
Lire Developer’s Manual

Joost van Baal

Egon L. Willighagen

Francis J. Lacoste

Lire Developer’s Manual
by Joost van Baal, Egon L. Willighagen, and Francis J. Lacoste

Copyright © 2000, 2001, 2002, 2003, 2004 Stichting LogReport Foundation

This manual is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the

Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This is distributed in the hope that it will be useful, butwithout any warranty; without even the implied warranty ofmerchantabilityor fitness

for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this manual (see COPYING); if not, check with

http://www.gnu.org/copyleft/gpl.html (http://www.gnu.org/copyleft/gpl.html) or write to the Free Software Foundation, Inc., 59 Temple

Place - Suite 330, Boston, MA 02111, USA.

Revision History

Revision 2.0 $Date: 2004/09/04 11:38:27 $
$Id: dev-manual.dbx,v 1.85 2004/09/04 11:38:27 vanbaal Exp $

Table of Contents
Preface..i

What This Book Contains...i
How Is This Book Organized?..i
Conventions Used..i
If You Don’t Find Something In This Manual..i

I. Lire Architecture ...i

1. Architecture Overview...1
Lire’s Design Patterns...2
Log File Normalisation...2
Log Analysis...3
Report Generation...4
Report Formatting and Other Post-Processing...5
Going Further..6

II. Using the Lire Framework ...1

2. Writing a New DLF Converter...2
Prerequisites..2
The common_syslog Log Format...2
Creating the DLF Converter Skeleton..2
Adding a Constructor..3
The Meta-Data Methods...4

The DLF Converter Name...4
Providing Information To Users..4
Providing Information to the Framework..5
The Conversion Methods..5

Conversion Initialization...6
Conversion Finalization...6
The DLF Conversion Process..6

File-Oriented Conversion...8
Registering Your DLF Converter with the Lire Framework...8
DLF Converter API...9

3. Writing a DLF Schema..10
Designing the ftpproto schema...10

Creating The Schema File...10
Adding the Schema’s Description...11
Defining the Schema’s Fields..11

The Field Types...12
Installing The Schema...14

4. Writing a New DLF Analyser..15
Writing a Categoriser..15

Defining The Extended Schema..15
Defining the Categoriser...16
Categoriser Configuration...17
Categoriser Implementation..18

Writing an Analyser..18
DLF Analyser API..19

5. Writing a New Report..20
Filter Specification..20

iii

III. Developer’s Reference...21

6. Lire Data Types..22
Lire Textual Elements...22

title element..22
DocBook Elements...22
description element...23

7. Common Textual Elements to All XML Formats..24
Lire Data Types Parameter Entities..24

Boolean Type..24
Integer Type...24
Number Type...24
String Type..24
Timestamp type...25
Time Type...25
Date Type..25
Duration Type..25
IP Type..26
Port Type...26
Hostname Type..26
URL Type..26
Email Type..26
Bytes Type...27
Filename Type...27
Field Type..27
Superservice Type...27
Related Types..28

8. The Lire Report Configuration Specification Markup Language...29
The Lire Report Configuration Specification Markup Language...29

config-spec element...30
summary element..31
Parameter Specifiations Elements...31

Common Attributes...31
boolean element..32
integer element..32
string element..32
dlf-converter element...32
dlf-schema element..33
dlf-streams element..33
commandelement..33
file element...34
directory element..34
executable element..34
select element..34
option element..35
list element...35
object element..35
output-format element...36
record element..36
record element..36
reference element..37
report-config element...37

iv

plugin element..37
9. The Lire Report Configuration Markup Language..38

The Lire Report Configuration Markup Language...38
config element..38
global element..39
param element..39

10. The Lire DLF Schema Markup Language...40
The Lire DLF Schema Markup Language..40

Thedlf-schema element..41
extended-schema element...41
derived-schema element...42
field element..43

11. The Lire Report Specification Markup Language..45
The Lire Report Specification Markup Language..45

report-spec element...46
global-filter-spec element..47
display-spec element...47
param-spec element...48
param element..48
chart-configs element...48
Filter expression elements...49

filter-spec element..49
value element...49
eq element...50
ne element...50
gt element...50
ge element...50
lt element...51
le element...51
match element...51
not element...52
and element...52
or element...52

Report Calculation Elements..52
report-calc-spec element...53
Common Attributes...53
group element...53
timegroup element..54
timeslot element..55
rangroup element..56
field element...57
sum element...58
avg element...58
max element...59
min element...60
first element...60
last element...61
count element...61
records element..62

12. The Lire Report Markup Language..63
The Report Markup Language..63

report element..64

v

Meta-information elements...64
date element...64
timespan element..65

section element..65
subreport element..66
missing-subreport element..66
table element..67
table-info element...68
group-info element...68
column-info element...68
group-summary element...69
group element..70
entry element..71
name element..71
value element..72
chart-configs element...73

IV. Lire Developers’ Conventions...74

13. Contributing Code to Lire..75
14. Developers’ Toolbox..76

Required Tools To Build From CVS..76
Accessing Lire’s CVS...76

CVS primer...76
SourceForge..77
Mailing Lists...77

15. Coding Standards...78
Shell Coding Standards...78
Perl Coding Standards..78

16. Making Lire “Test-infected”..79
Unit Tests in Lire..79

PerlUnit...79
Writing Tests...79
Running Tests...79
Some “Best Practices” on Unit Testing..79

17. Commit Policy..81
CVS Branches...81

Hands-on example...81
Naming, what it looks like..81
Creating a Branch..82
Accessing a Branch...82
Merging Branches on the Trunk..82

18. Testing..84
19. Making a Release...85

Setting version in NEWS file, checking ChangeLog..85
Tagging the CVS...85
Building The Tarball...85
Building The Debian Package..86
Building The RPM Package...87
Making sure the FreeBSD port gets updated..87
Uploading The Release...88

The LogReport Webserver..88
Advertising The Release...88

vi

SourceForge..89
Freshmeat.net..89

20. Website Maintenance...90
Documentation on the LogReport Website...90

Publishing the DTD’s..90
21. Writing Documentation..91

Plain Text..91
Perl’s Plain Old Documentation: maintaining manpages...91
Docbook XML: Reference Books and Extensive User Manuals...91

V. Implementation Details...93

22. Adding a New Superservice in Lire’s Distribution..94
23. Issues with Report Merging...95
24. Overview of Lire scripts...98
25. Source Tree Layout..99

Glossary..100

vii

List of Tables
11-1. weekly overview...55

List of Figures
1-1. Log Processing in the Lire’s Framework..1
1-2. The Log Normalisation Process...3
1-3. The Log Analysis Process..4
1-4. Report Generation Process...5
1-5. Processing of the XML Report Using The APIs..6

List of Examples
11-1. timeslot with 1d unit...55
11-2. timeslot with 2m unit..55
1. DNS DLF Excerpts..100

viii

Preface
Log file analysis is both an essential and tedious part of system administration. It is essential because it’s the best
way of profiling the usage of the service installed on the network. It’s tedious because programs generate a lot of
data and tools to report on this data are often unavailable or incomplete. When such tools exist, they are
generally specific to one product, which means that you can’t compare e.g. your Qmail and Exim mail servers.

Lire is a software package developed by the Stichting LogReport Foundation to generate useful reports from raw
log files of various network programs. Multiple programs are supported for various types of network services.
Lire also supports various output formats for the generated reports.

What This Book Contains
This book is theLire Developer’s Manual. Its purpose is to present Lire as a log analysis framework. To this
ends, it describes the architecture and design of Lire and contains comprehensive instructions on how to use it.
Its intended audience is system administrators or programmers who want to extend Lire or want to understand its
internals.

There is another book, theLire User’s Manualwhich describes how to install, configure and use Lire, as a
“off-the-shelf” log analyzer. Its intended audience is system administrators who want to install and use Lire to
gather information about the services operating on their network.

How Is This Book Organized?
This book is divided in five parts.Part Igives an overview of the architecture and design of Lire.

You will find in Part II information on extending Lire. In this part, you will learn how to add a new DLF format
to Lire, write log file converters and add reports for a superservice.

Part III is a reference section which gives comprehensive details about the various XML formats used by Lire
and gives in-depth descriptions of its various APIs.

Part IV is targeted at developers who want to participate in Lire’s development. It contains information about
CVS access, coding conventions, tools needed to build from CVS, release management and other aspects
important to those part of the Lire development team. Furthermore, it gives some information on how to
contribute code to Lire, as an external party.

Finally, Part Vcontains various implementation details that may be interesting to people wanting to learn more
about Lire internals.

Conventions Used

If You Don’t Find Something In This Manual
You can report typos, incorrect grammar or any other editorial problems to <bugs@logreport.org >. We
welcome reader’s feedback. If you feel that certain parts of this manual aren’t clear, are missing information or
lacking in any other aspect, please tell us. Of course, if you feel like writing the missing information yourself,
we’ll very happily accept your patch. We will make our best effort to improve this manual.

i

Preface

Remember, that there is another manual, theLire User’s Manualwhich contains comprehensive information on
how to install, use and configure Lire. It also contains reference information about all of Lire’s standard reports
and supported services.

There are various public mailing lists for Lire’s users. There is a general users’ discussion list where you can find
help on how to install and use Lire. You can subscribe to this list by sending an empty email with a subject of
subscribeto <questions-request@logreport.org >. Email for the list should be sent to
<questions@logreport.org >.

You can keep track of Lire’s new release by subscribing to the announcement mailing list. You can subscribe
yourself by sending an empty email with a subject ofsubscribeto
<announcement-request@logreport.org >.

Finally, if you’re interested in Lire’s development, there is a development mailing list to which you can subscribe
by sending an empty email with a subject ofsubscribeto <development-request@logreport.org >. Email
to the list should be sent to <development@logreport.org >.

All posts on these lists are archived on a public website.

ii

I. Lire Architecture

Chapter 1. Architecture Overview
From a developer’s point of view, Lire intends to be the universal log analysis framework. To this end, it provides
a reliable, complete, framework upon which to build log analysis and reporting solution. Lire, the tool, is a proof
of the versality and extendability of the framework as it is able to produce reports for many of the services that
run in today’s heterogeneous networks in a variety of output formats.

As a framework, Lire is the best choice to replace all those home-grown scripts developed to produce reports
from all the log files from the little-known products or custom-developed programs that run on your system.
Leveraging Lire framework will make those scripts a lot more versatile while not being really more complicated
to develop. It will be easier to add new reports or to support multiple report formats.

Figure 1-1. Log Processing in the Lire’s Framework

1

Chapter 1. Architecture Overview

The Lire’s framework divides log analysis in four different processes. The figureFigure 1-1shows those four
processes:

1. Log Normalisation. The first process normalise logs from different products into a generic format that can
be shared by all products that have similar functionality. For example, log files from products as different as
Apache and Microsoft Internet Information Server will be transformed into an identical format.

2. Log Analysis. In the analysis process, other information is created, inferred or extracted from the
normalised data. For example, an anlyser in the www superservice infers the browser used by the client
from the referrer information.

3. Report Generation.The third process generates a report from the normalised and analysed data. This
process is done by a generic report engine that computes the report based on specifications describing what
and how the information should appear in the report. The report is generated in a generic XML format.

4. Report Post-processing and Formatting.The last process converts the generic report into a specific format
like ASCII, PDF, HTML but other kind of post-processing (like charts generation) can also be accomplished
in this stage.

Before going into a more detailed description of each of these procesesses, we’ll introduce some of the common
design’s patterns that you’ll find throughout the Lire’s framework.

Lire’s Design Patterns
At the center of each of these processes is an XML based file format. Having things specified in data files makes
it easier to extend. For example, the reports are built using a generic report builder which finds the instructions
on how to build the reports in XML files. So this makes it easy to add new information to a report: you just have
to write an XML file. The fact that there are a lot of tools to process XML files is also an interesting aspect. For
example, emacs lovers will appreciate the help that its psgml module gives them in writing report specifications.

Another important aspects is that we tried to interoperate and to build upon other standards while defining our
XML formats . The best illustration of this is that in all the XML file formats that Lire use, a DocBook subset is
used for all elements related to narrative descriptions.

Another common aspect you’ll encounter is that each of these processes and XML file formats come with an
API to manipulate them, making it easy to add functionalities at each processing stage. APIs are also a good
thing because, even if in theory an open file format somewhat constitutes an API, having libraries that provide
convenient access to the file formats makes it a lot easier to write new components providing new functionalities.

2

Chapter 1. Architecture Overview

Log File Normalisation

Figure 1-2. The Log Normalisation Process

The first process of the Lire log analysis framework is the log file normalisation process. That process is
summarized in theFigure 1-2figure. This process is centered around theDLF concept which is kind of a
universal log format. DLF stands for Distilled Log Format. The concept is that each product specific log file is
transformed into a log format that can be common to all the products providing similar functionalities. In Lire’s
terminology, a class of applications providing similar functionality (e.g. MTA’s supplying email) is called a
superservice. Still in Lire’s terminology, theservicefrom which the super is derived (e.g. postfix or sendmail)
refers to the native log format that is converted in the superservice’s DLF. One can view the DLF as a table
where the rows are the logged events and the fields are logged information related to each event.

