Frame Class Reference

The Frame class represents a coordinate system, defined by a position and an orientation. More...

Inherited by ManipulatedFrame.

List of all members.

World coordinates position and orientation

 Frame (const Vec &position, const Quaternion &orientation)
void setPosition (const Vec &position)
void setPosition (float x, float y, float z)
void setPositionWithConstraint (Vec &position)
void setOrientation (const Quaternion &orientation)
void setOrientation (double q0, double q1, double q2, double q3)
void setOrientationWithConstraint (Quaternion &orientation)
void setPositionAndOrientation (const Vec &position, const Quaternion &orientation)
void setPositionAndOrientationWithConstraint (Vec &position, Quaternion &orientation)
Vec position () const
Quaternion orientation () const
void getPosition (float &x, float &y, float &z) const
void getOrientation (double &q0, double &q1, double &q2, double &q3) const

Local translation and rotation

void setTranslation (const Vec &translation)
void setTranslation (float x, float y, float z)
void setTranslationWithConstraint (Vec &translation)
void setRotation (const Quaternion &rotation)
void setRotation (double q0, double q1, double q2, double q3)
void setRotationWithConstraint (Quaternion &rotation)
void setTranslationAndRotation (const Vec &translation, const Quaternion &rotation)
void setTranslationAndRotationWithConstraint (Vec &translation, Quaternion &rotation)
Vec translation () const
Quaternion rotation () const
void getTranslation (float &x, float &y, float &z) const
void getRotation (double &q0, double &q1, double &q2, double &q3) const

Frame hierarchy

Frame * referenceFrame () const
void setReferenceFrame (Frame *const refFrame)
bool settingAsReferenceFrameWillCreateALoop (const Frame *const frame)

Frame displacements

void translate (Vec &t)
void translate (const Vec &t)
void translate (float x, float y, float z)
void translate (float &x, float &y, float &z)
void rotate (Quaternion &q)
void rotate (const Quaternion &q)
void rotate (double q0, double q1, double q2, double q3)
void rotate (double &q0, double &q1, double &q2, double &q3)
void rotateAroundPoint (Quaternion &rotation, const Vec &point)
void rotateAroundPoint (const Quaternion &rotation, const Vec &point)
void alignWithFrame (const Frame *const frame, bool move=false, float threshold=0.85f)
void projectOnLine (const Vec &origin, const Vec &direction)

Coordinate system transformation of 3D coordinates

Vec coordinatesOf (const Vec &src) const
Vec inverseCoordinatesOf (const Vec &src) const
Vec localCoordinatesOf (const Vec &src) const
Vec localInverseCoordinatesOf (const Vec &src) const
Vec coordinatesOfIn (const Vec &src, const Frame *const in) const
Vec coordinatesOfFrom (const Vec &src, const Frame *const from) const
void getCoordinatesOf (const float src[3], float res[3]) const
void getInverseCoordinatesOf (const float src[3], float res[3]) const
void getLocalCoordinatesOf (const float src[3], float res[3]) const
void getLocalInverseCoordinatesOf (const float src[3], float res[3]) const
void getCoordinatesOfIn (const float src[3], float res[3], const Frame *const in) const
void getCoordinatesOfFrom (const float src[3], float res[3], const Frame *const from) const

Coordinate system transformation of vectors

Vec transformOf (const Vec &src) const
Vec inverseTransformOf (const Vec &src) const
Vec localTransformOf (const Vec &src) const
Vec localInverseTransformOf (const Vec &src) const
Vec transformOfIn (const Vec &src, const Frame *const in) const
Vec transformOfFrom (const Vec &src, const Frame *const from) const
void getTransformOf (const float src[3], float res[3]) const
void getInverseTransformOf (const float src[3], float res[3]) const
void getLocalTransformOf (const float src[3], float res[3]) const
void getLocalInverseTransformOf (const float src[3], float res[3]) const
void getTransformOfIn (const float src[3], float res[3], const Frame *const in) const
void getTransformOfFrom (const float src[3], float res[3], const Frame *const from) const

Constraint on the displacement

Constraintconstraint () const
void setConstraint (Constraint *const constraint)

