returns: NULL if no table is present in the checkpoint file, a matrix nshell by

nshell otherwise.

chkpt rd usotao new()

Reads in an AO to SO transformation matrix.

Arguments: takes no arguments.
Returns: a nso by nao matrix of doubles.

chkpt rd usotbf()

Reads in a basis function to SO transformation matrix.

Arguments: takes no arguments.
Returns: a nso by nso matrix of doubles.

Functions that return struct *z entry

The z-matrix is read from the checkpoint file as an array of z entry structs which are de-
clared in chkpt.h. This structure contains the reference atom, an optimization flag, the
coordinate value, and any label used for each internal coordinate. When not applicable
(such as the first few lines of a z-matrix) atom variables are given values of -1, opt variables
are given values of -1, val variables are given values of -999.9, and label strings are left
empty.

chkpt rd zmat()

Reads in the z-matrix

Arguments: takes no arguments.
Returns: struct *z entry natom long.

37

4.2 The Integrals-With-Labels Library

The library libiwl.a contains functions for reading and writing to files with the ”Integrals
With Labels” (IWL) format created by David Sherrill in 1994, modeled after the format of
the old integrals file from PSI2. Most functions deal with four-index quantitites, but there
are also a few which deal with two-index quantities such as one-electron integrals. The IWL
format specifies that the 4-index quantities are stored on disk in several buffers; each buffer
has a header segment which gives some useful info. Currently, the header is arranged as
follows: one integer word is used as a flag, telling whether the current buffer is the last
buffer in the file. The next integer gives the number of integrals (and their associated labels)
in the current buffer. After this header information, each buffer contains two data segments:
one for labels, and one for the values of the associated integrals. The datasize for the labels
is defined using typedefs, so it is easy to change (currently, it is a short int); likewise for the
integral values (currently of type double). The length of these data segments is NBUF *
4 * sizeof(Label) and NBUF * sizeof(Value), respectively. The current use of short ints for
Label is really somewhat excessive, making the files somewhat larger than strictly necessary.
However, this avoids confusing bit-packing schemes, and instantly allows us to have up to
something like 65,536 basis functions addressable.

The functions previously documented in this manual have been removed because that
documentation is now out of date. Documentation of the library is now created directly from
the source code using the doxygen program and is available at
http://www.psicode.org/doc/libs/doxygen/html.

4.3 The “Quantum Trio” Library

The libqt.a library is a miscellaneous collection of useful math and other routines. The
documentation previously found in this manual of libqt.a functions has been removed and
is now obsolete. The current documentation of this library is generated automatically from
the doxygen program and is available on the website at
http://www.psicode.org/doc/libs/doxygen/html.

5 Programming Style

In the context of programming, style can refer to many things. Foremost, it refers to the
format of the source code: how to use indentation, when to add comments, how to name
variables, etc. It can also refer to many other issues, such code organization, modularity,
and efficiency. Of course, stylistic concerns are often matters of individual taste, but often
validity and portability of the code will ultimately depend on stylistic decisions made in the
process of code development. Hence some stylistic choices are viewed as universally bad (e.g.
not prototyping every function just because “the code compiles and runs fine as is”, etc.).
Admittedly, it is easy to not have any style, but it takes years to learn what makes a good
one. A good programming style can reduce debugging and maintenance times dramatically.

38

http://www.psicode.org/doc/libs/doxygen/html
http://www.psicode.org/doc/libs/doxygen/html

For a large package such as PSI3, it is very important to adopt a style which makes the code
easy to understand and modify by others. This section will give a few brief pointers on what
we consider to be a good style in programming.

5.1 On the Process of Writing Software

At first, we feel appropriate to touch upon the issue of programming style as referred to
the approach to writing software. Often, “programming” is used to mean “the process of
writing software”. In general one has to distinguish “writing software” from “programming”
meaning “implementation”, because the latter is only a part of the former and does not
include documentation, etc. In general, “writing software” should consist of five parts:

1. Get a clear and detailed understanding of what the code has to do (idea);

2. Identify key concepts and layout code and data organization (design);

3. Write source code (implementation);

4. Test the program and eliminate errors and/or design flaws (testing);

5. Write documentation (documentation).

Thus, writing software is significantly more complex than just coding. Each stage of writing
software is as important as others and should not be considered a waste of time. The
code written without a detailed understanding of what it has to do may not work properly.
Poorly designed code may not be flexible enough to accomodate some new feature and will
be rewritten. Poorly implemented code may be too slow to be useful. A paper full of
incorrect values produced by your code may get you fired and will destroy your reputation.
A documentation-free code will most likely be useless for others.