Since the information logged by an email server is totally different from a web server, each superservice should
have its own data models. In Lire, the data model is called a DLFschema. The DLF schemas are defined in XML
files using the DLF Schema Markup Language. The schema describes what fields are available for each logged
events.

One interesting aspect of Lire, is that altough the email DLF is used by all email servers, the email DLF data
model isn’t restricted to the lowest common denominator across the log formats supported by each email servers.
In the Lire’s architecture, the superservice’s schema can represent the information logged by the most
sophisticated product. When some part of the information isn’t available in one log format, the DLF log file will
contain this information and the reports that needs this information won’t be included.

This architecture means that to support a new service, i.e. a new log format, in Lire you just need to write a
plugin, called a DLF converter. This is just a simple perl module that parses the native log format and maps the
information according to the schema.

3

Chapter 1. Architecture Overview

Log Analysis
After normalisation, comes the analysis process. The analysis process responsability is to extracts, infers or
derives other information from the logged data. Since the superservice’s logged data is in a standard format, the
analysers are generic in the sense that they can operate for all the superservice’s supported log formats, if the
product’s was clever enough to log the information required by the analyser. The analysis process is shown in the
Figure 1-3figure.

Figure 1-3. The Log Analysis Process

Since each analyser can add information to or create a new DLF, each analyser will generate data according to
special kind of schemas.

Lire’s framework include two kind of analysers. The difference between the two resides in the mapping between
the source data and the new data they generate. Extended analysers generate new data for each DLF record
whereas derived analysers are used when the new data doesn’t have a one-to-one mapping with the source data.

The analysers produce data according to a data model which is specified in other DLF schemas. There are
extendedschemas andderivedschemas. An extended schema simply adds new fields to the base superservice’s
schema. For example, in the web superservice’s schema, a lot of information can be obtained from the referer
field. From this information, it is possible to guess the user’s browser, language or operating system. Those fields
are specified in the www-referer extended schema; one analyser is responsible for extracting this information
from the referer field.

But sometimes the analysis cannot just simply add information to each event record, an altogether different
schema is needed then. For those cases, there is the derived schema. An example of the use of such a schema in
the current Lire distribution is the analyser which creates user sessions based on the logged client IP address and
user agent. This analyser defines the www-session derived schema.

4

Chapter 1. Architecture Overview

Report Generation
Once you have all this data, it’s time to generate some useful reports out of it. Lire’s framework includes a
generic report builder. What Lire calls areport is actually acollectionof what one may understand as reports;
Lire however speaks about asubreports. For example, the proxy’s superservice report will contain subreports
about the top visited sites, another subreport on the cache hit ratio, as well as several others. The subreports are
defined using theReport Specification Markup Language. This markup language contains elements for several
things: information regarding the schema on which it operates; descriptions that should be included in the
generated report to help in the interpretation of the data; parameters that can be used to modify the generated
report (for example, to generate a top 20 subreport instead of a top 10); a filter that selects the records that will be
used for the subreport; and finally the operations that make up the subreport: grouping, summing, counting, etc.
The report markup language covers most simple needs and there is an extension element as well as an API that
can be used to hook in more fancy computations. There are no subreport specifications in the current distribution
that make use of this feature yet, however. You can see an overview of this process in theFigure 1-4figure.

Figure 1-4. Report Generation Process

The generated report is another XML file that uses another markup language, this time called the Lire’s Report
Markup Language. An actual report contains the help descriptions from the report specifications, information on
the subreport specifications used, as well as the actual subreport’s data.Using another intermediary XML file as
output format makes all sort of things possible in the formatting and post-processing stage.

5

Chapter 1. Architecture Overview

Report Formatting and Other Post-Processing
The last process works with the generic XML report. Using a domain-specific XML format for the generated
format makes it easy for the framework to support multiple different formats. Supporting a new output format is
just a matter of writing a new module that processes the XML report file.

Figure 1-5. Processing of the XML Report Using The APIs

As shown in theFigure 1-5figure, you can also process the XML files using the APIs to the XML report format.

Going Further
As you can see form this overview, the Lire framework provides a powerful architecture to use for your log
analysis needs. The architecture provides extensibility from log normalisation to post-processing of the reports.
Exactly how to use the framework is the topic of the next part.

6

II. Using the Lire Framework
In this part, you’ll learn how to leverage the Lire’s framework for your own log analysis need. The most common
use cases are developing a converter for a new log format and developping new reports.

The first chapterChapter 2explains how to write a converter for a new log format.

The responsibility of the converter is to map the information contained in a log file to the data model of a specific
DLF schema. When developping a converter for a log format which doesn’t fall in the domain one of the existing
DLF schema, you’ll need to write a new one. This is the topic of the following chapterChapter 3.

The chaperChapter 4gives information on how to write DLF analysers that can adds data to the base log
information.

The chapterChapter 5this part gives some notes on how to develop new reports.

Chapter 2. Writing a New DLF Converter
Before Lire can do various analysis and generate reports on the data contained in your various log files, it must
first be converted to a common data model. This is specifically the job of the DLF converter.

So if you want to generate the same reports for your RealServer log files (currently unsupported) than for you
web server, you only need to develop a DLF converter which maps the RealServer content to the www DLF
schema.

Note: If no existing DLF schemas represent correctly the domain of your application log file, it is easy to
develop a new one. Consult the chapter Chapter 3 for the whole story.

This chapter will show you through an example how to develop a new DLF converter for a kind of useless log
format: the common log format encapsulated in syslog. (It is useless because there is not many reasons to make
your web server logs it requests through syslog. And it would be probably be simpler to just use thecut
command to remove the syslog header.)

Note: The doc/examples in the source distribution contains another commented example which could serve
as a starting point for your converters.

Prerequisites
Developing a new DLF converter requires some basic programming skills in perl. Altough not strictly
necessarily, you should be familiar with perl object-oriented programming model. If you aren’t, you should read
perltoot(1) before continuing.

The common_syslog Log Format
The log format supported by our DLF converter is simply the standard Common Log Format supported by most
web servers with a syslog header prepended to each line. Here is an example of what such a log file might
contain:

May 10 11:13:10 hibou httpd[12344]: Apache/1.3.26 (Unix) Debian GNU/Linux Embperl/1.3.3 PHP/4.1.2 mod_perl/1.26 configured -- resuming normal operations
May 10 11:13:11 hibou httpd[12345]: 192.168.250.10 - - \

[10/May/2003:11:13:11 +0200] "GET /" HTTP/1.1 200 1523
May 10 11:13:12 hibou httpd[12346]: 192.168.250.10 - - \

[10/May/2003:11:13:11 +0200] "GET /images/logo.png" HTTP/1.1 200 1201
May 10 11:13:12 hibou httpd[12348]: 192.168.250.10 - - \

[10/May/2003:11:13:11 +0200] "GET /images/corner.png" HTTP/1.1 200 1021

Remember that the other layer is a syslog log file and could contains other things than only the web server’s
requests. The first line in the example isn’t a request record but really what usually ends up in the “error_log”
and is a message about the server starting.

2

Chapter 2. Writing a New DLF Converter

Creating the DLF Converter Skeleton
Put simply, a DLF converter is a perl object which implements a set of predefined methods (aka an “interface” in
the object-oriented jargon).

Since a DLF converter is a perl object, it must be instantiated from a class. Classes in perl are defined in
packages. We’ll name the package which implements our converter
MyConverters::SyslogCommonConverter . To create such a package, you need to create a file named
MyConverters/SyslogCommonConverter.pm in a directory searched by perl.

• You can obtain perl’s default search list by running the command $ perl -V .

• This search list can be modified by setting the PERL5LIB environment variables.

Here is a first cut of our DLF converter:

package MyConverters::SyslogCommonConverter;

use base qw/Lire::DlfConverter/;

1;

The first line declare that the code is in theMyConvertersw::SyslogCommonConverter package. The
second one specifies that objects in this package are subclasses of theLire::DlfConverterpackages. The last line
fullfill perl’s requirement that package returns a true value once they are initialized.

This is a complete DLF, altough useless, DLF Converter. In fact, it isn’t complete because if you tried to register
an instance of that class, you’ll get “unimplemented method” errors. Besides, we don’t even yet have a formal
way to create instance of our converter. This is our next task.

Adding a Constructor
The Lire framework doesn’t place any restrictions on your DLF converter constructor. In fact, the constructor
isn’t used by the framework at all, it will only be used by your DLF converter registration script (the Section
calledRegistering Your DLF Converter with the Lire Framework).

We will follow perl’s convention of using a method namednew for our constructor and of using an hash
reference to hold our object’s data.

Here is our complete constructor:

use Lire::Syslog;

sub new {
my $pkg = shift;

my $self = bless {}, $pkg;

$self->{syslog_parser} = new Lire::Syslog();

3

Chapter 2. Writing a New DLF Converter

return $self;
}

Since our log format is based on syslog, we will reuse the syslog parsing code included in Lire. This is the
reason we instantiate aLire::Syslog object and save a reference to it in our constructor.

The Meta-Data Methods
The Lire::DlfConverter interface requires two kinds of methods. First, it requires methods which provide
information to the framework on your converter. Second, it requires methods which will actually implement the
conversion process. It this the format that this section documents.

The DLF Converter Name
The methodname() should returns the name of our DLF converter. It is this name that is passed to the
lr_log2report command. This name must be unique among all the converters registered and it should be
restricted to alphanumerical characters (hyphens, period and underscores can also be used).

We will name our convertercommon_syslog :

sub name {
return "common_syslog";

}

Providing Information To Users
The next two required methods are used to give more verbose information on your converter to the users. The
converter’stitle() anddescription() can be use to display information about your converter from the user
interface or to generate documentation.

The title() should simply returns a string:

sub title {
return "Common Log Format embedded in Syslog DLF Converter";

}

Thedescription() method should returns a DocBook fragment describing your converter and the log formats
it support. If you don’t know DocBook just restrict yourself to using thepara elements to make paragraphs:

4

Chapter 2. Writing a New DLF Converter

sub description {
return <<EOD;

<para>This DLF Converter extracts web server’s requests and error
information from a syslog file.
</para>
<para>The requests and errors should be logged under the
<literal>httpd</literal> program name. The errors are mapped to the
<type>syslog</type> schema, the requests are mapped to the
<type>www</type> schema.
</para>
<para>Syslog records from another program than
<literal>httpd</literal> are ignored.
</para>
EOF
}

Providing Information to the Framework
Two other meta-data methods are used by the framework itself. The first one specifies to what DLF schemas
your DLF converter is converting to:

sub schemas {
return ("www", "syslog");

}

In our case, we are converting to the syslog and www schemas. Like we described it in our converter’s
description, we will map the web server’s error message to the syslog schema and the request logs to the www
schema. Other alternatives would have been to only map the requests information to www schema or map all the
non-request records to the syslog schema. The rationale behind the current choice (besides this being an
example) is that it make it convenient to process one log file to obtain a report containing the requests and errors
from our web server. For that use case, it is best to ignore the non-web server related stuff.

The other method affects how the conversion process will be handled. Lire offers two mode of conversion, the
line oriented one and the file oriented one. (Both will be described in the next section). If your log file is
line-oriented (each lines is one log record) like most log files are, you should use the line-oriented conversion
mode:

sub handle_log_lines {
return 1;

}

5

Chapter 2. Writing a New DLF Converter

The Conversion Methods
The actual conversion process is handled through three methods:init_dlf_converter ,
finish_conversion() and eitherprocess_log_file() or process_log_line() depending on the
conversion mode (as determined byhandle_log_lines() ’s return value.

Conversion Initialization

The methodinit_dlf_converter() will be called once before the log file is processed. It should be use to
initialize the state of your converter. Since our DLF Converter doesn’t need any initialization and doesn’t need
any configuration, the method is simply empty:

sub init_dlf_converter {
my ($self, $process) = @_;

return;
}

The$process parameter which is passed to all the processing methods is an instance of
Lire::DlfConverterProcess . This is the object which is driving the conversion process and it defines
several methods which you will use in the actual conversion process.

Conversion Finalization

The methodfinish_conversion() will be called once after the log file has been completely processed. This
method will be mostly of use to stateful converter, that is DLF converters which generates DLF records from
more than one line. Since this is not our case, we simply leave the method empty:

sub finish_conversion {
my ($self, $process) = @_;

return;
}

The DLF Conversion Process

Whether you are using the file-oriented or line-oriented conversion mode, the principles are the same. You
extract information from the log file and creates DLF records from it. Your DLF converter communicates with
the framework by calling methods on theLire::DlfConverterProcess object which is passed as parameter
to your methods.

Here is the complete code of our conversion method:

use Lire::Apache qw/parse_common/;

6

Chapter 2. Writing a New DLF Converter

sub process_log_line {
my ($self, $process, $line) = @_;

my $sys_rec = eval { $self->{syslog_parser}->parse($line) };
if ($@) {

$process->error($@, $line);
return;

} elsif ($sys_rec->{process} ne ’httpd’) {
$process->ignore_log_line($line, "not an httpd record");
return;

} else {
my $common_dlf = {};
eval { parse_common($sys_rec->{content}, $common_dlf) };
if ($@) {

$sys_rec->{message} = $sys_rec->{content};
$process->write_dlf("syslog", $sys_rec);

} else {
$process->write_dlf("www", $common_dlf);

}
}

}

The first thing that should be noted is that in the line-oriented conversion mode, the method
process_log_line() will be called once for each line in the log file.