Associated matrices

const GLdouble * matrix () const
void getMatrix (GLdouble m[4][4]) const
void getMatrix (GLdouble m[16]) const
const GLdouble * worldMatrix () const
void getWorldMatrix (GLdouble m[4][4]) const
void getWorldMatrix (GLdouble m[16]) const
void setFromMatrix (const GLdouble m[4][4])
void setFromMatrix (const GLdouble m[16])

Inversion of the transformation

Frame inverse () const
Frame worldInverse () const

XML representation

virtual QDomElement domElement (const QString &name, QDomDocument &document) const
virtual void initFromDOMElement (const QDomElement &element)

Signals

void modified ()
void interpolated ()

Public Member Functions

 Frame ()
virtual ~Frame ()
 Frame (const Frame &frame)
Frame & operator= (const Frame &frame)


Detailed Description

The Frame class represents a coordinate system, defined by a position and an orientation.

A Frame is a 3D coordinate system, represented by a position() and an orientation(). The order of these transformations is important: the Frame is first translated and then rotated around the new translated origin.

A Frame is useful to define the position and orientation of a 3D rigid object, using its matrix() method, as shown below:

  // Builds a Frame at position (0.5,0,0) and oriented such that its Y axis is along the (1,1,1)
  // direction. One could also have used setPosition() and setOrientation().
  Frame fr(Vec(0.5,0,0), Quaternion(Vec(0,1,0), Vec(1,1,1)));
  glPushMatrix();
  glMultMatrixd(fr.matrix());
  // Draw your object here, in the local fr coordinate system.
  glPopMatrix();

Many functions are provided to transform a 3D point from one coordinate system (Frame) to an other: see coordinatesOf(), inverseCoordinatesOf(), coordinatesOfIn(), coordinatesOfFrom()...

You may also want to transform a 3D vector, which corresponds to applying only the rotational part of the frame transformation: see transformOf() and inverseTransformOf(). See the frameTransform example for an illustration.

The translation() and the rotation() that are encapsulated in a Frame can also be used to represent a rigid transformation of space. Such a transformation can also be interpreted as a change of coordinate system, and the coordinate system conversion functions actually allow you to use a Frame as a rigid transformation. Use inverseCoordinatesOf() (resp. coordinatesOf()) to apply the transformation (resp. its inverse). Note the inversion.

Hierarchy of Frames

The position and the orientation of a Frame are actually defined with respect to a referenceFrame(). The default referenceFrame() is the world coordinate system (represented by a NULL referenceFrame()). If you setReferenceFrame() to a different Frame, you must then differentiate:

A Frame is actually defined by its translation() with respect to its referenceFrame(), and then by a rotation() of the coordinate system around the new translated origin.

This terminology for local (translation() and rotation()) and global (position() and orientation()) definitions is used in all the methods' names and should be sufficient to prevent ambiguities. These notions are obviously identical when the referenceFrame() is NULL, i.e. when the Frame is defined in the world coordinate system (the one you are in at the beginning of the QGLViewer::draw() method, see the introduction page).

Frames can hence easily be organized in a tree hierarchy, which root is the world coordinate system. A loop in the hierarchy would result in an inconsistent (multiple) Frame definition. settingAsReferenceFrameWillCreateALoop() checks this and prevents setReferenceFrame() from creating such a loop.

This frame hierarchy is used in methods like coordinatesOfIn(), coordinatesOfFrom()... which allow coordinates (or vector) conversions from a Frame to any other one (including the world coordinate system).

However, one must note that this hierarchical representation is internal to the Frame classes. When the Frames represent OpenGL coordinates system, one should map this hierarchical representation to the OpenGL GL_MODELVIEW matrix stack. See the matrix() documentation for details.

Constraints

An interesting feature of Frames is that their displacements can be constrained. When a Constraint is attached to a Frame, it filters the input of translate() and rotate(), and only the resulting filtered motion is applied to the Frame. The default constraint() is NULL resulting in no filtering. Use setConstraint() to attach a Constraint to a frame.

Constraints are especially usefull for the ManipulatedFrame instances, in order to forbid some mouse motions. See the constrainedFrame, constrainedCamera and luxo examples for an illustration.