Of course, for very simple programs design and implementation may be combined and
documentation may consist of one line. However, for more complex programs it is recom-
mended that the five stages are followed. This means that you should spend only about
20-40% of your time writing source code! Our experience shows that following this scheme
results in the most efficient approach to programming in the long run.

To learn more on each stage of the software writing process, you may want to refer to
Stroustrup’s “C++ Programming Language” book (3rd Ed.) as the most common reference
source not dedicated solely to one narrow subject. Besides being an excellent description of
C++, it is also an introduction to writing software as well. Particular attention is paid to
the issue of program design.

5.2 Design Issues

Although C lacks the most powerful features of C++ as far as concepts and data organization
is concerned, Stroustrup says: “Remember that much programming can be simply and clearly

39

done using only primitive, data structures, plain functions, and a few library classes.” This
means that one can write many useful and well-written programs in C. Here are a few pointers
that will assist you in structuring your C program:

• Identify groups of variables having common function (e.g. basis set, etc.) and organize
them into structures. Use several levels of hierarchy if necessary (e.g. a basis set is a
collection of basis functions each of which may be described by a structure). This is
called “hierarchical ordering”.

• Think as generally as possible. What you may not need today will be asked for to-
morrow. Design data structures that are flexible and modular, i.e. one can be easily
modified without affecting the others (e.g. you do not want the structure describing
basis sets to know anything about the type of basis functions it contains so that plane
waves can be used as easily as Gaussians).

• Write “constructors” for the structures, i.e. functions which will initialize data in the
structures (e.g. read basis set information). Make as many “constructors” as necessary
(e.g. basis set info can be read from the checkpoint file or from pbasis.dat). If it is
difficult or impossible to write a “constructor” for some data structure is a sign that
your data hierachy is poorly designed and there are mutual dependencies. Spend more
time designing the system. If it doesn’t help, then use source code comments heavily
to describe the relationships not reflected in the code itself.

• Use global variables sparringly. Placing a variable into global scope leaves it unpro-
tected against “unauthorized” use or modification (we are not talking about security
here; it is a good idea to protect data from the programmer, because if you do not
want some data A to be modified by function B, do not make A available to B) and
may also have impact on program’s performance. Sometimes it is a good idea to use
global data to reduce the cost of passing that data to a function. However, the same
effect may be achieved by organizing that data into a local structure and passing the
structure instead.

• Learn how to use static variables local to a source file, it is a very powerful tool to
protect data in a C program.

• Organize the source code such as to emphasize further the structure of the program
(see section 5.3).

More material on data organization may be found in the Stroustrup’s book.

5.3 Organization of Source Code

It is almost universally agreed that breaking the program up into several files is good style.
An 11,592 line Fortran program, for example, is very inconvenient to work with, for several
reasons: first, it can be difficult to locate a particular function1 or statement; second, every

1Following the convention of C, the words function and subroutine will be used interchangeably.

40

recompilation during debugging involves compiling the entire file. Having several small files
generally makes it easier to find a particular piece of code, and only source files which have
been modified need to be recompiled, greatly enhancing the efficiency of the programmer
during the debugging process. For smaller programs, it is recommended that the programmer
have one file for each subroutine, giving each file the name of the subroutine (abbreviated
filenames may be specified if the function names are too long). For larger programs, it may
be helpful to group similar functions together into a single file.

In C programs, we also consider it a good idea to place all the #include statements
in a file such as includes.h, which is subsequently included in each relevant C source file.
This is helpful because if a new header file needs to be added, it can simply be added to
includes.h. Furthermore, if a source file suddenly needs to have access to a global variable
or function prototype which is already present in one of the header files, then no changes
need to be made; the header file is already included. A downside to this approach is that
each header file is included in every source file which includes includes.h, regardless of
whether a particular header file is actually needed by that source file; this could potentially
lead to longer compile times, but it isn’t likely to make a discernable difference, at least in
C.2

Along similar lines, it is helpful to define all global variables in one location (in the
main program file, or else within globals.c), and they should be declared within another
standard location (perhaps globals.h, or common.h).3 Similarly, if functions are used in
several different source code files, the programmer may wish to place all function prototype
declarations in a single header file, with the same name as the program or library, or perhaps
called protos.h.