Secondly, the actual parsing of the line is done using two functions:parse_common andLire::Syslog ’s
parse . These methods simply uses regular expressions to extract the appropriate information from the line and
put it in an hash reference. What is important is that these methods already uses as key names the schema’s field
names.

Finally, you can see that there are four different methods used on the$process object to report different kind of
information:

Reporting Error

The example uses theeval statement to trap errors during the syslog record parsing. If the line cannot be
parsed as a valid syslog record, it is an error and it is reported through theerror() method. The first
parameter is the error message and the second one is the line to which the error is associated. This last
parameter is optional.

Ignoring Information

When the syslog event doesn’t come from thehttpd process, we ignore the line. Ignored line are reported to
the framework by using theignore_log_line() method. The first parameter is the line which is ignored.
The second optional parameter gives the reason why the line was ignored.

Creating DLF Records

Finally, DLF records are created by using thewrite_dlf() method. Its first parameter is the schema to
which the DLF record complies. This schema must be one that is listed by your converter’sschemas()

method. The second parameter is the DLF data contained in an hash reference. The DLF record will be

7

Chapter 2. Writing a New DLF Converter

created by taking for each field in the schema the value under the same name in the hash. (Since in the
syslog schema, the field which contains the actual log message is calledmessage , this is the reason we are
assigning the content value to the message key.) Missing fields or fields whose value isundef will contains
the specialLR_NAmissing value marker. Keys in the hash that don’t map to a schema’s field are simply
ignored.

In our example, we distinguish between the server’s error message (mapped to the syslog schema) and the
request information (mapped to the www schema) based on whetherparse_common succeeded in parsing
the line.

Saving Log Line

Another possibility, not shown in our example, is to ask that the line be saved for a later processing. This is
mostly of use to converters who maitains state between lines. In the cases, it is quite the case that there are
related lines that are missing from the end of the log file. In that case, you save the line and they will
automatically seen by the next run of your converter on the same DLF store. This option is only available in
the line-oriented mode of conversion.

File-Oriented Conversion

The same principles apply when you are using the file-oriented mode of conversion. This mode will usually be
used for binary log formats or format which aren’t line-oriented like XML.

For demonstration purpose, the following code could be added to transform our line-oriented converter into a
file-oriented one:

sub handle_log_lines {
return 0;

}

sub process_log_file {
my ($self, $process, $fh) = @_;

my $line;
while (defined($line = <$fh>) {

chomp $line;
$self->process_log_line($process, $line);

}
}

The difference between the above code and using the line oriented mode is that the framework won’t be aware of
the number of log lines processed and your converter might have troubles when processing log files which uses a
different line-ending convention than the host you are runnig on. Bottom line is that you should use the
line-oriented conversion mode when your log format is line oriented.

8

Chapter 2. Writing a New DLF Converter

Registering Your DLF Converter with the Lire Framework
We first said that DLF converters are perlobjectswhich implements the Lire::DlfConverter interface. What we
did is write aclasswhich implements the said interface. Creating the object from that class is the responsability
of theDLF converter registration script. This is simply a snippet of perl code which instantiates your object and
registers it with the Lire::PluginManager:

use Lire::PluginManager;
use MyConverters::SyslogCommonConverter;

Lire::PluginManager->register_plugin(
MyConverters::SyslogCommonConverter->new());

That’s all there is to it, really. You put this snippet in a file namedsyslog_common_init in one of the
directories listed in theplugins_init_path configuration variable.

Note: Some other notes on this topic:

1. The file can actually be named anything you want, the name service _init just make it clear what is
the purpose of the file.

2. The initial value of the plugins_init_path contains the directories sysconfdir /lire/plugins and
HOME/.lire/plugins . You can change this list by using the lire tool.

3. Your registration script can create and register more than one object.

You can now generate a www report for log files in that format using the commandlr_log2report
common_syslog < file.log .

DLF Converter API
The complete DLF Converter API documentation is included in POD format in the Lire distribution. It is usually
formatted as man pages. You can alway read it using theperldoc command.

The following packages documentation should be consulted: Lire::DlfConverter(3),
Lire::DlfConverterProcess(3) and Lire::PluginManager(3).

9

Chapter 3. Writing a DLF Schema
If you want to develop a DLF converter for an application whose logging data model isn’t adequately
represented by one of the existing DLF schema, you’ll need to develop a new one.

If you are familiar with SQL, a DLF schema is similar to a table schema description. A DLF file can be seen as a
table, where each log record is represented by a table row. Each log record in the same DLF schema shares the
same fields.

Designing the ftpproto schema
In this chapter, we will create a new schema for logging of FTP session. That DLF schema could serve for an
improved DLF converter for log files generated by Microsoft Internet Information Server. Lire currently has a
DLF converter for these log files but the current ftp DLF schema is modelled after the xferlog log file which only
represents file transfers whereas the log generated by Microsoft Internet Information Server contains more
detailed information on the ftp session.

Here is an example of such a log file:

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2001-11-29 00:01:32
#Fields: time c-ip cs-method cs-uri-stem sc-status
00:01:32 10.0.0.1 [56]created spacedat/091001092951LGW_Data.zip 226
00:01:32 10.0.0.1 [56]created spacedat/html/bx01g01.gif 226
00:01:32 10.0.0.1 [56]created spacedat/html/catlogo.gif 226
00:01:32 10.0.0.1 [56]QUIT - 226
00:03:32 10.0.0.1 [58]USER badm 331
00:03:32 10.0.0.1 [58]PASS - 230

As you can see, this log file contains other information beyond the simple upload/download represented in the
standard FTP schema. It a session identifier, the command executed, as well as the result code of the action. Our
new schema should be able to represent these things.

Creating The Schema File
To create a DLF schema, you have to create a XML file named after your schema identifier:ftpproto.xml .
Schema name should be made of alphanumeric characters. This schema identifier is case sensitive. You schema
identifer shouldn’t contains hyphens (-) or underscore characters (_). (The hyphen is used for a special purpose).

All DLF schemas starts and ends the same way:

<?xml version="1.0" encoding="ascii"?>
<!DOCTYPE lire:dlf-schema PUBLIC

"-//LogReport.ORG//DTD Lire DLF Schema Markup Language V1.1//EN"
"http://www.logreport.org/LDSML/1.1/ldsml.dtd">

<lire:dlf-schema xmlns:lire="http://www.logreport.org/LDSML/"

superservice=" ftpproto "
timestamp=" time "

>

10

Chapter 3. Writing a DLF Schema

<!-- Other elements will go here -->
</lire:dlf-schema>

The first lines contains the usual XML declaration and DOCTYPE declarations, you’ll find in many XML
documents. The real stuff starts at thelire:dlf-schema . What is important for your schema are the value of
thesuperservice andtimestamp attributes. The first one contains your schema identifier. It is called
“superservice” for historical reasons. The other one should contains the name of the field which order the record
by their event type. (Seethe Section calledThe Field Typesfor more information.)

The last line in the above excerpt would be the last thing in the file and closes thelire:dlf-schema element.

Adding the Schema’s Description
The next things that goes into the schema file are the schema’s title and description. Both are intended for
developers to read and should be informative of the scope of the schema:

<!-- Starting lire:dlf-schema element was omitted -->

<lire:title>DLF Schema for FTP Protocol</lire:title>

<lire:description>
<para>This DLF schema should be used for FTP servers that have

detailed information on the FTP connection in their log
files.

</para>
<para>Each record represents a command done by the client during

the FTP session.
</para>

</lire:description>

The content of thelire:description elements are DocBook elements. If you don’t know DocBook, you just
need to know that paragraphs are delimited using thepara elements.

Defining the Schema’s Fields
The only remaining things in the schema definitions are the field specifications. Here is the definition of the first
one:

<lire:field name="time" type="timestamp" label="Timestamp">
<lire:description>

<para>This field contains the timestamp at which the command was
issued.

</para>
</lire:description>

</lire:field>

11

Chapter 3. Writing a DLF Schema

As you can see, the fields are defined using thelire:field element which has three attributes:

name

This attribute contains the name of the field. This name should contains only alphanumeric characters. It
can also make use of the underscore character.

type

This attribute contains the type of the field. The available types will described shortly.

label

This should contains the column label that should be used by default in your report for data coming from
this field. This label should be short but descriptive.

The field’s description is held in thelire:description element which contains DocBook markup. The field’s
description should be descriptive enough so that someone implementing a DLF converter for this schema knows
what goes where.

The Field Types

The main types available for fields are:

timestamp

This should be use for field which contains a value to indicate a particular point in time. All timestamp
values are represented in the usual UNIX convention: number of seconds since January 1st 1970.

Each DLF schema must contains at least one field of this kind and its name should be in the
lire:dlf-schema ’s timestamp attribute.

hostname

This type should be used for fields which contains an hostnameor IP address.

It is important to mark such fields, because it will possible eventually to resolve automatically IP addresses
to hostname.

bool

Type for boolean values.

number

Type for numeric values.

Important: You shouldn’t use this type when the values are limited in number and are semantically
related to an enumeration like result code. You should use the string type for this.

You should only use the number type for values which you’ll want to report in classes instead on the
individual values.

12

Chapter 3. Writing a DLF Schema

bytes

This type should be use for numeric values which are quantities in bytes. The more specific typing is useful
for display purpose.

duration

This type should be use for numeric values which are quantities of time. The more specific typing is useful
for display purpose.

string

This is the type which can be use for all other purpose.

Note: If you read the specifications, you’ll find other types which are used. These additional types don’t bring
anything over the basic ones defined above and you shouldn’t use them.

In addition to the time field defined above, here are the remaining field defintions which make our complete
ftpproto schema:

<lire:field name="sessid" type="string" label="Session">
<lire:description>

<para>This field should contains an identifier that can used
to related the commands done in the same FTP session. This
identifier can be reused, but shouldn’t be while the FTP session
isn’t closed.
</para>

</lire:description>
</lire:field>

<lire:field name="command" type="string" label="Command">
<lire:description>

<para>This field contains the FTP command executed. The FTP
protocol command names (STOR, RETR, APPE, USER, etc.) should be used.

</para>
</lire:description>

</lire:field>

<lire:field name="result" type="string" label="Result">
<lire:description>

<para>This should contains the FTP result code after executing
the command.
</para>

</lire:description>
</lire:field>

<lire:field name="cmd_args" type="string" label="Argument">
<lire:description>

<para>This field should contains the parameters to the FTP command.
</para>

13

Chapter 3. Writing a DLF Schema

</lire:description>
</lire:field>

<lire:field name="size" type="bytes" label="Bytes Transferred">
<lire:description>

<para>When the command involves a transfer like for the RETR or STOR
command, it should contains the number of bytes transferred.

</para>
</lire:description>

</lire:field>

<lire:field name="elapsed" type="duration" label="Elasped">
<lire:description>

<para>This field contains the number of seconds executing the
command took.

</para>
</lire:description>

</lire:field>

Installing The Schema
Making available the new schema to the Lire framework is pretty easy: just copy the file to one of the directories
set in thelr_schemas_path configuration variable. By default, this variable contains the directories
datadir /lire/schemas andHOME/.lire/schemas . Like all other configuration variables, its value can be
changed using thelire tool.

Since we want our schema to be available for other users as well, we will install it in the system directory:

&root-prompt; install -m 644 ftproto.xml /usr/local/share/lire/schemas

(In this case, Lire was installed under/usr/local .

14

Chapter 4. Writing a New DLF Analyser
In Lire, a DLF Analyser is a plugin that can extract or derived data from other DLF data. The idea is that these
analysis do not depends on the underlying log format but that it can be found simply by using the data
normalised in the DLF schema.

For example, an analyser could assign category based on the url that was visited (like assigning the ’Public’ or
’Private’ category). This categorising operation doesn’t depends on the log format but only on the presence of
therequested_page field in the schema. This would be an example of a special kind of analyser, a Lire DLF
Categoriser. This is a simpler analyser that can create new fields based on one DLF record.

Note: The doc/examples in the source distribution contains the complete code for this categoriser.

There is a more generic kind of analysers that create data in another dlf streams based on arbitrary queries on the
source DLF schema. An example of this kind is an analyser that construct session summary from the www
requests. It reads the DLF records of the www DLF schema and creates www-user_session DLF records from
that.

Writing an analyser is similar to writing a DLF converter, so consultChapter 2for the details converning
registration and using configuration.

Writing a Categoriser
The simplest form of analyser are categorisers. In this section, we will show an example of how to write a
categoriser that can assign categories using regular expressions to each www requested page.

Defining The Extended Schema
A categoriser writes DLF in an extended schema. An extended schemas is an extension of a base schema. If you
are familiar with SQL you can see it as an inner join with the main schema. That is each fields in the main
schema will have the extension fields of the extended schema.

In our case our extended schema is very simple, it only adds onecategory field to the www schema.