Classical constraints are provided for convenience (see LocalConstraint, WorldConstraint and CameraConstraint) and new constraints can very easily be implemented.

Derived classes

The ManipulatedFrame class inherits Frame and implements a mouse motion convertion, so that a Frame (and hence an object) can be manipulated in the scene with the mouse.


Constructor & Destructor Documentation

Frame  ) 
 

Creates a default Frame.

Its position() is (0,0,0) and it has an identity orientation() Quaternion. The referenceFrame() and the constraint() are NULL.

virtual ~Frame  )  [virtual]
 

Virtual destructor. Empty.

Frame const Frame &  frame  ) 
 

Copy constructor.

The translation() and rotation() as well as constraint() and referenceFrame() pointers are copied.

Frame const Vec position,
const Quaternion orientation
 

Creates a Frame with a position() and an orientation().

See the Vec and Quaternion documentations for convenient constructors and methods.

The Frame is defined in the world coordinate system (its referenceFrame() is NULL). It has a NULL associated constraint().


Member Function Documentation

void alignWithFrame const Frame *const   frame,
bool  move = false,
float  threshold = 0.85f
 

Aligns the Frame with frame, so that two of their axis are parallel.

If one of the X, Y and Z axis of the Frame is almost parallel to any of the X, Y, or Z axis of frame, the Frame is rotated so that these two axis actually become parallel.

If, after this first rotation, two other axis are also almost parallel, a second alignment is performed. The two frames then have identical orientations, up to 90 degrees rotations.

threshold measures how close two axis must be to be considered parallel. It is compared with the absolute values of the dot product of the normalized axis.

When move is set to true, the Frame position() is also affected by the alignment. The new Frame position() is such that the frame position (computed with coordinatesOf(), in the Frame coordinates system) does not change.

frame may be NULL and then represents the world coordinate system (same convention than for the referenceFrame()).

The rotation (and translation when move is true) applied to the Frame are filtered by the possible constraint().

Constraint* constraint  )  const
 

Returns the current constraint applied to the Frame.

A NULL value (default) means that no Constraint is used to filter Frame translation and rotation. See the Constraint class documentation for details.

You may have to use a dynamic_cast to convert the result to a Constraint derived class.

Vec coordinatesOf const Vec src  )  const
 

Returns the Frame coordinates of a point src defined in the world coordinate system (converts from world to Frame).

inverseCoordinatesOf() performs the inverse convertion. transformOf() converts 3D vectors instead of 3D coordinates.

See the frameTransform example for an illustration.

Vec coordinatesOfFrom const Vec src,
const Frame *const   from
const
 

Returns the Frame coordinates of the point whose position in the from coordinate system is src (converts from from to Frame).

coordinatesOfIn() performs the inverse transformation.

Vec coordinatesOfIn const Vec src,
const Frame *const   in
const
 

Returns the in coordinates of the point whose position in the Frame coordinate system is src (converts from Frame to in).

coordinatesOfFrom() performs the inverse transformation.

QDomElement domElement const QString &  name,
QDomDocument &  document
const [virtual]
 

Returns an XML QDomElement that represents the Frame.

name is the name of the QDomElement tag. doc is the QDomDocument factory used to create QDomElement.

The resulting QDomElement looks like:

 <name>
   <position x=".." y=".." z=".." />
   <orientation q0=".." q1=".." q2=".." q3=".." />
 </name>

Use initFromDOMElement() to restore the Frame state from the resulting QDomElement.

See Vec::domElement() for a complete example. See also Quaternion::domElement(), Camera::domElement()...

Attention:
The constraint() and referenceFrame() are not saved in the QDomElement.