5.4 Formatting the Code

By formatting, we mean how many spaces to indent, when to indent, how to match up
braces, when to use capital vs. lower case letters, and so forth. This is perhaps a more
subjective matter than those previously discussed. However, it is certainly true that some
formatting styles are easier to read than others. For already existing code, we recommend
that you conform to the formatting convention already present in the code. The author of
the code is likely to get upset when he sees that you’re incorporated code fragments with a
formatting style which differs from his! On the other hand, in certain rare cases, it might be
more beneficial to incorporate a different style: in the conversion of intder95 from old-style
to new-style input, we used lower-case lettering instead of the all-caps style of the original
program. This was very useful in helping us locate which changes we had made.

It is very common that statements within loops are indented. Loops within loops are
indented yet again, and so on. This practice is near-universal and very helpful. Computa-
tional chemistry programs often require many nested loops. The consequence of this is that
lines can be quite long, due to all those spaces before each line in the innermost loops. If
the lines become longer than 80 characters, they are hard to read within a single window;

2C++, which includes much of the actual code in header files, is a different matter.
3See page 33 of Kernighan and Ritchie, 2nd Ed., for an explanation of definition vs. declaration.

41

Table 1: Some Variable Naming Conventions in PSI3

Quantity Variable(s)
Number of atoms na, natom, num atoms
Number of atoms * 3 natom3, num atoms3
Nuclear repulsion energy enuc, repnuc
SCF energy escf
Number of atomic orbitals nbfao, num ao, nao
Number of symmetry orbitals nbfso, num so, nso
Size of lower triangle

of AO’s, SO’s nbatri, nbstri; ntri
Input file pointer infile
Output file pointer outfile
Offset array ioff
Number of irreps num ir, nirreps
Open-shell flag iopen
Number of orbitals per irrep orbs per irrep, orbspi, mopi
Number of closed-shells

per irrep docc, clsd per irrep, clsdpi
Number of open-shells

per irrep socc, open per irrep, openpi
Orbital symmetry array orbsym

please try to keep your lines to 80 characters or less. This means that you should use about
2-4 spaces per indentation level.

The matching of braces, and so forth, is more variable, and we recommend you follow
the convention of The C Programming Language, by Kernighan and Ritchie, or perhaps the
style found in other PSI3modules.

5.5 Naming of Variables

All non-trivial data must be given descriptive names, although extremely long names are
discouraged. For example, compound variable names like num atoms or atom orbit degen

should be preferred to nat or atord, so that non-specialists could understand the code. It
is also a good idea to put a descriptive comment where a non-trivial variable is declared.
However, simple loop indices should generally be named i,j,k or p,q,r.

PSI3 programs have certain conventions in place for names of most common variables,
as shown in the Table 1.

42

Table 2: Proposed Conventions for Printing Level

0 Almost no printing; to be used by driver programs
with -quiet option

1 Usual printing (default)
2 Verbose printing
3 Some debugging information
4 Substantial debugging information
5 Print almost all intermediates unless arrays too large
6 Print everything

5.6 Printing Conventions

At the moment, there isn’t really a standard method for a PSI program to determine how
much information to print to output.dat. Some older PSI3 modules read a flag usually
called IPRINT which is a decimal representation of a binary number. Each bit is a printing
option (yes or no) for the different intermediates particular to the program.

A practice which is probably preferable is to have a different print flag (boolean) for each
of the major intermediates used by a program, and to have an overall print option (decimal)
whose value determines the printing verbosity for the quantities without a specific printing
option. The overall print option should be specified by a keyword PRINT LVL, and its action
should be as in Table 2.

5.7 Commenting Source Code

It is absolutely mandatory that each source file contains a reasonable number of comments.
When a significant variable, data type, or function is declared, it must be accompanied with
some descriptive information written in English. Every function prototype or body of it
has to be preceeded by a short description of its purpose, algorithm (desirable; if it is too
complex, provide a reference), what arguments it takes and what it returns.