Defining an extended schema is identical to writing a DLF Schema with exception that we use a different
top-level element. You should consultChapter 3for all the details. Here is the extended schema that our
categoriser will use:

<?xml version="1.0"?>
<!DOCTYPE lire:extended-schema PUBLIC

"-//LogReport.ORG//DTD Lire DLF Schema Markup Language V1.1//EN"
"http://www.logreport.org/LDSML/1.1/ldsml.dtd">

<lire:extended-schema id="www-category" base-schema="www"
xmlns:lire="http://www.logreport.org/LDSML/">

<lire:title>Category Extended Schema for WWW service</lire:title>

<lire:description>
<para>This is an extended schema for the WWW service which adds a

category field based on the regexp matched by the requested_page.
</para>

15

Chapter 4. Writing a New DLF Analyser

</lire:description>

<lire:field name="category" type="string" label="Category">
<lire:description>

<para>This fields contain the page category.</para>
</lire:description>

</lire:field>
</lire:extended-schema>

The difference with a regular DLF schema is that it starts with theextended-schema tag which has a
base-schema attribute which should contain the DLF schema or derived DLF schema that is extended.

Defining the Categoriser
Like a DLF Converter, the categoriser s an object deriving from a base class which defines the categoriser
interface. In the categoriser case, that interface isLire::DlfCategoriser. The categoriser also has to provide some
meta-information to the framework. Here is the code for all of this:

package MyAnalysers::PageCategoriser;

use base qw/Lire::DlfCategoriser/;

sub new {
return bless {}, shift;

}

sub name {
return ’page-categoriser’;

}

sub title {
return "A page categoriser";

}

sub description {
return "<para>A categoriser that assigns categories based on a map
of regular expressions to categories.</para>";

}

sub src_schema {
return "www";

}

sub dst_schema {
return "www-category";

}

16

Chapter 4. Writing a New DLF Analyser

The methods different from the DLf converter case are thesrc_schema which specifies the schema which to
which fields are added and thedst_schema which gives the schema specifying the fields that will be added.

Categoriser Configuration
Our categoriser will assign categories based on a mapping from regular expression to category names. To be
useful, this mapping should be configurable. Like all plugins in Lire, DLF categorisers can use the Lire
Configuration Specification Markup Language to defines the configuration data they use (seeChapter 8for the
full details). The convention is that if there is a parameter namedyourname _propeties , this is considered the
configuration specification for the pluginyourname . This will mean that a little button will appear in thelire
user interface so that the user can configure your plugin data.

In our categoriser case, we will define a list of records which will enable the user to define many pairs of regular
expression and category name:

<?xml version="1.0"?>
<!DOCTYPE lrcsml:config-spec PUBLIC

"-//LogReport.ORG//DTD Lire Report Configuration Specification Markup Language V1.0//EN"
"http://www.logreport.org/LRCSML/1.1/lrcsml.dtd">

<lrcsml:config-spec xmlns:lrcsml="http://www.logreport.org/LRCSML/"
xmlns:lrcml="http://www.logreport.org/LRCML/">

<lrcsml:list name="page-categoriser_properties">
<lrcsml:summary>Page Categoriser Configuration</lrcsml:summary>

<lrcsml:description>
<para>This is a list of regexp that will be apply in this order

along the category that should be applied when the regexp match.
</para>

</lrcsml:description>

<lrcsml:record name="regex2category">
<lrcsml:summary>The Regexp-Category Association</lrcsml:summary>
<lrcsml:string name="regex">

<lrcsml:summary>Regex</lrcsml:summary>
<lrcsml:description>

<para>The regular expression to test.</para>
</lrcsml:description>

</lrcsml:string>

<lrcsml:string name="category">
<lrcsml:summary>Category</lrcsml:summary>
<lrcsml:description>

<para>This field contains the category that should be assigned.</para>
</lrcsml:description>

</lrcsml:string>
</lrcsml:record>

</lrcsml:list>
p <lrcml:param name="page-categoriser_properties">

<lrcml:param name="regex2category">
<lrcml:param name="regex">.*</lrcml:param>
<lrcml:param name="category">Unknown</lrcml:param>

</lrcml:param>
</lrcml:param>
</lrcsml:list>

17

Chapter 4. Writing a New DLF Analyser

</lrcsml:config-spec>

This specification also sets a list containing one catchall regex with the category ’Uknown’. The user could add
other values before that. An alternative implementation could define a field specifying the default category to
assign when no regular expression matches.

Categoriser Implementation
Two methods are needed to implement the categoriser. The first is an initialisation method calledinitialise .
This method receives as parameter the configuration data entered by the user.

In our case, we will compile the regular expressions for faster processing later on :

sub initialise {
my ($self, $config) = @_;

foreach my $map (@$config) {
$map->[0] = qr/$map->[0]/;

}

$self->{’categories’} = $config;
return;

}

The categorising is made in thecategorise method. This method receives as parameter the DLF record to
which the extended fields should be added. This DLF record is an hash reference containing one key for each of
the fields defined in the source DLF schema. We simply assign the extended fields by adding new keys to the
hash reference :

sub categorise {
my ($self, $dlf) = @_;

foreach my $map (@{$self->{’categories’}}) {
if ($dlf->{’requested_page’} =~ /$map->[0]/) {

$dlf->{’category’} = $map->[1];
return;

}
}
return;

}

That’s all. Like for the DLF converter you’ll need to register this analyser with theLire::PluginManager (see
the Section calledRegistering Your DLF Converter with the Lire Frameworkin Chapter 2for more information.

18

Chapter 4. Writing a New DLF Analyser

Writing an Analyser
When a categoriser isn’t sufficient for your needs, you can write anLire::DlfAnalyser which gets complete
control on the analysis process. The main difference with at categoriser is that thedst_schema method will
contain refer to a derived schema instead of an extended schema.

The core of the analyser is done in theanalyse method that takes a reference to the store onto which data will
be analysed and to aLire::DlfAnalyserProcess callback object which should be use to write new DLF
records and report errors. The method also receives the plugin configuration data. The analyser should create a
Lire::DlfQuery to select the records necessary for its analysis.

Thedoc/examples in the source distribution contains the a boiler plate for witing an Analyser.

DLF Analyser API
The complete DLF Analyser API documentation is included in POD format in the Lire distribution. It is usually
formatted as man pages. You can alway read it using theperldoc command.

The following packages documentation should be consulted: Lire::DlfAnalyser(3), Lire::DlfAnalyserProcess(3),
Lire::DlfCategoriser(3), Lire::DlfQuery(3) and Lire::PluginManager(3).

19

Chapter 5. Writing a New Report
Writing a new report involves writing a report specification, e.g.
/service/<superservice>/reports/top-foo-by-bar.xml , and adding this report along with possible
configuration parameters to<service>.cfg . E.g., to create a new report, based upon
email/from-domain.xml : copy the file/usr/local/etc/lire/email.cfg to
~/.lire/etc/email.cfg . Copy the file
/usr/local/share/lire/reports/email/top-from-domain.xml to e.g.
~/.lire/reports/reports/email/from-domain.xml . Edit the last file to your needs, and enable it by
listing it in your ~/.lire/etc/email.cfg .

Beware! The name of the report generally consists of alphanumerics and ’-’, but the name of parameters maynot
contain any ’-’ characters. It generally consists of alphanumerics and ’_’ characters.

Filter Specification
For now, you’ll have to refer to the example filters as found in the current report specification files. We’ll give
one other example here: specifying a time range.

Suppose you want to be able to report on only a specific time range. You could build a (possibly global and
reused) filter like:

<lire:filter-spec>
<lire:and>

<lire:ge arg1="$timestamp" arg2="$period-start"/>
<lire:le arg1="$period-end" arg2="$timestamp"/>

</lire:and>
</lire:filter-spec>

When trying your new filter, you could install it in~/.lire/filters/your-filter-name.xml . When
lr_dlf2xml looks up a filter which was mentioned in the report configuration file, it looks first in
~/.lire/filters/ , and then in.../share/lire/filters/ .

20

III. Developer’s Reference

Chapter 6. Lire Data Types

Lire Textual Elements
This DTD module defines elements related that contains human-readable content in all the Lire DTDs.

This module will also imports some DocBook XML V4.1.2 elements for richer semantic tagging.

This module is also namespace aware and will honor the setting ofLIRE.pfx to scope its element

The latest version of that module is 2.0 and its public identifier is -//LogReport.ORG//ELEMENTS Lire Textual
Elements V2.0//EN.

<!--
Make sure LIRE.pfx is defined. This declaration will be
ignored if it was already defined.

-->
<!ENTITY % LIRE.pfx "lire:" >

<!ENTITY % LIRE.title "%LIRE.pfx;title" >
<!ENTITY % LIRE.description "%LIRE.pfx;description" >

title element
The title element contains a descriptive title.

This element represent some title in Lire. It can be used to give a title to a report specification or to specifify the
title of a report or subreport.

The content of this element should be localized.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.title; (#PCDATA) >

DocBook Elements
The standardpara , formalpara and admonition elements (note , tip , warning , important andcaution)
are used as well as their content may be used.

<!ENTITY % docbook-block.mix
"para|formalpara|warning|tip|important|caution|note">

<!ENTITY % DocBookDTD PUBLIC
"-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">

22

Chapter 6. Lire Data Types

%DocBookDTD;

description element
Thedescription element is used to describe an element. It can be used to describe DLF fields, describe a
report specification or include descriptions in the generated reports.

This element can contains one or more of the block-level DocBook elements we use.

The content of this element should be localized.

This element doesn’t have any attributes.

<!ELEMENT %LIRE.description; (%docbook-block.mix;)+>

23

Chapter 7. Common Textual Elements to All XML
Formats

Lire Data Types Parameter Entities
This module contains the parameter entity declarations for the data types used by all Lire DTDs.

All defined data types have a<type>.type parameter entity which defines their type as an XML type valid in
an attribute declaration and a<type>.name parameter entity that declare their name.

Additionally, this module declares <name>.types parameter entities that group related types together.

The latest version of that module is 1.0 and its public identifier is -//LogReport.ORG//ENTITIES Lire Data
Types V1.0//EN.

Boolean Type
The bool type. It contains a boolean value, either0, 1, f , t , false or true .

<!ENTITY % bool.type "0 | 1 | f | t | false | true | yes | no">
<!ENTITY % bool.name "bool" >

Integer Type
The int type can contains positive or negative 32 bits integer.

<!ENTITY % int.type "CDATA" >
<!ENTITY % int.name "int" >

Number Type
The number type can contains any number either integral or floating point.

<!ENTITY % number.type "CDATA" >
<!ENTITY % number.name "number" >

24

Chapter 7. Common Textual Elements to All XML Formats

String Type
The string type contains any displayable text string.

<!ENTITY % string.type "CDATA" >
<!ENTITY % string.name "string" >

Timestamp type
The timestamp type contains a time representation which contains the date and time informations. It can be
represented in UNIX epoch time.

<!ENTITY % timestamp.type "CDATA" >
<!ENTITY % timestamp.name "timestamp" >

Time Type
The time type contains a time representation which contains only the time of the day, not the date. For example,
this data type can represent 12h00, 15:13:10, etc.

<!ENTITY % time.type "CDATA" >
<!ENTITY % time.name "time" >

Date Type
The date type contains a time representation which contains only a date.

<!ENTITY % date.type "CDATA" >
<!ENTITY % date.name "date" >

Duration Type
The duration type contains a quantity of time. For example :5s , 30h , 2days , 3w, 2M, 1y . (The authoritive list of
supported duration types is coded inLire::DataTypes::duration2sec .)

<!ENTITY % duration.type "CDATA" >
<!ENTITY % duration.name "duration" >

25

Chapter 7. Common Textual Elements to All XML Formats

IP Type
The ip type contains an IPv4 address.

<!ENTITY % ip.type "CDATA" >
<!ENTITY % ip.name "ip" >

Port Type
The port type contains a port as used in the TCP to name the ends of logical connections. See also RFC 1700 and
http://www.iana.org/numbers.htm. Commonly found in /etc/services on Unix systems.

<!ENTITY % port.type "CDATA" >
<!ENTITY % port.name "port" >

Hostname Type
The hostname type contains an DNS hostname. (It can also contains the IPv4 address of the host).

<!ENTITY % hostname.type "NMTOKEN" >
<!ENTITY % hostname.name "hostname" >

URL Type
The url type represents URL.

<!ENTITY % url.type "CDATA" >
<!ENTITY % url.name "url" >

26

Chapter 7. Common Textual Elements to All XML Formats

Email Type
The email type can be used to represent an email address.

<!ENTITY % email.type "CDATA" >
<!ENTITY % email.name "email" >

Bytes Type
The bytes type can be used to represent quantity of data. (5m, 1.2g , 300bytes, etc.)

<!ENTITY % bytes.type "CDATA" >
<!ENTITY % bytes.name "bytes" >

Filename Type
The filenametype can be used to Represent the name of a file or directory.

<!ENTITY % filename.type "CDATA" >
<!ENTITY % filename.name "filename" >

Field Type

Important: This type should be considered internal to Lire and shouldn’t be used as a parameter or DLF field
type.

The field type can contains a DLF field name. It is used in the parameter specification to represent a choice of
sort field for example.