Reimplemented in ManipulatedCameraFrame, and ManipulatedFrame.

void getCoordinatesOf const float  src[3],
float  res[3]
const
 

Same as coordinatesOf(), but with float parameters.

void getCoordinatesOfFrom const float  src[3],
float  res[3],
const Frame *const   from
const
 

Same as coordinatesOfFrom(), but with float parameters.

void getCoordinatesOfIn const float  src[3],
float  res[3],
const Frame *const   in
const
 

Same as coordinatesOfIn(), but with float parameters.

void getInverseCoordinatesOf const float  src[3],
float  res[3]
const
 

Same as inverseCoordinatesOf(), but with float parameters.

void getInverseTransformOf const float  src[3],
float  res[3]
const
 

Same as inverseTransformOf(), but with float parameters.

void getLocalCoordinatesOf const float  src[3],
float  res[3]
const
 

Same as localCoordinatesOf(), but with float parameters.

void getLocalInverseCoordinatesOf const float  src[3],
float  res[3]
const
 

Same as localInverseCoordinatesOf(), but with float parameters.

void getLocalInverseTransformOf const float  src[3],
float  res[3]
const
 

Same as localInverseTransformOf(), but with float parameters.

void getLocalTransformOf const float  src[3],
float  res[3]
const
 

Same as localTransformOf(), but with float parameters.

void getMatrix GLdouble  m[16]  )  const
 

GLdouble[16] version of matrix(). See also getWorldMatrix() and matrix().

void getMatrix GLdouble  m[4][4]  )  const
 

GLdouble[4][4] version of matrix(). See also getWorldMatrix() and matrix().

void getOrientation double &  q0,
double &  q1,
double &  q2,
double &  q3
const
 

The q are set to the orientation() of the Frame.

See Quaternion::Quaternion(double, double, double, double) for details on q.

void getPosition float &  x,
float &  y,
float &  z
const
 

x, y and z are set to the position() of the Frame.

void getRotation double &  q0,
double &  q1,
double &  q2,
double &  q3
const
 

The q are set to the rotation() of the Frame.

See Quaternion::Quaternion(double, double, double, double) for details on q.

void getTransformOf const float  src[3],
float  res[3]
const
 

Same as transformOf(), but with float parameters.

void getTransformOfFrom const float  src[3],
float  res[3],
const Frame *const   from
const
 

Same as transformOfFrom(), but with float parameters.

void getTransformOfIn const float  src[3],
float  res[3],
const Frame *const   in
const
 

Same as transformOfIn(), but with float parameters.

void getTranslation float &  x,
float &  y,
float &  z
const
 

Fill x, y and z with the translation() of the Frame.

void getWorldMatrix GLdouble  m[16]  )  const
 

float[16] parameter version of worldMatrix(). See also getMatrix() and matrix().

void getWorldMatrix GLdouble  m[4][4]  )  const
 

float[4][4] parameter version of worldMatrix(). See also getMatrix() and matrix().

void initFromDOMElement const QDomElement &  element  )  [virtual, slot]
 

Restores the Frame state from a QDomElement created by domElement().

See domElement() for the QDomElement syntax. See the Vec::initFromDOMElement() and Quaternion::initFromDOMElement() documentations for details on default values if an argument is missing.

Attention:
The constraint() and referenceFrame() are not restored by this method and are left unchanged.

Reimplemented in ManipulatedCameraFrame, and ManipulatedFrame.

void interpolated  )  [signal]
 

This signal is emitted when the Frame is interpolated by a KeyFrameInterpolator.

See the KeyFrameInterpolator documentation for details.

If a KeyFrameInterpolator is used to successively interpolate several Frames in your scene, connect the KeyFrameInterpolator::interpolated() signal instead (identical, but independent of the interpolated Frame).

Frame inverse  )  const
 

Returns a Frame representing the inverse of the Frame space transformation.

The rotation() of the new Frame is the Quaternion::inverse() of the original rotation. Its translation() is the negated inverse rotated image of the original translation.

If a Frame is considered as a space rigid transformation (translation and rotation), the inverse() Frame performs the inverse transformation.

Only the local Frame transformation (i.e. defined with respect to the referenceFrame()) is inverted. Use worldInverse() for a global inverse.

The resulting Frame has the same referenceFrame() as the Frame and a NULL constraint().

Note:
The scaling factor of the 4x4 matrix is 1.0.