Having said this, we will argue against excessive commenting: don’t add a comment every
time you do i++! It will actually make your code harder to read. Be sensible.

As of spring 2002, we have adopted the doxygen program to automatically generate
source code documentation. This program scans the source code and looks for special codes
which tell it to add the given comment block to the documentation list. The program is
very fancy and can generate documentation in man, html, latex, and rtf formats. The file
psi3.dox is the doxygen configuration file. The source code should be commented in the
following way to work with doxygen.

The first file of each library defines a “module” via a special comment line:

/*! \defgroup PSIO libpsio: The PSI I/O Library */

43

Note the exclamation mark above — it is required by doxygen. The line above defines the
PSIO key and associates it with the title “The PSI I/O Library.” Each file belonging to this
group will have a special comment of the following form:

/*!

** \file

** \ingroup PSIO

** \brief A brief descriptor of the file should go here

**

** A more detailed description of the file can go here

*/

This tells doxygen that this file should be documented, it should be added to the list of
documented files, and it belongs to the PSIO group. Do not put the actual filename after the
file directive, because current versions of doxygen have trouble when duplicate filenames
appear in different modules. Leaving the filename blank after the file directive lets doxygen
create a unique filename using part of the file path.

All functions should be commented as in the following:

/*!

** PSIO_CLOSE(): Closes a multivolume PSI direct access file.

**

** \param unit = The PSI unit number used to identify the file to all read

** and write functions.

** \param keep = Boolean to indicate if the file should be deleted (0) or

** retained (1).

**

** Returns: always returns 0

**

** \ingroup PSIO

*/

int psio_close(ULI unit, int keep)

...

This will add the function psio close to the list, associate it with the PSIO module, and
define the various arguments.

Please note: In addition to listing all the parameters and return values, it is very valuable
to explain what the function actually does. Add this explanation immediately after the
function name (see above). This explanation might be a few words, or an entire paragraph,
as necessary.

It is possible to include formulas in the doxygen documentation and to have them properly
formatted when output to HTML or LaTeX. If the formula appears in the running text of
a doxygen comment, enclose it within a pair of \f$ commands, and format it according to

44

LaTeX rules. To make the formula centered on a new line, enclose it within \f[and \f].
If the formula is to be in an environment other than simple math mode (e.g., an eqnarray,
then begin the environment with \f{environment} and end it with \f}, where environment
is something like eqnarray*. According to the doxygen documentation, the program can
have trouble recovering from typos in formlas, and to get rid of a typo in a formula it may
be necessary to remove the file formula.repository from the HTML directory.

6 Makefiles in PSI3

The make utility is designed to help maintain the many components of a large program,
such as PSI. This section will describe the construction and usefulness of Makefiles in PSI,
both in developmental code and in production-level modules. We will be concerned only
with the GNU Project’s make facility, and not older, less flexible versions. (For a complete
explanation of GNU’s make, see info make or go to www.gnu.org).

6.1 Makefile Structure

The primary purpose of the make program is to assist compilation and recompilation of a
multi-file program, such that only those portions of the program are recompiled that require
it. For example, if a header file is changed, then each source file which #includes that file
must be recompiled. make provides an easy mechanism by which such dependencies (also
called prerequisites) may be tracked.

Makefiles consist of rules which describe how to carry out commands. For example, a
rule might explain how to compile a single source file, or how to link all the object files into
the executable, or perhaps how to clean up all the object files. A rule has the following form

target: dependencies

command

command

...

The target is the name of the rule, e.g. the name of the program or file to be compiled.
The first rule given in the Makefile is the default. The dependencies are the names of files
(often names of other targets, as well) on which the construction of the target depends.
A particular target does not necessarily have to have dependencies. The commands are
the actual commands to be executed once all the dependencies are complete. Note that a
<TAB> must be used to indent commands under the target name; if you use spaces or don’t
indent you’ll get a (not entirely clear) error message. Makefiles may also contain variable
definitions to make the file perhaps simpler.

45

http://www.gnu.org

6.2 PSI Makefiles

The Makefiles contained in the PSI package are complicated, in part due to the size of the
package and the need for code portability. PSI3 Makefiles are generated automatically from
simple input, called Makefile.in, by the configure script in the top-level $PSI directory.
This script is designed to examine system-specific characterisctics, such as library locations,
special compiler options, the existence of certain header files or functions, or Fortran-C cross-
linkage conventions, among others. With the information it obtains, it constructs the large
number of Makefiles needed for compilation of PSI’s libraries, utilities, and modules.