<!ENTITY % field.type "NMTOKEN" >
<!ENTITY % field.name "field" >

27

Chapter 7. Common Textual Elements to All XML Formats

Superservice Type

Important: This type should be considered internal to Lire and shouldn’t be used as a parameter or DLF field
type.

<!ENTITY % superservice.type "NMTOKEN" >
<!ENTITY % superservice.name "superservice" >

Related Types

<!ENTITY % basic.types "%bool.name; | %int.name; |
%number.name; | %string.name;" >

<!ENTITY % internet.types "%email.name; | %url.name; |
%ip.name; | %hostname.name; |
%port.name;" >

<!ENTITY % misc.types "%filename.name; | %bytes.name; " >
<!ENTITY % time.types "%date.name; | %time.name; |

%timestamp.name; | %duration.name;" >

<!ENTITY % lire.types "%basic.types; | %time.types; |
%internet.types; | %misc.types;" >

28

Chapter 8. The Lire Report Configuration
Specification Markup Language

The Lire Report Configuration Specification Markup
Language
Document Type Definition for the Lire Report Configuration Specification Markup Language.

This DTD defines a grammar that is used to specify the configuration parameters used by the Lire framework.
Besides the framework parameters, this DTD can be used by extensions writers to register their parameters with
the framework. The configuration specifications are usually stored inprefix /share/lire/config-spec .

Currently, Lire’s configuration namespace is flat, which means that two different specification documents cannot
define parameters of the same names.

Elements of this DTD uses the http://www.logreport.org/LRCSML/ namespace that is usually mapped to the
lrcsml prefix.

The latest version of that DTD is 1.1 and its public identifier is -//LogReport.ORG//DTD Lire Report
Specification Markup Language V1.1//EN. Its canonical system identifier is
http://www.logreport.org/LRCSML/1.1/lrcsml.dtd.

<!--
-->

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LRCSML.xmlns.pfx "lrcsml" >
<!ENTITY % LRCSML.pfx "%LRCSML.xmlns.pfx;:" >
<!ENTITY % LRCSML.xmlns.attr.name "xmlns:%LRCSML.xmlns.pfx;" >
<!ENTITY % LRCSML.xmlns.attr

"%LRCSML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCSML/’">

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;:" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns:%LRCML.xmlns.pfx;">
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

<!-- For the modules which we are including -->
<!ENTITY % LIRE.pfx "%LRCSML.pfx;" >

This DTD uses the common lire-desc.mod module which is used to include a subset of DocBook in description
and text elements.

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

29

Chapter 8. The Lire Report Configuration Specification Markup Language

Each configuration specification is a XML document which has oneconfig-spec as its root element.

<!ENTITY % LRCSML.config-spec "%LRCSML.pfx;config-spec" >
<!ENTITY % LRCSML.summary "%LRCSML.pfx;summary" >
<!ENTITY % LRCSML.boolean "%LRCSML.pfx;boolean" >
<!ENTITY % LRCSML.integer "%LRCSML.pfx;integer" >
<!ENTITY % LRCSML.string "%LRCSML.pfx;string" >
<!ENTITY % LRCSML.dlf-schema "%LRCSML.pfx;dlf-schema" >
<!ENTITY % LRCSML.dlf-streams "%LRCSML.pfx;dlf-streams" >
<!ENTITY % LRCSML.dlf-converter "%LRCSML.pfx;dlf-converter" >
<!ENTITY % LRCSML.command "%LRCSML.pfx;command" >
<!ENTITY % LRCSML.file "%LRCSML.pfx;file" >
<!ENTITY % LRCSML.executable "%LRCSML.pfx;executable" >
<!ENTITY % LRCSML.directory "%LRCSML.pfx;directory" >
<!ENTITY % LRCSML.select "%LRCSML.pfx;select" >
<!ENTITY % LRCSML.option "%LRCSML.pfx;option" >
<!ENTITY % LRCSML.list "%LRCSML.pfx;list" >
<!ENTITY % LRCSML.object "%LRCSML.pfx;object" >
<!ENTITY % LRCSML.output-format "%LRCSML.pfx;output-format" >
<!ENTITY % LRCSML.plugin "%LRCSML.pfx;plugin" >
<!ENTITY % LRCSML.record "%LRCSML.pfx;record" >
<!ENTITY % LRCSML.reference "%LRCSML.pfx;reference" >
<!ENTITY % LRCSML.report-config "%LRCSML.pfx;report-config" >

<!ENTITY % LRCML.param "%LRCML.pfx;param" >

<!ENTITY % LRCSML.summary "%LRCSML.pfx;summary" >
<!ENTITY % types-spec "%LRCSML.boolean;|%LRCSML.integer;|

%LRCSML.string;|%LRCSML.dlf-schema;|
%LRCSML.dlf-converter;|%LRCSML.dlf-streams;|
%LRCSML.command;|%LRCSML.file;|
%LRCSML.executable;|%LRCSML.directory;|
%LRCSML.select;|%LRCSML.list;|%LRCSML.object;|
%LRCSML.output-format;|
%LRCSML.plugin;|%LRCSML.record;|%LRCSML.reference;
|%LRCSML.report-config;

">
<!ENTITY % common.mix "(%LRCSML.summary;)?,(%LIRE.description;)?">
<!ENTITY % default "(%LRCML.param;)?" >
<!ENTITY % common.mix.default "(%common.mix;, %default;)" >

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;)* >
<!ATTLIST %LRCML.param;

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

30

Chapter 8. The Lire Report Configuration Specification Markup Language

config-spec element
Root element of a configuration specification document. It contains a list of parameter specifications..

This element doesn’t have any attributes.

<!ELEMENT %LRCSML.config-spec; ((%types-spec;)+) >
<!ATTLIST %LRCSML.config-spec;

%LRCSML.xmlns.attr;
%LRCML.xmlns.attr; >

summary element
This element is used for a short one description of the parameter’s purpose. Use thedescription element for
longer help text.

This element doesn’t have any attribute.

<!ELEMENT %LRCSML.summary; (#PCDATA) >

Parameter Specifiations Elements

Common Attributes

These attributes are common to all parameters specification elements:

name

Contains the name of the parameter to which this specification apply.

required

Determines if a valid value is required to make the container validates. Defaults to true.

section

This attribute can be used to set a menu section which can be used by configuration frontends to group
parameters together.

summary

This attribute is equivalent to thesummary element.

obsolete

This attribute can be used to mark a parameter as obsolete. Obsolete parameters will be removed from the
specification in a future Lire release.

<!ENTITY % common.attr "

31

Chapter 8. The Lire Report Configuration Specification Markup Language

name NMTOKEN #REQUIRED
required NMTOKEN ’1’
section CDATA #IMPLIED
summary CDATA #IMPLIED
obsolete NMTOKEN ’0’">

boolean element

This element is used to define a boolean parameter which can takes ayes or no value.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.boolean; (%common.mix.default;) >
<!ATTLIST %LRCSML.boolean;

%common.attr;
>

integer element

This element is used to define an integer parameter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.integer; (%common.mix.default;) >
<!ATTLIST %LRCSML.integer;

%common.attr;
>

string element

This element is used to define an string parameter. These parameters can contains any value.

This can have avalid-re attribute which specify a regular expression that the value must match.

<!ELEMENT %LRCSML.string; (%common.mix.default;) >
<!ATTLIST %LRCSML.string;

%common.attr;
valid-re CDATA #IMPLIED

>

32

Chapter 8. The Lire Report Configuration Specification Markup Language

dlf-converter element

This element is used to select a registered DlfConverter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.dlf-converter; (%common.mix.default;) >
<!ATTLIST %LRCSML.dlf-converter;

%common.attr;
>

dlf-schema element

This element is used to select an available DlfSchema.

If this element has thesuperservices set, only superservices can be selected.

<!ELEMENT %LRCSML.dlf-schema; (%common.mix.default;) >
<!ATTLIST %LRCSML.dlf-schema;

%common.attr;
superservices NMTOKEN ’0’

>

dlf-streams element

This element is used to configure Lire::DlfStream in Lire::DlfStore.

This element has no attribute.

<!ELEMENT %LRCSML.dlf-streams; (%common.mix.default;) >
<!ATTLIST %LRCSML.dlf-streams;

%common.attr;
>

commandelement

This element is used to define a command parameter. To be accepted as valid the parameter’s value must point to
an executable file or an executable file with the specified value must exist in a directory of the PATH
environment variable.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.command; (%common.mix.default;) >
<!ATTLIST %LRCSML.command;

%common.attr;

33

Chapter 8. The Lire Report Configuration Specification Markup Language

>

file element

This element is used to define a file parameter. To be accepted as valid, the parameter’s value must point to an
existing file.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.file; (%common.mix.default;) >
<!ATTLIST %LRCSML.file;

%common.attr;
>

directory element

This element is used to define a directory parameter. To be accepted as valid, the parameter’s value must point to
an existing directory.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.directory; (%common.mix.default;) >
<!ATTLIST %LRCSML.directory;

%common.attr;
>

executable element

This element is used to define an executable parameter. To be accepted as valid, the parameter’s value must point
to an existing executable file.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.executable; (%common.mix.default;) >
<!ATTLIST %LRCSML.executable;

%common.attr;
>

34

Chapter 8. The Lire Report Configuration Specification Markup Language

select element

This element is used to define a parameter for which the value is selected among a set of options. The allowed set
of options is specified usingoption elements.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.select; (%common.mix;,(%LRCSML.option;)+, %default;) >
<!ATTLIST %LRCSML.select;

%common.attr;
>

option element

This element is used to define the valid values for aselect parameter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.option; (%common.mix;) >
<!ATTLIST %LRCSML.option;

%common.attr;
>

list element

This element is used to define a parameter that can contains an ordered set of values. The type of values which
can be contained is specified using other parameters elements. Any number of parameters of the type specified
by the children elements can be contained by the defined parameter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.list; (%common.mix;,(%types-spec;)+,%default;) >
<!ATTLIST %LRCSML.list;

%common.attr;
>

object element

This element is used to define a parameter that will instantiate an object. The object will be instantiated by
calling the "new_from_config()" class method defined in the package specified by the element’sclass attribute.
The constructor will receive the hash instantiated from the parameter’s components as parameter.

The label attribute can be used to specify the contained element that should be used to represent this object in
lists.

35

Chapter 8. The Lire Report Configuration Specification Markup Language

<!ELEMENT %LRCSML.object; (%common.mix;,(%types-spec;)+,%default;) >
<!ATTLIST %LRCSML.object;

%common.attr;
class NMTOKEN #REQUIRED
label NMTOKEN #IMPLIED

>

output-format element

This element is used to select an available OutputFormat.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.output-format; (%common.mix.default;) >
<!ATTLIST %LRCSML.output-format;

%common.attr;
>

record element

This element is used to define a parameter that holds record-like data.

The label attribute can be used to specify the contained element that should be used to represent this record in
lists.

<!ELEMENT %LRCSML.record; (%common.mix;,(%types-spec;)+, %default;) >
<!ATTLIST %LRCSML.record;

%common.attr;
label NMTOKEN #IMPLIED

>

record element

This element is used to define a parameter that holds record-like data.

The label attribute can be used to specify the contained element that should be used to represent this record in
lists.

<!ELEMENT %LRCSML.record; (%common.mix;,(%types-spec;)+,%default;) >
<!ATTLIST %LRCSML.record;

%common.attr;
label NMTOKEN #IMPLIED

>

36

Chapter 8. The Lire Report Configuration Specification Markup Language

reference element

This element is used to select from an index. The index in which the available values is taken is specified in the
index attribute.

<!ELEMENT %LRCSML.reference; (%common.mix.default;) >
<!ATTLIST %LRCSML.reference;

%common.attr;
index CDATA #REQUIRED

>

report-config element

This element is used to configure a report configuration.

This element doesn’t have any attribute. Each superservice can define a default report configuration using this
element with a name ofsuperservice _default .

<!ELEMENT %LRCSML.report-config; (%common.mix.default;) >
<!ATTLIST %LRCSML.report-config;

%common.attr;
>

plugin element

This element is used to define a parameter for which the value is selected among a set of options. The allowed set
of options is specified usingoption elements. The element will also contain additional parameters based on the
selected value. The available paramaters should be defined in arecord or similar specification named
name_properties . For example, the additional parameters when theoption_1 option is selected will be
found in the specification namedoption_1_properties .

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.plugin; (%common.mix;,(%LRCSML.option;)+, %default;) >
<!ATTLIST %LRCSML.plugin;

%common.attr;
>

37

Chapter 9. The Lire Report Configuration
Markup Language

The Lire Report Configuration Markup Language
Document Type Definition for the Lire Report Configuration Markup Language.

This DTD defines a grammar that is used to store the Lire configuration. The configuration is stored in one or
more XML files. Parameters set in later configuration files override the ones set in the formers. The valid
parameter names as well as their description and type are specified using configuration specification documents.

Elements of this DTD use the http://www.logreport.org/LRCML/ namespace, which is usually mapped to the
lrcml prefix.

The latest version of the DTD is 1.0 and its public identifier is -//LogReport.ORG//DTD Lire Report
Specification Markup Language V1.0//EN. Its canonical system identifier is
http://www.logreport.org/LRCML/1.0/lrcml.dtd.