Vec inverseCoordinatesOf const Vec src  )  const
 

Returns the world coordinates of the point whose position in the Frame coordinate system is src (converts from Frame to world).

coordinatesOf() performs the inverse convertion. Use inverseTransformOf() to transform 3D vectors instead of 3D coordinates.

Vec inverseTransformOf const Vec src  )  const
 

Returns the world transform of the vector whose coordinates in the Frame coordinate system is src (converts vectors from Frame to world).

transformOf() performs the inverse transformation. Use inverseCoordinatesOf() to transform 3D coordinates instead of 3D vectors.

Vec localCoordinatesOf const Vec src  )  const
 

Returns the Frame coordinates of a point src defined in the referenceFrame() coordinate system (converts from referenceFrame() to Frame).

localInverseCoordinatesOf() performs the inverse convertion. See also localTransformOf().

Vec localInverseCoordinatesOf const Vec src  )  const
 

Returns the referenceFrame() coordinates of a point src defined in the Frame coordinate system (converts from Frame to referenceFrame()).

localCoordinatesOf() performs the inverse convertion. See also localInverseTransformOf().

Vec localInverseTransformOf const Vec src  )  const
 

Returns the referenceFrame() transform of a vector src defined in the Frame coordinate system (converts vectors from Frame to referenceFrame()).

localTransformOf() performs the inverse transformation. See also localInverseCoordinatesOf().

Vec localTransformOf const Vec src  )  const
 

Returns the Frame transform of a vector src defined in the referenceFrame() coordinate system (converts vectors from referenceFrame() to Frame).

localInverseTransformOf() performs the inverse transformation. See also localCoordinatesOf().

const GLdouble * matrix  )  const
 

Returns the 4x4 OpenGL transformation matrix represented by the Frame.

This method should be used in conjunction with glMultMatrixd() to modify the OpenGL modelview matrix from a Frame hierarchy. If we define this Frame hierarchy:

  Frame* body     = new Frame();
  Frame* leftArm  = new Frame();
  Frame* rightArm = new Frame();
  leftArm->setReferenceFrame(body);
  rightArm->setReferenceFrame(body);

The associated OpenGL drawing code should look like:

  void Viewer::draw()
  {
    glPushMatrix();
    glMultMatrixd(body->matrix());
    drawBody();

    glPushMatrix();
    glMultMatrixd(leftArm->matrix());
    drawArm();
    glPopMatrix();

    glPushMatrix();
    glMultMatrixd(rightArm->matrix());
    drawArm();
    glPopMatrix();

    glPopMatrix();
  }
Note how we use nested glPushMatrix() and glPopMatrix() to represent our frame hierarchy: leftArm and rightArm are both correctly drawn with respect to the body coordinate system.

This matrix only represents the local Frame transformation (i.e. with respect to the referenceFrame()). Use worldMatrix() to get the full Frame transformation matrix (i.e. from the world to the Frame coordinate system). These two match when the referenceFrame() is NULL.

The result is only valid until the next call to matrix(), getMatrix(), worldMatrix() or getWorldMatrix(). Use it immediately (as above) or use getMatrix() instead.

Attention:
The OpenGL format of the result is the transpose of the actual mathematical European representation (translation is on the last line instead of the last column).
Note:
The scaling factor of the 4x4 matrix is 1.0.

void modified  )  [signal]
 

This signal is emitted whenever the position() or the orientation() of the Frame is modified.

Connect this signal to any object that must be notified:

    QObject::connect(myFrame, SIGNAL(modified()), myObject, SLOT(update()));
Use the QGLViewer::QGLViewerPool() to connect the signal to all the viewers.

Note:
If your Frame is part of a Frame hierarchy (see referenceFrame()), a modification of one of the parents of this Frame will not emit this signal. Use code like this to change this behavior (you can do this recursively for all the referenceFrame() until the NULL world root frame is encountered):
    // Emits the Frame modified() signal when its referenceFrame() is modified().
    connect(myFrame->referenceFrame(), SIGNAL(modified()), myFrame, SIGNAL(modified()));
Attention:
Connecting this signal to a QGLWidget::updateGL() slot (or a method that calls it) will prevent you from modifying the Frame inside your QGLViewer::draw() method as it would result in an infinite loop. However, QGLViewer::draw() should not modify the scene.
Note:
Efficiency reasons, this signal is emitted even if the Frame is not actually modified, for instance with translate(Vec(0,0,0)) or setPosition(position()).