As an example, consider the Makefile.in file associated with cscf:

srcdir = @srcdir@

VPATH = @srcdir@

include ../MakeVars

PSILIBS = -lPSI_file30 -lPSI_chkpt -lPSI_iwl -lPSI_psio -lPSI_ciomr -lPSI_ipv1

TRUESRC = \

cscf.c cleanup.c dft_inputs.c diis.c dmat.c \

dmat_2.c ecalc.c errchk.c findit.c \

formg2.c formgc.c formgo.c form_vec.c gprgid.c init_scf.c \

packit_c.c packit_o.c rdone.c rdtwo.c rotate_vector.c scf_input.c \

scf_iter.c scf_iter_2.c schmit.c sdot.c shalf.c check_rot.c phases.c\

guess.c sortev.c occ_fun.c init_uhf.c cmatsplit.c dmatuhf.c \

findit_uhf.c uhf_iter.c schmit_uhf.c diis2_uhf.c formg_direct.c \

orb_mix.c

BINOBJ = $(TRUESRC:%.c=%.o)

ALLOC =

include ../MakeRules

ifneq ($(DODEPEND),no)

$(BINOBJ:%.o=%.d): $(DEPENDINCLUDE)

include $(BINOBJ:%.o=%.d)

endif

install_man:: cscf.1

$(MKDIRS) $(mandir)/man1

$(INSTALL_INCLUDE) $^ $(mandir)/man1

The @string@ directives tell the configure script where to insert certain variables is has
determined from the system. This Makefile input also includes two external Makefiles,
MakeVars and MakeRules, both of which are in the parent directory. These files contain

46

(not surprisingly) numerous necessary variables (e.g. the local C compiler name) and rules
(e.g. how to generate the module itself) for compilation and installation of cscf. Similar
files exist for the PSI libraries as well. We recommend that programmer’s spend some time
studying the PSI Makefile structure.

6.3 Preparing to Develop New PSI3 Code

Given the complexity of the PSI3 package, the prospect of adding new modules or libraries
may seem daunting at first. Let’s assume you want to begin writing a new module named
great code for PSI3. The following series of steps will generate the proper directories and
Makefiles to get started. For convenience, the top-level directory of the programmer’s PSI3
source tree will be referred to as $PSI3 and the top-level directory of the compilation area
as $prefix:

1. Generate the new directory in the source tree:
mkdir $PSI3/src/bin/great code

2. cd $PSI3/src/bin/great code

3. Copy an existing Makefile.in from another module:
cp ../cscf/Makefile.in .

4. Edit the Makefile.in so that it lists only the source files for great code and includes
in PSILIBS only those libraries needed to link the executable.

5. Return to the top of the source tree: cd $PSI3

6. Add the name of great code’s Makefile to configure.ac (near the bottom of the
file) and run autoconf to generate a new configure script.

7. Go to the top of the compilation tree: cd $prefix.

8. Re-run the configure script to generate the Makefile for great code. Make sure you
use the same options to configure that you used before or other Makefile’s may not
function properly. The command you used before can be found in $prefix/config.status.
(See also the PSI3 installation manual for more details on the options to configure.)

Now you are ready to work on the code. Changes to source files (including the Makefile

should be made to the files in $PSI3/src/bin/great code and all compilations should be
run in $prefix/src/bin/great code.

7 Code Debugging

Debugging PSI3 code using an interactive debugger, such as gdb or dbx can be difficult at
times because of the complicated organization of this large program package. This section
discusses some strategies and technical details of using such debuggers with the PSI3 code.

47

7.1 Code Re-compilation

Any section of PSI3 code that needs to be debugged must first be re-compiled with the “-g”
flag turned on. This flag is set in the MakeVars file in the directory above each module or
library’s source code directory. For example, to turn on debugging in the cscf program,
one would first clean the existing object code out of the $prefix/src/bin/cscf directory
using make clean. Then edit $prefix/src/bin/MakeVars, one directory above the cscf

source code: set CDBG = -g and, optionally COPT = to turn off optimization flags. (For
modules using C++, the analogous variables are CXXDBG and CXXOPT. Then re-compile the
module. If debugging information is needed for a library routine as well, then follow this
same procedure for the library in question. Technically, only the routines of interest need
to be re-compiled, though it is frequently more convenient to simply re-compile the entire
library or module.