<!--
-->

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % xmlns.colon ":" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;%xmlns.colon;" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns%xmlns.colon;%LRCML.xmlns.pfx;" >
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

<!-- For the module which we are including -->
<!ENTITY % LIRE.pfx "%LRCML.pfx;" >

Each configuration specification is an XML document which has oneconfig as its root element.

<!ENTITY % LRCML.config "%LRCML.pfx;config" >
<!ENTITY % LRCML.global "%LRCML.pfx;global" >
<!ENTITY % LRCML.param "%LRCML.pfx;param" >

config element
Root element of a configuration document. It contains presently only oneglobal element which is used to hold
the global configuration parameters.

This element doesn’t have any attributes.

38

Chapter 9. The Lire Report Configuration Markup Language

<!ELEMENT %LRCML.config; (%LRCML.global;) >
<!ATTLIST %LRCML.config;

%LRCML.xmlns.attr; >

global element
This element starts the global configuration data. (This is the only scope currently defined). It contains a list of
param elements.

<!ELEMENT %LRCML.global; (%LRCML.param;)+ >

param element
This element contains the parameter’s value. The parameter’s name is defined in thename attribute.

Thevalue attribute can be used to store scalar’s value.

When the parameter’s type is a list, the values are stored in childrenparam elements.

Warning
This element has a mixed content type. We should probably use a value attribute to hold scalar values.

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;)* >
<!ATTLIST %LRCML.param;

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

39

Chapter 10. The Lire DLF Schema Markup
Language

The Lire DLF Schema Markup Language
The Lire DLD Schema Markup Language (LDSML) is used describe the fields used by DLF records of a
specific schema like www, email or msgstore.

DLF schemas are defined in one XML document that should be installed in one of the directories that is included
in the schema path (usuallyHOME/.lire/schemas andprefix /share/lire/schemas). This document
must conforms to the LDSML DTD which is described here. Elements of that DTD are defined in the namespace
http://www.logreport.org/LDSML/ which will be usually mapped to the lire prefix (altough other prefixes may
be used).

The latest version of that DTD is 1.1 and its public identifier is -//LogReport.ORG//DTD Lire DLF Schema
Markup Language V1.1//EN. Its canonical system identifier is http://www.logreport.org/LDSML/1.1/ldsml.dtd.

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LIRE.xmlns.pfx "lire" >
<!ENTITY % LIRE.pfx "%LIRE.xmlns.pfx;:" >
<!ENTITY % LIRE.xmlns.attr.name "xmlns:%LIRE.xmlns.pfx;" >
<!ENTITY % LIRE.xmlns.attr

"%LIRE.xmlns.attr.name; CDATA #FIXED
’http://www.logreport.org/LDSML/’">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<!ENTITY % lire-types.mod PUBLIC
"-//LogReport.ORG//ENTITIES Lire Data Types V1.0//EN"
"lire-types.mod">

%lire-types.mod;

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

The top-level element in XML documents describing a DLF schema will be either adlf-schema ,
extented-schema or derived-schema depending on the schema’s type.DLF schemasare used as base
schema for one superservice. For example, the DLF schema of the www superservice is named www. An
extended schemais used to define additional fields which values are to be computed by ananalyser.

Extended schemas are named after the schema which they extend. For example, the www-attack extended
schema adds anattack field which contains, if any, the “attack” that was attempted in that request.

40

Chapter 10. The Lire DLF Schema Markup Language

Derived schemasare used by another type of analysers which defines an entirely different schema. Whereas in
the extended schema the new fields will be added to all the DLF records of the base schema, the derived schema
will create new DLF records based on the DLF records of the base schema. An example of this is the
www-session schema which computes users’ session information based on the web requests contained in the
www schema. Like for theextended-schema case, derived schemas are named after the base schema from
which they are derived.

The fields that makes each schema are defined usingfield elements.

<!-- Prefixed names declaration. -->
<!ENTITY % LIRE.dlf-schema "%LIRE.pfx;dlf-schema" >
<!ENTITY % LIRE.extended-schema "%LIRE.pfx;extended-schema" >
<!ENTITY % LIRE.derived-schema "%LIRE.pfx;derived-schema" >
<!ENTITY % LIRE.field "%LIRE.pfx;field" >

The dlf-schema element
Thedlf-schema element is used to define the base schema of a superservice. It should contains optionaltitle

anddescription elements followed byfield elements describing the schema structure.

The title is an optional text string that will be used to in the automatic documentation generation that can be
extracted from the schema definition. Thedescription element should describe what is represented by each
DLF records (one web request, one email delivery, one firewall event, etc.)

dlf-schema ’s attributes

superservice

This required attribute contains the name of the superservice described by this schema. This will also be
used as the base schema’s identifier.

timestamp

This required attribute contains the name of the field which contains the official event’s timestamp. This
field will be used to sort the DLF records for timegroup and timeslot report operations.

<!ELEMENT %LIRE.dlf-schema; ((%LIRE.title;)?, (%LIRE.description;)?,
(%LIRE.field;)+) >

<!ATTLIST %LIRE.dlf-schema;
superservice %superservice.type; #REQUIRED
timestamp IDREF #REQUIRED
%LIRE.xmlns.attr; >

41

Chapter 10. The Lire DLF Schema Markup Language

extended-schema element
This is the root element of an extended DLF Schema. Extended-schema defines additional fields that will be
added to the base schema. It contains an optional title, an optional description and one or more field
specifications.

dlf-schema ’s attributes

id

This required attribute contains the identifier of that schema. This identifier should be composed of the
superservice’s name followed by an hypen (-) and then an word describing the extended schema.

base-schema

This required attribute contains the identifier of the schema that is extended.

required-fields

This optional attribute contains a space delimited list of field names that must be available in the base
schema for the analyser to do its job. If any of the listed field is missing in the DLF, extended fields for the
base schema cannot be computed.

module

This required attribute contains the name of the analyser that is used to compute the extended fields. This is
a perl module that should be installed in perl’s library path.

<!ELEMENT %LIRE.extended-schema;
((%LIRE.title;)?, (%LIRE.description;)?,

(%LIRE.field;)+) >
<!ATTLIST %LIRE.extended-schema;

id NMTOKEN #REQUIRED
base-schema NMTOKEN #REQUIRED
module NMTOKEN #REQUIRED
required-fields NMTOKENS #IMPLIED
%LIRE.xmlns.attr; >

derived-schema element
This is the root element of a derived DLF Schema. The difference between a normal schema and a derived
schema is that the data is generated from another DLF instead of a log file.

derived-schema ’s attributes

id

This required attribute contains the identifier of that schema. This identifier should be composed of the
superservice’s name followed by an hypen (-) and then an word describing the derived schema.

42

Chapter 10. The Lire DLF Schema Markup Language

base-schema

This required attribute contains the identifier of the schema from which this derived schema’s data is
derived.

required-fields

This optional attribute contains a space delimited list of field names that must be available in the base
schema for the analyser to do its job. If any of the listed field is missing in the DLF, the derived records
cannot be computed.

module

This required attribute contains the name of the analyser that is used to compute the derived records. This is
a perl module that should be installed in perl’s library path.

timestamp

This required attribute contains the name of the field which contains the official event’s timestamp. This
field will be used to sort the DLF records for timegroup and timeslot report operations.

<!ELEMENT %LIRE.derived-schema;
((%LIRE.title;)?, (%LIRE.description;)?,

(%LIRE.field;)+) >
<!ATTLIST %LIRE.derived-schema;

id NMTOKEN #REQUIRED
base-schema NMTOKEN #REQUIRED
module NMTOKEN #REQUIRED
required-fields NMTOKENS #IMPLIED
timestamp IDREF #REQUIRED
%LIRE.xmlns.attr; >

field element
The field is used to describe the fields of the schema. Each field is specified by its name and type. The field
element may contain an optionaldescription element which gives more information on the data contained in
the field. Description should be used to give better information to the DLF converter implementors on what
should appears in that field.

field ’s attributes

name

This required attribute contains the name of the field.

type

This required attribute contains the the field’s type.

43

Chapter 10. The Lire DLF Schema Markup Language

default

Warning
This attribute is obsolete and will be removed in a future Lire release.

label

This optional attribute gives the label that should be used to display this field in reports. Defaults to the
field’s name when omitted.

<!ELEMENT %LIRE.field; (%LIRE.description;)? >
<!ATTLIST %LIRE.field;

name ID #REQUIRED
type (%lire.types;) #REQUIRED
default CDATA #IMPLIED
label CDATA #IMPLIED >

44

Chapter 11. The Lire Report Specification Markup
Language

The Lire Report Specification Markup Language
Document Type Definition for the Lire Report Specification Markup Language.

This DTD defines a grammar that is used to specify reports that can be generated by Lire. Elements of this DTD
uses the http://www.logreport.org/LRSML/ namespace that is usually mapped to thelire prefix.

The latest version of that DTD is 2.1 and its public identifier is -//LogReport.ORG//DTD Lire Report
Specification Markup Language V2.1//EN. Its canonical system identifier is
http://www.logreport.org/LRSML/2.1/lrsml.dtd.

<!--
-->

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LIRE.xmlns.pfx "lire" >
<!ENTITY % LIRE.pfx "%LIRE.xmlns.pfx;:" >
<!ENTITY % LIRE.xmlns.attr.name "xmlns:%LIRE.xmlns.pfx;" >
<!ENTITY % LIRE.xmlns.attr

"%LIRE.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRSML/’">

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;:" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns:%LRCML.xmlns.pfx;">
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<!ENTITY % lire-types.mod PUBLIC
"-//LogReport.ORG//ENTITIES Lire Data Types V1.0//EN"
"lire-types.mod">

%lire-types.mod;

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

Each report specification is a XML document which has onereport-spec as its root element. This DTD can
also be used for filter specification which have oneglobal-filter-spec as root element.

45

Chapter 11. The Lire Report Specification Markup Language

<!ENTITY % LIRE.report-spec "%LIRE.pfx;report-spec" >
<!ENTITY % LIRE.global-filter-spec "%LIRE.pfx;global-filter-spec">
<!ENTITY % LIRE.display-spec "%LIRE.pfx;display-spec" >
<!ENTITY % LIRE.param-spec "%LIRE.pfx;param-spec" >
<!ENTITY % LIRE.param "%LIRE.pfx;param" >
<!ENTITY % LIRE.chart-configs "%LIRE.pfx;chart-configs" >
<!ENTITY % LRCML.param "%LRCML.pfx;param" >
<!ENTITY % LIRE.filter-spec "%LIRE.pfx;filter-spec" >
<!ENTITY % LIRE.report-calc-spec "%LIRE.pfx;report-calc-spec" >

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;)* >
<!ATTLIST %LRCML.param;

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

report-spec element
Root element of a report specification. It contains descriptive elements about the report specification (title ,
description). It contains the display elements that will be in the generated report (display-spec).

It contains specification for the parameters that can be used to customize the report generated from this
specification (param-spec). Finally, it contains elements to specify a filter expression which can be used to select
a subset of the records (filter-spec) and the expression to build the report (report-calc-spec).

report-spec ’s attributes

id

the name of the superservice for which this report is available : i.e. email, www, dns, etc.

schema

The DLF schema used by the report. This defaults to the superservice’s schema, but can be one of its
derived or extended schema.

joined-schemas

A whitespace delimited list of additional schemas that will be joined for this report. This will make all fields
define in these schemas available for the operators. The schemas that can be joined depends on the
specification’s schema.

id

An unique identifier for the report specification

<!ELEMENT %LIRE.report-spec;
(%LIRE.title;, %LIRE.description;,

(%LIRE.param-spec;)?, %LIRE.display-spec;,
(%LIRE.filter-spec;)?, (%LIRE.chart-configs;)?,
%LIRE.report-calc-spec;)

>
<!ATTLIST %LIRE.report-spec;

id ID #REQUIRED
superservice %superservice.type; #REQUIRED

46

Chapter 11. The Lire Report Specification Markup Language

schema NMTOKEN #IMPLIED
joined-schemas NMTOKENS #IMPLIED
%LIRE.xmlns.attr;
%LRCML.xmlns.attr; >

global-filter-spec element
Root element of a filter specification. It contains descriptive elements about the filter specification (title ,
description). It contains the display elements that will be used when that filter is used in a generated report
(display-spec). It contains specification for the parameters that can be used to customize the filter generated
from this specification (param-spec). Finally, it contains element to specify the filter expression which can be
used to select a subset of the records (filter-spec).

global-filter-spec ’s attributes

superservice

the name of the superservice for which this filter is available : i.e. email, www, dns, etc.

schema

the DLF schema used by the report. This defaults to the superservice’s schema, but can be one of its derived
or extended schema.

joined-schemas

A whitespace delimited list of additional schemas that will be joined for this report. This will make all fields
define in these schemas available for the operators. The schemas that can be joined depends on the
specification’s schema.

id

An unique identifier for the filter specification

<!ELEMENT %LIRE.global-filter-spec;
(%LIRE.title;, %LIRE.description;,

(%LIRE.param-spec;)?, %LIRE.display-spec;,
(%LIRE.filter-spec;))

>

<!ATTLIST %LIRE.global-filter-spec;
id ID #REQUIRED
superservice %superservice.type; #REQUIRED
schema NMTOKEN #IMPLIED
joined-schemas NMTOKENS #IMPLIED
%LIRE.xmlns.attr; >

47

Chapter 11. The Lire Report Specification Markup Language

display-spec element
This element contains the descriptive element that will appear in the generated report.