Frame & operator= const Frame &  frame  ) 
 

Equal operator.

The referenceFrame() and constraint() pointers are copied.

Attention:
Signal and slot connections are not copied.

Quaternion orientation  )  const
 

Returns the orientation of the Frame, defined in the world coordinate system. See also position(), setOrientation() and rotation().

Vec position  )  const
 

Returns the position of the Frame, defined in the world coordinate system. See also orientation(), setPosition() and translation().

void projectOnLine const Vec origin,
const Vec direction
 

Translates the Frame so that its position() lies on the line defined by origin and direction (defined in the world coordinate system).

Simply uses an orthogonal projection. direction does not need to be normalized.

Frame* referenceFrame  )  const
 

Returns the reference Frame, in which coordinates system is defined the Frame.

When set, the position() and orientation() of the Frame are defined with respect to the referenceFrame() coordinate system. A NULL referenceFrame() (default value) means that the Frame is defined in the world coordinate system.

The translation() and rotation() of the Frame are defined with respect to its referenceFrame(), while position() and orientation() always return values expressed in the world coordinate system.

Use setReferenceFrame() to set this value and create a Frame hierarchy. Convenient functions allow you to convert 3D coordinates from one Frame to an other: see coordinatesOf(), localCoordinatesOf(), coordinatesOfIn() and their inverse functions.

Vectors can also be converted using transformOf(), transformOfIn, localTransformOf() and their inverse functions.

void rotate double &  q0,
double &  q1,
double &  q2,
double &  q3
 

Same as rotate(Quaternion&) but with float Quaternion parameters.

void rotate double  q0,
double  q1,
double  q2,
double  q3
 

Same as rotate(const Quaternion&) but with float Quaternion parameters.

void rotate const Quaternion q  ) 
 

Rotates the Frame by q (defined in the Frame coordinate system): R = R*q.

The rotation actually applied to the Frame may differ from q since it can be filtered by the constraint(). Use rotate(Quaternion&) or setRotationWithConstraint() to retrieve the filtered rotation value. Use setRotation() to directly rotate the Frame without taking the constraint() into account.

See also translate(const Vec&). Emits the modified() signal.

void rotate Quaternion q  ) 
 

Same as rotate(const Quaternion&) but q may be modified to satisfy the rotation constraint(). Its new value corresponds to the rotation that has actually been applied to the Frame.

void rotateAroundPoint const Quaternion rotation,
const Vec point
 

Same as rotateAroundPoint(), but with a const rotation Quaternion. Note that the actual rotation may differ since it can be filtered by the constraint().

void rotateAroundPoint Quaternion rotation,
const Vec point
 

Makes the Frame rotate() by rotation around point.

point is defined in the world coordinate system, while the rotation axis is defined in the Frame coordinate system.

If the Frame has a constraint(), rotation is first constrained using Constraint::constrainRotation(). The translation which results from the filtered rotation around point is then computed and filtered using Constraint::constrainTranslation(). The new rotation value corresponds to the rotation that has actually been applied to the Frame.

Emits the modified() signal.

Quaternion rotation  )  const
 

Returns the current Quaternion orientation. See setRotation().

void setConstraint Constraint *const   constraint  ) 
 

Sets the constraint() attached to the Frame.

A NULL value means no constraint. The previous constraint() should be deleted by the calling method if needed.

void setFromMatrix const GLdouble  m[16]  ) 
 

Sets the Frame from an OpenGL matrix representation (rotation in the upper left 3x3 matrix and translation on the last line).

Hence, if a code fragment looks like:

 GLdouble m[16]={...};
 glMultMatrixd(m);
It is equivalent to write:
 Frame fr;
 fr.setFromMatrix(m);
 glMultMatrixd(fr.matrix());

The advantage of this conversion is that you can then benefit from the powerful Frame transformation methods to translate points and vectors to and from the Frame coordinate system to any other Frame coordinate system (including the world coordinate system). See coordinatesOf() and transformOf().