7.2 Multiple Source Code Directories

The most difficult problem of debugging PSI3 code is that object code and source code
generally reside in separate directories to allow storage of objects for several achitectures
simultaneously. In addition, library codes are kept separate from binary (module) codes.
If the code is compliled with gcc/g++, then this separation of source and object code is of
no consequence because the compiler builds the full path to the source file directly into the
object code. However, for non-gcc compilations, one must know how to tell the debugger
where to find the sources.

Most interactive debuggers allow the programmer to specify multiple source code search
directories using simple command-line options. For example, if one were debugging the cscf
program and needed access to the libciomr.a library source code in addition to that of
cscf, one could use gdb’s “dir” command to search several source code directories:

dir \$PSI/src/lib/libciomr

Additionally, such commands can be placed in the user’s $HOME/.gdbinit file. In dbx, the
“use” command specifies multiple source directories.

8 Documentation

Documentation is often the only link between code’s author and code’s users. The usefulness
of the code will depend heavily on the quality of its documentation. One great failing of
most of the PSI code is that it contains little to no documentation. We strongly advocate
documentation of at least the first two types:

1. A short description of the code’s function and keywords must be written for each new
module and library added to the PSI3 package.

48

• Direct inclusion in the PSI3 manuals — binaries (modules) should be included in
the user’s manual and libraries in the programmer’s manual.

• A UNIX man page — These provide “quick-and-dirty” access to the program
options even when logged in remotely via a terminal window. A man page should
be added for each PSI3 module, and doing so is not difficult when working off
another PSI3 man page as a template. To access the PSI3 man pages, you will need
to add the man directory to your MANPATH. For example, if you run csh or tcsh, and
assuming PSI3 has been installed in /usr/local/psi3-bin, the following can be
added to your .cshrc or .tcshrc file:

setenv MANPATH /usr/local/psi3-bin/doc/man:/usr/share/man

The usual man path should be added after the PSI3 part and will be different for
different systems. Different directories are separated by colons.

• It is also helpful, particularly for complex programs or libraries, to have even
more extensive documentation. Certain parts of PSI3 have been documented in
more detail via HTML documents (e.g., cints, libdpd, and libpsio). These
documents are stored in the associated source code directories and installed in
the installation directory under doc/html.

2. Second, as mentioned before, the source code should be directly documented by com-
ment lines in the code. We use a special formatting for in-code documentation, which
is described in detail in section 5.7.

Note also that full documentation should also include citations to any relevant publica-
tions upon which the code may be based.

9 Creating New Test Cases

The PSI3 test suite is designed to maximize code reuse and provide testing in $prefix before
the PSI3 executables have been installed. The configure script in $PSI3 will take all the
necessary files in $PSI3/tests with the .in stub: Makefile.in, MakeRules.in, MakeVars.in,
and runtest.pl.in, replace variables with system specific parameters, and copy/create the
testing files and directories in $prefix/tests. The tests should be run in the object directory
before installation.

If you have just added a new module for performing, say multireference coupled cluster,
and you would like to add a test case to the current test suite, here is what you should do.

1. Copy one of the existing test case directories to an appropriately named directory for
the new test case.

2. Create an appropriate input file for running the new module. Then, if your program
produced the correct data, rename the output files to *.ref. Follow the convention of
the existing test cases.

49

3. If the test case is small, add the directory name to the list in $PSI3/tests/Makefile.in.
If the test is particularly tricky, see the psi start or rhf-stab test cases as an example.

4. All the testing functionality is located in the perl library runtest.pl.in. If you are
testing for a quantity that is not searched for currently, then add a function to the
library following the format of the functions already available. If you have added
functionality to the PSI3 driver, make sure to update the appropriate functions in
runtest.pl.in.

5. Add the location of the Makefile for the new test case to the configure script in $PSI3.

Please contact one of the authors of PSI3 before making any major changes or if you
have a problem adding a new test case. Remember, if all else fails, read the source code.

10 Special Considerations

The following is a list of special items that should be kept in mind while developing PSI
code.

