Command vs. Protocol: Throughout this document, we will use bold text to refer to an application, and a monospaced font to refer to specific commands. Protocols will use a normal font. This typographical distinction is useful for instances such as ssh, since it is a protocol as well as command.
The sections that follow will cover the methods of securing your FreeBSD system that were mentioned in the last section of this chapter.
First off, do not bother securing staff accounts if you have not secured the root account. Most systems have a password assigned to the root account. The first thing you do is assume that the password is always compromised. This does not mean that you should remove the password. The password is almost always necessary for console access to the machine. What it does mean is that you should not make it possible to use the password outside of the console or possibly even with the su(1) command. For example, make sure that your ptys are specified as being insecure in the /etc/ttys file so that direct root logins via telnet or rlogin are disallowed. If using other login services such as sshd, make sure that direct root logins are disabled there as well. You can do this by editing your /etc/ssh/sshd_config file, and making sure that PermitRootLogin is set to NO. Consider every access method -- services such as FTP often fall through the cracks. Direct root logins should only be allowed via the system console.
Of course, as a sysadmin you have to be able to get to root, so we open up a few holes. But we make sure these holes require additional password verification to operate. One way to make root accessible is to add appropriate staff accounts to the wheel group (in /etc/group). The staff members placed in the wheel group are allowed to su to root. You should never give staff members native wheel access by putting them in the wheel group in their password entry. Staff accounts should be placed in a staff group, and then added to the wheel group via the /etc/group file. Only those staff members who actually need to have root access should be placed in the wheel group. It is also possible, when using an authentication method such as Kerberos, to use Kerberos' .k5login file in the root account to allow a ksu(1) to root without having to place anyone at all in the wheel group. This may be the better solution since the wheel mechanism still allows an intruder to break root if the intruder has gotten hold of your password file and can break into a staff account. While having the wheel mechanism is better than having nothing at all, it is not necessarily the safest option.
An indirect way to secure staff accounts, and ultimately root access is to use an alternative login access method and do what is known as «starring» out the encrypted password for the staff accounts. Using the vipw(8) command, one can replace each instance of an encrypted password with a single «*» character. This command will update the /etc/master.passwd file and user/password database to disable password-authenticated logins.
A staff account entry such as:
foobar:R9DT/Fa1/LV9U:1000:1000::0:0:Foo Bar:/home/foobar:/usr/local/bin/tcsh
Should be changed to this:
foobar:*:1000:1000::0:0:Foo Bar:/home/foobar:/usr/local/bin/tcsh
This change will prevent normal logins from occurring, since the encrypted password will never match «*». With this done, staff members must use another mechanism to authenticate themselves such as kerberos(1) or ssh(1) using a public/private key pair. When using something like Kerberos, one generally must secure the machines which run the Kerberos servers and your desktop workstation. When using a public/private key pair with ssh, one must generally secure the machine used to login from (typically one's workstation). An additional layer of protection can be added to the key pair by password protecting the key pair when creating it with ssh-keygen(1). Being able to «star» out the passwords for staff accounts also guarantees that staff members can only login through secure access methods that you have set up. This forces all staff members to use secure, encrypted connections for all of their sessions, which closes an important hole used by many intruders: sniffing the network from an unrelated, less secure machine.
The more indirect security mechanisms also assume that you are logging in from a more restrictive server to a less restrictive server. For example, if your main box is running all sorts of servers, your workstation should not be running any. In order for your workstation to be reasonably secure you should run as few servers as possible, up to and including no servers at all, and you should run a password-protected screen blanker. Of course, given physical access to a workstation an attacker can break any sort of security you put on it. This is definitely a problem that you should consider, but you should also consider the fact that the vast majority of break-ins occur remotely, over a network, from people who do not have physical access to your workstation or servers.
Using something like Kerberos also gives you the ability to disable or change the password for a staff account in one place, and have it immediately affect all the machines on which the staff member may have an account. If a staff member's account gets compromised, the ability to instantly change his password on all machines should not be underrated. With discrete passwords, changing a password on N machines can be a mess. You can also impose re-passwording restrictions with Kerberos: not only can a Kerberos ticket be made to timeout after a while, but the Kerberos system can require that the user choose a new password after a certain period of time (say, once a month).
The prudent sysadmin only runs the servers he needs to, no more, no less. Be aware that third party servers are often the most bug-prone. For example, running an old version of imapd or popper is like giving a universal root ticket out to the entire world. Never run a server that you have not checked out carefully. Many servers do not need to be run as root. For example, the ntalk, comsat, and finger daemons can be run in special user sandboxes. A sandbox is not perfect, unless you go through a large amount of trouble, but the onion approach to security still stands: If someone is able to break in through a server running in a sandbox, they still have to break out of the sandbox. The more layers the attacker must break through, the lower the likelihood of his success. Root holes have historically been found in virtually every server ever run as root, including basic system servers. If you are running a machine through which people only login via sshd and never login via telnetd or rshd or rlogind, then turn off those services!
FreeBSD now defaults to running ntalkd, comsat, and finger in a sandbox. Another program which may be a candidate for running in a sandbox is named(8). /etc/defaults/rc.conf includes the arguments necessary to run named in a sandbox in a commented-out form. Depending on whether you are installing a new system or upgrading an existing system, the special user accounts used by these sandboxes may not be installed. The prudent sysadmin would research and implement sandboxes for servers whenever possible.
There are a number of other servers that typically do not run in sandboxes: sendmail, popper, imapd, ftpd, and others. There are alternatives to some of these, but installing them may require more work than you are willing to perform (the convenience factor strikes again). You may have to run these servers as root and rely on other mechanisms to detect break-ins that might occur through them.
The other big potential root holes in a system are the suid-root and sgid binaries installed on the system. Most of these binaries, such as rlogin, reside in /bin, /sbin, /usr/bin, or /usr/sbin. While nothing is 100% safe, the system-default suid and sgid binaries can be considered reasonably safe. Still, root holes are occasionally found in these binaries. A root hole was found in Xlib in 1998 that made xterm (which is typically suid) vulnerable. It is better to be safe than sorry and the prudent sysadmin will restrict suid binaries, that only staff should run, to a special group that only staff can access, and get rid of (chmod 000) any suid binaries that nobody uses. A server with no display generally does not need an xterm binary. Sgid binaries can be almost as dangerous. If an intruder can break an sgid-kmem binary, the intruder might be able to read /dev/kmem and thus read the encrypted password file, potentially compromising any passworded account. Alternatively an intruder who breaks group kmem can monitor keystrokes sent through ptys, including ptys used by users who login through secure methods. An intruder that breaks the tty group can write to almost any user's tty. If a user is running a terminal program or emulator with a keyboard-simulation feature, the intruder can potentially generate a data stream that causes the user's terminal to echo a command, which is then run as that user.
User accounts are usually the most difficult to secure. While you can impose draconian access restrictions on your staff and «star» out their passwords, you may not be able to do so with any general user accounts you might have. If you do have sufficient control, then you may win out and be able to secure the user accounts properly. If not, you simply have to be more vigilant in your monitoring of those accounts. Use of ssh and Kerberos for user accounts is more problematic, due to the extra administration and technical support required, but still a very good solution compared to a encrypted password file.
The only sure fire way is to star out as many passwords as you can and use ssh or Kerberos for access to those accounts. Even though the encrypted password file (/etc/spwd.db) can only be read by root, it may be possible for an intruder to obtain read access to that file even if the attacker cannot obtain root-write access.
Your security scripts should always check for and report changes to the password file (see the Checking file integrity sec