Emits the modified() signal. See also matrix(), getMatrix() and Quaternion::setFromRotationMatrix().

Attention:
A Frame does not contain a scale factor. The possible scaling in m will not be converted into the Frame by this method.

void setFromMatrix const GLdouble  m[4][4]  ) 
 

This is an overloaded method provided for convenience. Same as setFromMatrix().

void setOrientation double  q0,
double  q1,
double  q2,
double  q3
 

Same as setOrientation(), but with float parameters.

void setOrientation const Quaternion orientation  ) 
 

Sets the orientation() of the Frame, defined in the world coordinate system. Emits the modified() signal.

Use setRotation() to define the local frame rotation (with respect to the referenceFrame()). The potential constraint() of the Frame is not taken into account, use setOrientationWithConstraint() instead.

void setOrientationWithConstraint Quaternion orientation  ) 
 

Same as setOrientation(), but orientation is modified so that the potential constraint() of the Frame is satisfied. See also setPositionWithConstraint() and setRotationWithConstraint().

void setPosition float  x,
float  y,
float  z
 

Same as setPosition(), but with float parameters.

void setPosition const Vec position  ) 
 

Sets the position() of the Frame, defined in the world coordinate system. Emits the modified() signal.

Use setTranslation() to define the local frame translation (with respect to the referenceFrame()). The potential constraint() of the Frame is not taken into account, use setPositionWithConstraint() instead.

void setPositionAndOrientation const Vec position,
const Quaternion orientation
 

Same as successive calls to setPosition() and then setOrientation().

Only one modified() signal is emitted, which is convenient if this signal is connected to a QGLViewer::updateGL() slot. See also setTranslationAndRotation() and setPositionAndOrientationWithConstraint().

void setPositionAndOrientationWithConstraint Vec position,
Quaternion orientation
 

Same as setPositionAndOrientation() but position and orientation are modified to satisfy the constraint. Emits the modified() signal.

void setPositionWithConstraint Vec position  ) 
 

Same as setPosition(), but position is modified so that the potential constraint() of the Frame is satisfied. See also setOrientationWithConstraint() and setTranslationWithConstraint().

void setReferenceFrame Frame *const   refFrame  ) 
 

Sets the referenceFrame() of the Frame.

The Frame translation() and rotation() are then defined in the referenceFrame() coordinate system. Use position() and orientation() to express these in the world coordinate system.

Emits the modified() signal if refFrame differs from the current referenceFrame().

Using this method, you can create a hierarchy of Frames. This hierarchy needs to be a tree, which root is the world coordinate system (i.e. a NULL referenceFrame()). A warning is printed and no action is performed if setting refFrame as the referenceFrame() would create a loop in the Frame hierarchy (see settingAsReferenceFrameWillCreateALoop()).

void setRotation double  q0,
double  q1,
double  q2,
double  q3
 

Same as setRotation() but with float Quaternion parameters.

void setRotation const Quaternion rotation  ) 
 

Sets the rotation() of the Frame, locally defined with respect to the referenceFrame(). Emits the modified() signal.

Use setOrientation() to define the world coordinates orientation(). The potential constraint() of the Frame is not taken into account, use setRotationWithConstraint() instead.

void setRotationWithConstraint Quaternion rotation  ) 
 

Same as setRotation(), but rotation is modified so that the potential constraint() of the Frame is satisfied.

Emits the modified() signal. See also setTranslationWithConstraint() and setOrientationWithConstraint().

bool settingAsReferenceFrameWillCreateALoop const Frame *const   frame  ) 
 

Returns true if setting frame as the Frame's referenceFrame() would create a loop in the Frame hierarchy.

void setTranslation float  x,
float  y,
float  z
 

Same as setTranslation(), but with float parameters.

void setTranslation const Vec translation  ) 
 

Sets the translation() of the frame, locally defined with respect to the referenceFrame(). Emits the modified() signal.

Use setPosition() to define the world coordinates position(). Use setTranslationWithConstraint() to take into account the potential constraint() of the Frame.

void setTranslationAndRotation const Vec translation,
const Quaternion rotation
 

Same as successive calls to setTranslation() and then setRotation().