Malloc() calls on IBM: The current IBM compilers (Visual Age C/C++ 5) do not prop-
erly prototype malloc() unless one includes stdlib.h. Please make sure that you
#include <cstdlib> anytime you call malloc() in a file. If you forget, it will still
work in gcc but not on an IBM.

50

A PSI3 Reference

T. Daniel Crawford, C. David Sherrill, Edward F. Valeev, Justin T. Fermann, Rollin A.
King, Matthew L. Leininger, Shawn T. Brown, Curtis L. Janssen, Edward T. Seidl, Joseph
P. Kenny, and Wesley D. Allen, J. Comput. Chem. 28, 1610-1616 (2007).

B Text Files in PSI3

Psi uses several text files to store certain types of information. Storing information in text
files makes it much easier for users to inspect and manipulate that information, provided that
the user understands the format of that file. In the following file format descriptions, I will
use the notation xi, yi, and zi to denote the x, y and z coordinates of nucleus i, respectively,
ηi will denote the ith internal coordinate, and E will denote the sum of the electronic energy
and nuclear repulsion energy.

geom.dat

A vectorized format which is appropriate for the routines in libipv1 or iomr is employed
in geom.dat Generally, the first line of geom.dat is

%%

Though this does not affect the parsing routines in libipv1, or any of the common programs
which read geom.dat (i.e. rgeom or ugeom), some PSI2 modules (bmat, etc.) expected this
line and would muddle up geom.dat if it is not present. geom.dat will frequently have
several entries, with the topmost being the most recent addition by bmat.

format: n = number of atoms.

geometry = (
(x1 y1 z1)
(x2 y2 z2)

...
...

...
(xn yn zn)

)

(1)

Other geometries of the same format may follow.

fconst.dat

This file contains the force constant matrix produced by optking or intder95. Because
the force constant matrix is symmetric, only the lower diagonal is stored here. The force
constant matrix may be represented in either cartesian or internal coordinates, depending
upon what flags were used when intder95 was run to produce fconst.dat. optking is

51

the program which uses fconst.dat most frequently, and it assumes that the force constant
matrix will be in terms of the internal coordinates as defined in input.dat or intco.dat. For
this reason, it is best to have intder95 produce a fconst.dat in internal coordinates. The
order of internal coordinates is determined by the order set up in input.dat or intco.dat.
The totally symmetric coordinates always come first, followed by all asymmetric coordinates.

In the following format, fηi
is the force constant for internal coordinate ηi and fηi,ηj

is
the force constant for the mixed displacement of internal coordinates i and j.

format: n = total number of internal coordinates in intco.dat or input.dat.

fη1

fη2,η1
fη2

fη3,η1
fη3,η2

fη3

...
...

...
fηn,η1

fηn,η2
fηn,η3

· · · fηn

(2)

If the force constant matrix is stored in cartesian coordinates, however, the format, using a
similar notation, with n now equal to the total number of atoms, is as follows:

fx1

fy1,x1
fy1

fz1,x1
fz1,y1

fz1

fx2,x1
fx2,y1

fx2,z1
fx2

...
...

...
...

fzn,x1
fzn,y1

fzn,z1
fzn,x2

· · · fzn

(3)

file11.dat

The number of atoms (n), total energy as predicted by the final wavefunction, cartesian
geometry, cartesian gradients, atomic charges (Zi) and a label are all contained in file11.
The exact nature of the label depends upon the type of wavefunction for which the gradient
was calculated. The first part of the label is determined by the label keyword in input.dat.
If an SCF gradient is run, then the calculation type (calctype), and derivative type (dertype)
will also appear. If a correlated gradient has been run, calctype [CI, CCSD, or CCSD(T)]
and derivative type (FIRST) appear. file11 will frequently have several entries, with the
last entry being the latest addition by cints --deriv1.

52

format:

label calctype dertype
n E

Z1 x1 y1 z1

Z2 x2 y2 z2

...
...

...
...

Zn xn yn zn
δE
δx1

δE
δy1

δE
δz1

δE
δx2

δE
δy2

δE
δz2

...
...