It contains one title and may contains one description which will be used as help message

This element has no attribute.

<!ELEMENT %LIRE.display-spec; (%LIRE.title;, (%LIRE.description;)?) >

param-spec element
This element contains the parameters than can be customized in this report specification.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.param-spec; (%LIRE.param;)+ >

param element
This element contains the specification for a parameter than can be used to customize this report.

This element can contains adescription element which can be used to explain the parameter’s purpose.

It is an error to define a parameter with the same name than one of the superservice’s field.

param ’s attributes

name

the name of the parameter.

type

the parameter’s data type

default

the parameter’s default value

<!ELEMENT %LIRE.param; (%LIRE.description;)? >
<!ATTLIST %LIRE.param;

name ID #REQUIRED
type (%lire.types;) #REQUIRED
default CDATA #IMPLIED >

48

Chapter 11. The Lire Report Specification Markup Language

chart-configs element
This element contains one or more chart configurations that should be copied to the generated subreport. These
chart configurations are specified using the Lire Report Configuration Markup Language.

This element has no attribute.

<!ELEMENT %LIRE.chart-configs; (%LRCML.param;)+ >

Filter expression elements

<!ENTITY % LIRE.eq "%LIRE.pfx;eq" >
<!ENTITY % LIRE.ne "%LIRE.pfx;ne" >
<!ENTITY % LIRE.gt "%LIRE.pfx;gt" >
<!ENTITY % LIRE.ge "%LIRE.pfx;ge" >
<!ENTITY % LIRE.lt "%LIRE.pfx;lt" >
<!ENTITY % LIRE.le "%LIRE.pfx;le" >
<!ENTITY % LIRE.and "%LIRE.pfx;and" >
<!ENTITY % LIRE.or "%LIRE.pfx;or" >
<!ENTITY % LIRE.not "%LIRE.pfx;not" >
<!ENTITY % LIRE.match "%LIRE.pfx;match" >
<!ENTITY % LIRE.value "%LIRE.pfx;value" >

<!ENTITY % expr "%LIRE.eq; | %LIRE.ne; |
%LIRE.gt; | %LIRE.lt; | %LIRE.ge; | %LIRE.le; |
%LIRE.and; | %LIRE.or; | %LIRE.not; |
%LIRE.match; | %LIRE.value;" >

filter-spec element

This element is used to select the subset of the records that will be used to generate the report. If this element is
missing, all records will be used to generate the report.

The content of this element are expression element which defines an expression which will evaluate to true or
false for each record. The subset used for to generate the report are all records for which the expression evaluates
to true.

The value used to evaluate the expressions are either literal, value of parameter or value of one of the field of the
record. Parameter and field starts with a $ followed by the name of the parameter or field. All other values are
interpreted as literals.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.filter-spec; (%expr;) >

49

Chapter 11. The Lire Report Specification Markup Language

value element

This expression element to false if the ’value’ attribute is undefined, the empty string or 0. It evaluate to true
otherwise.

value ’s attributes

value

The value that should be evaluated for a boolean context.

<!ELEMENT %LIRE.value; EMPTY >
<!ATTLIST %LIRE.value;

value CDATA #REQUIRED >

eq element

<!ELEMENT %LIRE.eq; EMPTY >
<!ATTLIST %LIRE.eq;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

ne element

<!ELEMENT %LIRE.ne; EMPTY >
<!ATTLIST %LIRE.ne;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

gt element

<!ELEMENT %LIRE.gt; EMPTY >
<!ATTLIST %LIRE.gt;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

50

Chapter 11. The Lire Report Specification Markup Language

ge element

<!ELEMENT %LIRE.ge; EMPTY >
<!ATTLIST %LIRE.ge;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

lt element

<!ELEMENT %LIRE.lt; EMPTY >
<!ATTLIST %LIRE.lt;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

le element

<!ELEMENT %LIRE.le; EMPTY >
<!ATTLIST %LIRE.le;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

match element

The match expression element tries to match a POSIX 1003.2 extended regular expression to a value and return
true if there is a match and false otherwise.

match ’s attributes

value

the value which should matched

re

A POSIX 1003.2 extended regular expression.

case-sensitive

Is the regex sensitive to case. Defaults to true.

<!ELEMENT %LIRE.match; EMPTY >
<!ATTLIST %LIRE.match;

value CDATA #REQUIRED

51

Chapter 11. The Lire Report Specification Markup Language

re CDATA #REQUIRED
case-sensitive (%bool.type;) ’true’ >

not element

<!ELEMENT %LIRE.not; (%expr;) >

and element

<!ELEMENT %LIRE.and; (%expr;)+ >

or element

<!ELEMENT %LIRE.or; (%expr;)+ >

Report Calculation Elements

<!ENTITY % LIRE.timegroup "%LIRE.pfx;timegroup" >
<!ENTITY % LIRE.group "%LIRE.pfx;group" >
<!ENTITY % LIRE.rangegroup "%LIRE.pfx;rangegroup" >
<!ENTITY % LIRE.timeslot "%LIRE.pfx;timeslot" >
<!ENTITY % LIRE.field "%LIRE.pfx;field" >
<!ENTITY % LIRE.sum "%LIRE.pfx;sum" >
<!ENTITY % LIRE.avg "%LIRE.pfx;avg" >
<!ENTITY % LIRE.min "%LIRE.pfx;min" >
<!ENTITY % LIRE.max "%LIRE.pfx;max" >
<!ENTITY % LIRE.first "%LIRE.pfx;first" >
<!ENTITY % LIRE.last "%LIRE.pfx;last" >
<!ENTITY % LIRE.count "%LIRE.pfx;count" >
<!ENTITY % LIRE.records "%LIRE.pfx;records" >

<!-- Empty group operator -->
<!ENTITY % LIRE.empty-ops "%LIRE.sum; | %LIRE.avg; | %LIRE.count; |

%LIRE.min; | %LIRE.max; | %LIRE.first; |
%LIRE.last; | %LIRE.records;" >

<!-- Group operations that are also aggregators -->

52

Chapter 11. The Lire Report Specification Markup Language

<!ENTITY % LIRE.nestable-aggr
"%LIRE.group; | %LIRE.timegroup; |

%LIRE.timeslot; | %LIRE.rangegroup;" >

<!-- Group operations -->
<!ENTITY % LIRE.group-ops "%LIRE.empty-ops;| %LIRE.nestable-aggr;" >

<!-- Containers for group operations -->
<!ENTITY % LIRE.aggregator "%LIRE.nestable-aggr;" >

report-calc-spec element

This element describes the computation needs to generate the report.

It contains one aggregator element.

This element doesn’t have any attributes.

<!ELEMENT %LIRE.report-calc-spec; (%LIRE.aggregator;) >

Common Attributes

All elements which will create a column in the resulting report have a label attribute that will be used as the
column label. When this attribute is omitted, the name attribute content will be used as column label.

<!ENTITY % label.attr "label CDATA #IMPLIED">

All operation elements may have a name attribute which can be used to reference that column. (It is required in
the case of aggrage functions). The primary usage is for controlling the sort order of the rows in the generated
report.

<!ENTITY % name.attr "name ID #IMPLIED">
<!ENTITY % name.attr.req "name ID #REQUIRED">

group element

The group element generates a report where records are grouped by some field values and aggregate statistics are
computed on those group of records.

It contains the field that should be used for grouping and the statistics that should be computed.

The sort order in the report is controlled by the ’sort’ attribute.

53

Chapter 11. The Lire Report Specification Markup Language

group ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be prefixed by
- to specify reverse sort order, otherwise ascending sort order is used. The name can also refer to the name
attribute of the statistics element.

limit

limit the number of records that will be in the generated report. It can be either a positive integer or the
name of a user supplied param.

<!ELEMENT %LIRE.group; ((%LIRE.field;)+, (%LIRE.group-ops;)+) >
<!ATTLIST %LIRE.group;

%name.attr;
sort NMTOKENS #IMPLIED
limit CDATA #IMPLIED >

timegroup element

The timegroup element generates a report where records are grouped by time range (hour, day, etc.). Statistics
are then computed on these records grouped by period.

timegroup ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the name of the field which is used to group records. This should be a field which is of one of the time types
(timestamp, date, time). It defaults to the default timestamp field if unspecified.

period

This is the timeperiod over which records should be grouped. Valid period looks like (hour, day, 1h, 30m,
etc). It can also be the name of a user supplied param.

<!ELEMENT %LIRE.timegroup; (%LIRE.group-ops;)+ >
<!ATTLIST %LIRE.timegroup;

%name.attr;

54

Chapter 11. The Lire Report Specification Markup Language

%label.attr;
field NMTOKEN #IMPLIED
period CDATA #REQUIRED >

timeslot element

The timeslot element generates a report where records are grouped according to a cyclic unit of time. The
duration unit used won’t fall over to the next higher unit. For example, this means that using a unit of 1d will
generate a report where the stats will be by day of the week, 8h will generate a report by third of day, etc. The
statistics are then computed over the records in the same timeslot.

Example 11-1. timeslot with 1d unit

Using a specification like:

<lire:timeslot unit="1d">
...

</lire:timeslot>

would generate a report like:

Table 11-1. weekly overview

Sunday ...

Monday ...

Tuesday ...

... ...

Saturday ...

where data will be summed over all Sunday’s, Monday’s, ..., and Saturdays found in the log.

Example 11-2. timeslot with 2m unit

Specifyingunit="2m" would generate a line for each two months, giving a yearly view.

timeslot ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

55

Chapter 11. The Lire Report Specification Markup Language

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the name of the field which is used to group records. This should be a field which is of one of the time types
(timestamp, date, time). It defaults to the default ’timestamp’ field if unspecified.

unit

This is the cyclic unit of time in which units the records are aggregated. It can be any duration value. (hour,
day, 1h, 30m, etc). It can also be the name of a user supplied param.

<!ELEMENT %LIRE.timeslot; (%LIRE.group-ops;)+ >
<!ATTLIST %LIRE.timeslot;

%name.attr;
%label.attr;

field NMTOKEN #IMPLIED
unit CDATA #REQUIRED >

rangroup element

Therangegroup element generates a report where records are grouped into distinct class delimited by a range.
This element can be used to aggregates continuous numeric values like duration or bytes. Statistics are then
computed on these records grouped in range class.

rangegroup ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute. If omitted a default name will be generated.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the name of the field which is used to group records. This should be a field which is of a continuous numeric
type (bytes, duration, int, number). Time types aggregation should use the timegroup element or timeslot.

range-start

The starting index of the first class. Defaults to 0. This won’t be used a the lower limit of the class. It is only
used to specify relatively at which values the classes delimitation start. For example, if the range-start is 1,
and the range-size is 5, a class ranging -4 to 0 will be created if values are in that range. It can be supplied in
any continuous unit (i.e 10k, 5m, etc.) This can also be the name of a user supplied param.

56

Chapter 11. The Lire Report Specification Markup Language

range-size

This is the size of class. It can be supplied in any continuous unit (i.e 10k, 5m, etc.) It can also be the name
of a user supplied param.

min-value

All value lower then this boundary value will be considered to be equal to this value. If this parameter isn’t
set, the ranges won’t be bounded on the left side.

max-value

All value greater then this boundary value will be considered to be equal to this value. If this parameter isn’t
set, the ranges won’t be bounded on the right side.

size-scale

The rate at which the size scale from one class to another. If it is different then 1, this will create a
logarithmic distribution. For example, setting this to 2, each successive class will be twice larger then the
precedent : 0-9, 10-29, 30-69, etc.

<!ELEMENT %LIRE.rangegroup; (%LIRE.group-ops;)+ >
<!ATTLIST %LIRE.rangegroup;

%name.attr;
%label.attr;

field NMTOKEN #REQUIRED
range-start CDATA #IMPLIED
range-size CDATA #REQUIRED
min-value CDATA #IMPLIED
max-value CDATA #IMPLIED
size-scale CDATA #IMPLIED >

field element

This element reference a DLF field which value will be displayed in a separate column in the resulting report. Its
used to specify the grouping fields in thegroup element and to specify the fields to output in therecords

element.

field ’s attribute

name

The name of the DLF field that will be used as key for grouping.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

<!ELEMENT %LIRE.field; EMPTY >
<!ATTLIST %LIRE.field;

name NMTOKEN #REQUIRED
%label.attr; >

57

Chapter 11. The Lire Report Specification Markup Language

sum element

Thesum element sums the value of a field in the group.

sum’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field that should be summed.

ratio

This attribute can be used to display the sum as a ratio of the group or table total. If the attribute is set to
group the resulting value will be the ratio on the group’s total sum. If the attribute is set totable , it will be
expressed as a ratio of the total sum of the table. The defaults isnone which will not convert the sum to a
ratio.

weight

This optional attribute can be used to create a weighted sum. It should contain a numerical DLF field name.
The content of that field will be used to multiply each field value before summing them.

