trls.influence {spatial}R Documentation

Regression diagnostics for trend surfaces

Description

This function provides the basic quantities which are used in forming a variety of diagnostics for checking the quality of regression fits for trend surfaces calculated by surf.ls.

Usage

trls.influence(object)
plot(x, border = "red", col = NA, pch = 4, cex = 0.6,
          add = FALSE, div = 8, ...)

Arguments

object, x Fitted trend surface model from surf.ls
div scaling factor for influence circle radii in plot.trls
add add influence plot to existing graphics if TRUE
border, col, pch, cex, ... additional graphical parameters
r raw residuals as given by residuals.trls
hii diagonal elements of the Hat matrix
stresid standardised residuals
Di Cook's statistic

Value

trls.influence returns a list with:

References

Unwin, D. J., Wrigley, N. (1987) Towards a general-theory of control point distribution effects in trend surface models. Computers and Geosciences, 13, 351–355.

See Also

surf.ls, influence.measures, plot.lm

Examples

library(MASS)
data(topo, package="MASS")
topo2 <- surf.ls(2, topo)
infl.topo2 <- trls.influence(topo2)
cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5,]
cand
cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type="n")
#under S need to choose appropriate colour numbers
contour(trsurf, add=TRUE, col="grey")
plot(topo2, add=TRUE, div=3)
points(cand.xy, pch=16, col="orange")
text(cand.xy, labels=rownames(cand.xy), pos=4, offset=0.5)

[Package Contents]