...
δE
δxn

δE
δyn

δE
δzn

(4)

file12.dat

Internal coordinate values and gradients, the number of atoms (n), and the total energy
(E) may be found in file12. file12 is produced by intder95, which can convert cartesian
gradients into internal gradients. Generally, file12 will have several entries, with each entry
corresponding to an entry in the file11 of interest.

format:
n E

η1
δE
δη1

η2
δE
δη2

...
...

ηn
δE
δηn

(5)

file12a.dat

In order to calculate second derivatives from gradients taken at geometries finitely displaced
from a particular geometry, intdif requires a file12a. This file contains essentially the
same information as file12, but each entry also has information concerning which internal
coordinate (numintco) was displaced in the gradient calculation and by how much (disp) it
was displaced.

format:
numintco disp E

η1
δE
δη1

η2
δE
δη2

...
...

ηn
δE
δηn

(6)

file15.dat

53

The cartesian Hessian matrix is found in file15. The first line of this file gives the
number of atoms (n) and, in case you are curious, six times the number of atoms (sixtimesn).

format:
n sixtimesn

δ2E
δ2x1

δ2E
δx1δy1

δ2E
δx1δz1

δ2E
δx1δx2

δ2E
δx1δy2

δ2E
δx1δz2

...
...

...
δ2E

δz1δxn

δ2E
δz1δyn

δ2E
δz1δzn

δ2E
δx2δx1

δ2E
δx2δy1

δ2E
δx2δz1

...
...

...
δ2E

δznδxn

δ2E
δznδyn

δ2E
δ2zn

(7)

file16.dat

The second derivatives of the total energy with respect to the internal coordinates are found
in file16. As in file15, the number of atoms (n) and six times that number (sixtimesn)
are given.

format:
n sixtimesn

δ2E
δ2η1

δ2E
δη1δη2

δ2E
δη1δη3

...
...

...
δ2E

δη1δηn−2

δ2E
δη1δηn−1

δ2E
δη1δηn

...
...

...
δ2E

δηnδηn−2

δ2E
δηnδηn−1

δ2E
δ2ηn

(8)

file17.dat

First derivatives of the cartesian dipole moments (µx, µy, µz) with respect to the cartesian
nuclear coordinates may be found in file17. The first line and subsequent format are similar
to that of file15.

format:
n threetimesn

δµx

δx1

δµx

δy1

δµx

δz1

δµx

δx2

δµx

δy2

δµx

δz2

...
...

...
δµx

δxn

δµx

δyn

δµx

δzn

δµy

δx1

δµy

δy1

δµy

δz1

...
...

...
δµz

δxn

δµz

δyn

δµz

δzn

(9)

54

file18.dat

First derivatives of the cartesian dipole moments (µx, µy, µz) with respect to the internal
nuclear coordinates may be found in file18.

format:
n threetimesn

δµx

δη1

δµx

δη2

δµx

δη3

δµx

δη4

δµx

δη5

δµx

δη6

...
...

...
δµz

δηn−2

δµz

δηn−1

δµz

δηn

(10)

55

	Introduction
	The PSI3 Source Code
	PSI3 SVN Policies: Which Branch Should I Use?
	Checking in altered PSI3 binaries or libraries
	Adding entirely new code to the main PSI3 repository
	Updating checked out code
	Removing code from the repository
	Checking out older versions of the code
	Examining the revision history
	The structure of the PSI3 Source Tree

	Fundamental PSI3 Functions
	The Structure of a PSI3 Module
	The Input Parser
	Source Files
	Syntax
	Sample Use from cscf

	The Binary Input/Output System
	The structure and philosophy of the library
	The user interface
	Manipulating the table of contents
	Using libpsio.a

	Other PSI3 C Libraries
	The Checkpoint File Library
	Library Philosophy
	Basic Use Instructions
	Initialization
	Functions for reading information from the checkpoint file

	The Integrals-With-Labels Library
	The ``Quantum Trio'' Library

	Programming Style
	On the Process of Writing Software
	Design Issues
	Organization of Source Code
	Formatting the Code
	Naming of Variables
	Printing Conventions
	Commenting Source Code

	Makefiles in PSI3
	Makefile Structure
	PSI Makefiles
	Preparing to Develop New PSI3 Code

	Code Debugging
	Code Re-compilation
	Multiple Source Code Directories

	Documentation
	Creating New Test Cases
	Special Considerations
	PSI3 Reference
	Text Files in PSI3