Only one modified() signal is emitted, which is convenient if this signal is connected to a QGLViewer::updateGL() slot. See also setPositionAndOrientation() and setTranslationAndRotationWithConstraint().

void setTranslationAndRotationWithConstraint Vec translation,
Quaternion rotation
 

Same as setTranslationAndRotation(), but translation and orientation are modified to satisfy the constraint(). Emits the modified() signal.

void setTranslationWithConstraint Vec translation  ) 
 

Same as setTranslation(), but translation is modified so that the potential constraint() of the Frame is satisfied.

Emits the modified() signal. See also setRotationWithConstraint() and setPositionWithConstraint().

Vec transformOf const Vec src  )  const
 

Returns the Frame transform of a vector src defined in the world coordinate system (converts vectors from world to Frame).

inverseTransformOf() performs the inverse transformation. coordinatesOf() converts 3D coordinates instead of 3D vectors (here only the rotational part of the transformation is taken into account).

See the frameTransform example for an illustration.

Vec transformOfFrom const Vec src,
const Frame *const   from
const
 

Returns the Frame transform of the vector whose coordinates in the from coordinate system is src (converts vectors from from to Frame).

transformOfIn() performs the inverse transformation.

Vec transformOfIn const Vec src,
const Frame *const   in
const
 

Returns the in transform of the vector whose coordinates in the Frame coordinate system is src (converts vectors from Frame to in).

transformOfFrom() performs the inverse transformation.

void translate float &  x,
float &  y,
float &  z
 

Same as translate(Vec&) but with float parameters.

void translate float  x,
float  y,
float  z
 

Same as translate(const Vec&) but with float parameters.

void translate const Vec t  ) 
 

Translates the Frame of t (defined in the Frame coordinate system).

The translation actually applied to the Frame may differ from t since it can be filtered by the constraint(). Use translate(Vec&) or setTranslationWithConstraint() to retrieve the filtered translation value. Use setTranslation() to directly translate the Frame without taking the constraint() into account.

See also rotate(const Quaternion&). Emits the modified() signal.

void translate Vec t  ) 
 

Same as translate(const Vec&) but t may be modified to satisfy the translation constraint(). Its new value corresponds to the translation that has actually been applied to the Frame.

Vec translation  )  const
 

Returns the Frame translation, defined with respect to the referenceFrame().

Use position() to get the result in the world coordinates. These two values are identical when the referenceFrame() is NULL (default).

See also setTranslation() and setTranslationWithConstraint().

Frame worldInverse  )  const
 

Returns the inverse() of the Frame world transformation.

The orientation() of the new Frame is the Quaternion::inverse() of the original orientation. Its position() is the negated and inverse rotated image of the original position.

The result Frame has a NULL referenceFrame() and a NULL constraint().

Use inverse() for a local (i.e. with respect to referenceFrame()) transformation inverse.

const GLdouble * worldMatrix  )  const
 

Returns the 4x4 OpenGL transformation matrix represented by the Frame.

This method should be used in conjunction with glMultMatrixd() to modify the OpenGL modelview matrix from a Frame:

  // The modelview here corresponds to the world coordinate system.
  Frame fr(pos, Quaternion(from, to));
  glPushMatrix();
  glMultMatrixd(fr.matrix());
  // draw object in the fr coordinate system.
  glPopMatrix();

This matrix represents the global Frame transformation: the entire referenceFrame() hierarchy is taken into account to define the Frame transformation from the world coordinate system. Use matrix() to get the local Frame transformation matrix (i.e. defined with respect to the referenceFrame()). These two match when the referenceFrame() is NULL.

The OpenGL format of the result is the transpose of the actual mathematical European representation (translation is on the last line instead of the last column).

Attention:
The result is only valid until the next call to matrix(), getMatrix(), worldMatrix() or getWorldMatrix(). Use it immediately (as above) or use getWorldMatrix() instead.
Note:
The scaling factor of the 4x4 matrix is 1.0.


Generated on Thu Jul 7 11:49:20 2005 for libQGLViewer by  doxygen 1.4.3