<!ELEMENT %LIRE.sum; EMPTY >
<!ATTLIST %LIRE.sum;

%name.attr.req;
%label.attr;
ratio (none | group |table) ’none’

field NMTOKEN #REQUIRED
weight NMTOKEN #IMPLIED >

avg element

The avg element calculate average of all value of a field in the group. The average will be computed either on the
number of records if the by-field attribute is left empty, or by the number of different values that there are in the
by-fields.

58

Chapter 11. The Lire Report Specification Markup Language

avg ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field that should be averaged. If left unspecified the number of record will be counted.

by-fields

the fields that will be used to dermine the count over which the average is computed.

weight

This optional attribute can be used to create a weighted average. It should contain a numerical DLF field
name. The content of that field will be used to multiply each field value before summing them. Its that
weighted sum that will be used to calculate the average.

<!ELEMENT %LIRE.avg; EMPTY >
<!ATTLIST %LIRE.avg;

%name.attr.req;
%label.attr;

field NMTOKEN #IMPLIED
by-fields NMTOKENS #IMPLIED

weight NMTOKEN #IMPLIED >

max element

The max element calculates the maximum value for a field in all the group’s records.

max’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field for which the maximum value should found.

<!ELEMENT %LIRE.max; EMPTY >

59

Chapter 11. The Lire Report Specification Markup Language

<!ATTLIST %LIRE.max;
%name.attr.req;

%label.attr;
field NMTOKEN #REQUIRED >

min element

Themin element calculates the minimum value for a field in all the group’s records.

min ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the field for which the minimum value should found.

<!ELEMENT %LIRE.min; EMPTY >
<!ATTLIST %LIRE.min;

%name.attr.req;
%label.attr;

field NMTOKEN #REQUIRED >

first element

The first element will display the value of the value of one field of the first DLF record within its group. The
sort order is controlled through the sort attribute..

first ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the DLF field which will be displayed.

60

Chapter 11. The Lire Report Specification Markup Language

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be prefixed by
- to specify reverse sort order, otherwise ascending sort order is used. If this attribute is omitted, the records
will be sort in ascending order of the default timestamp field.

<!ELEMENT %LIRE.first; EMPTY >
<!ATTLIST %LIRE.first;

%name.attr.req;
%label.attr;

field NMTOKEN #REQUIRED
sort NMTOKENS #IMPLIED

>

last element

The last element will display the value of the value of one field of the last DLF record within its group. The
sort order is controlled through the sort attribute..

last ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

field

the DLF field which will be displayed.

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be prefixed by
- to specify reverse sort order, otherwise ascending sort order is used. If this attribute is omitted, the records
will be sort in ascending order of the default timestamp field.

<!ELEMENT %LIRE.last; EMPTY >
<!ATTLIST %LIRE.last;

%name.attr.req;
%label.attr;

field NMTOKEN #REQUIRED
sort NMTOKENS #IMPLIED

>

61

Chapter 11. The Lire Report Specification Markup Language

count element

Thecount element counts the number of records in the group if the fields attribute is left empty. Otherwise, it
will count the number of different values in the fields specified.

count ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most often be
used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default label will
be generated.

fields

Which fields to count. If unspecified all records in the group are counted. If not, only different fields’ value
will be counted.

ratio

This attribute can be used to display the frequency as a ratio of the group or table total. If the attribute is set
to group the resulting value will be the ratio on the group’s total frequency. If the attribute is set totable ,
it will be expressed as a ratio of the total frequency of the table. The defaults isnone which will not convert
the frequency to a ratio.

<!ELEMENT %LIRE.count; EMPTY >
<!ATTLIST %LIRE.count;

%name.attr.req;
%label.attr;

ratio (none | group |table) ’none’
fields NMTOKENS #IMPLIED >

records element

Therecords element will put the content of selected fields in the report. This can be used in reports that shows
events matching certain criteria. The fields that will be included in the report for each record is specified by the
field element.

records ’s attribute

fields

whitespace delimited list of fields name that should included in the report.

<!ELEMENT %LIRE.records; EMPTY >
<!ATTLIST %LIRE.records;

fields NMTOKENS #REQUIRED >

62

Chapter 12. The Lire Report Markup Language

The Report Markup Language
Document Type Definition for the XML Lire Report Markup Language as generated bylr_dlf2xml .

Elements of that DTD are defined in the namespace http://www.logreport.org/LRML/ which will be usually
mapped to the lire prefix.

The latest version of that DTD is 2.1 and its public identifier is -//LogReport.ORG//DTD Report Markup
Language V2.1//EN. Its canonical system identifier is http://www.logreport.org/LRML/2.1/lrml.dtd
(http://www.logreport.org/LDSML/2.1/lrml.dtd).

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LIRE.xmlns.pfx "lire" >
<!ENTITY % LIRE.pfx "%LIRE.xmlns.pfx;:" >
<!ENTITY % LIRE.xmlns.attr.name "xmlns:%LIRE.xmlns.pfx;" >
<!ENTITY % LIRE.xmlns.attr

"%LIRE.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRML/’">

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;:" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns:%LRCML.xmlns.pfx;" >
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<!-- Include needed modules -->
<!ENTITY % lire-types.mod PUBLIC

"-//LogReport.ORG//ENTITIES Lire Data Types V1.0//EN"
"lire-types.mod">

%lire-types.mod;

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V3.0//EN"
"lire-desc.mod">

%lire-desc.mod;

Each report is an XML document of which the top-level element is thereport element. The report’s data is
contained insubreport elements (these hold the results of each report specification that was used to generate
the report).

<!-- Parameter entities which defines qualified
names of the elements -->

<!ENTITY % LIRE.report "%LIRE.pfx;report" >

63

Chapter 12. The Lire Report Markup Language

<!ENTITY % LIRE.section "%LIRE.pfx;section" >
<!ENTITY % LIRE.subreport "%LIRE.pfx;subreport" >
<!ENTITY % LIRE.missing-subreport "%LIRE.pfx;missing-subreport" >
<!ENTITY % LIRE.table "%LIRE.pfx;table" >
<!ENTITY % LIRE.table-info "%LIRE.pfx;table-info" >
<!ENTITY % LIRE.group-info "%LIRE.pfx;group-info" >
<!ENTITY % LIRE.column-info "%LIRE.pfx;column-info" >
<!ENTITY % LIRE.group-summary "%LIRE.pfx;group-summary" >
<!ENTITY % LIRE.entry "%LIRE.pfx;entry" >
<!ENTITY % LIRE.group "%LIRE.pfx;group" >
<!ENTITY % LIRE.name "%LIRE.pfx;name" >
<!ENTITY % LIRE.value "%LIRE.pfx;value" >
<!ENTITY % LIRE.date "%LIRE.pfx;date" >
<!ENTITY % LIRE.timespan "%LIRE.pfx;timespan" >
<!ENTITY % LIRE.chart-configs "%LIRE.pfx;chart-configs" >
<!ENTITY % LRCML.param "%LRCML.pfx;param" >

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;)* >
<!ATTLIST %LRCML.param;

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

report element
A report starts with the report’s meta-informations: title, timespan and description.

The report’s actual data is contained in one or more subreports.

report ’s attributes

version

The version of the DTD to which this report complies. New report should use the2.1 value.

<!ELEMENT %LIRE.report; ((%LIRE.title;)?, (%LIRE.date;)?,
(%LIRE.timespan;)?, (%LIRE.description;)?,
(%LIRE.section;)+) >

<!ATTLIST %LIRE.report;
version %number.type; #REQUIRED
%LIRE.xmlns.attr;
%LRCML.xmlns.attr; >

Meta-information elements

date element

Thedate element contains the date on which the report was generated.

The content of this element should be the timestamp in a format suitable for display.

64

Chapter 12. The Lire Report Markup Language

’s attribute

time

The date in epoch time.

<!ELEMENT %LIRE.date; (#PCDATA) >
<!ATTLIST %LIRE.date;

time %number.type; #REQUIRED>

timespan element

The timespan element contains the starting and ending date which delimits the period of the report.

The content of this element should be formatted for display purpose. The starting and ending time of the
timespan can be read in epoch time in the attributes. Theperiod attribute contains the timespan period.

timespan ’s attributes

period

Optional attribute which contains the period for which the report was generated.

start

The start time of the timespan in epoch time.

end

The end time of the timespan in epoch time.

<!ELEMENT %LIRE.timespan; (#PCDATA) >
<!ATTLIST %LIRE.timespan;

period (hourly|daily|weekly|monthly|yearly) #IMPLIED
start %number.type; #REQUIRED
end %number.type; #REQUIRED >

section element
Thesection element group common subreports together. The section’s description will usually contains
informations about the filters that were applied in this section.

It contains atitle , adescription if some global filters were applied and the section’s subreports.

This element doesn’t have any attribute.

65

Chapter 12. The Lire Report Markup Language

<!ELEMENT %LIRE.section; (%LIRE.title;, (%LIRE.description;)?,
(%LIRE.subreport;|%LIRE.missing-subreport;)*) >

subreport element
Thesubreport element contains data for a certain report.

It can contains meta-information elements, it they are different from the one of the report.

Example of subreports for the email superservice are :

• Message delay by relay in seconds.

• Per hour traffic summary.

• Top 10 messages delivery.

• etc.

The data is contains in atable element.

If charts should be generated from the table’s data, their configuration is contained in thechart-configs

element.

subreport ’s attributes

id

A unique identifier that can be used to link to this element.

superservice

the name of the superservice from which the report’s data comes from : i.e. email, www, dns, etc.

type

This is the name of the report specification that was used to generated this subreport.

schemas

A space delimited list of the schemas used by this subreport.

<!ELEMENT %LIRE.subreport; (%LIRE.title;, (%LIRE.description;)?,
%LIRE.table;, (%LIRE.chart-configs;)?) >

<!ATTLIST %LIRE.subreport;
id ID #REQUIRED

superservice %superservice.type; #REQUIRED
type CDATA #REQUIRED
schemas NMTOKENS #REQUIRED >

66

Chapter 12. The Lire Report Markup Language

missing-subreport element

missing-subreport ’s attributes

id

A unique identifier that can be used to link to this element.

superservice

the name of the superservice from which the report’s data comes from : i.e. email, www, dns, etc.

type

This is the name of the report specification that was used to generated this subreport.

schemas

A space delimited list of the schemas used by this subreport.

reason

The reason why this subreport is missing.

<!ELEMENT %LIRE.missing-subreport; (EMPTY) >
<!ATTLIST %LIRE.missing-subreport;

id ID #IMPLIED
superservice %superservice.type; #REQUIRED
reason CDATA #IMPLIED
type CDATA #REQUIRED
schemas NMTOKENS #REQUIRED >

table element
The table element contains the data of the subreport. It starts by atable-info element which contains
information on the columns defined in the subreport. Following the table structure, there is agroup-summary

element which contains values computed over all the records.

A table element can contains the subreport data directly or the data can be subdivided into groups.

An example of a subreport which would contains directly the data would be "messages per to-domain, top-10".
This would contains ten entries, one for each to-domain.

An example of a subreport which would contains data in group would be "deliveries to users, per to-domain, top
30, top 5 users". It would contain 30 groups (one per to-domain) and each group would contain 5 entries (one per
user).

Group can be nested to arbitrary depth (but logic don’t recommend to nest too much).

table ’s attributes

show

the number of entry to display. By default all entries should be displayed.

67

Chapter 12. The Lire Report Markup Language

<!ELEMENT %LIRE.table; (%LIRE.table-info;, %LIRE.group-summary;,
(%LIRE.entry;)*) >

<!ATTLIST %LIRE.table;
show %int.type; #IMPLIED >

table-info element
Thetable-info element contains information on the table structure. It contains onecolumn-info element for
each columns defined. It will also contains onegroup-info element for every grouping operation used in the
report specification.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.table-info; (%LIRE.column-info;|%LIRE.group-info;)+ >

group-info element
Thegroup-info element play a similar role to thetable-info element. Its used to group the columns defined
by particular subgroup.

group-info ’s attribute

name

This attribute holds the name of the operation in the report specification which was responsible for the
creation of this group data.

row-idx

Specify the row index of the table header in which this group’s categorical labels should be displayed.

<!ELEMENT %LIRE.group-info; (%LIRE.column-info;|%LIRE.group-info;)+ >
<!ATTLIST %LIRE.group-info;

name NMTOKEN #REQUIRED
row-idx %int.type; #REQUIRED >

column-info element
Thecolumn-info element describes a column of the table. It holds information related to display purpose
(label, class, col-start, col-end, col-width) as well as information needed to use the content of the column as
input to other computation (type, name).

The col-start, col-end and col-width can be used to render the data in grid.

68

Chapter 12. The Lire Report Markup Language

column-info ’s attributes

name

This attribute contains the name of the operation in the report specification which was used to generata data
in this column.

type

The Lire data type of this column.

class

This attribute can either becategorical or numerical . Categorical data is held inname element and
numerical data is held invalue element. Also, numerical column will havecolumn-summary element
associated to them.

label

This optional attribute contains the column’s label. If omitted, the name attribute’s content will be used.

col-start

The column number in which this column start. The first column being column 0.

col-end

The column number in which this column ends. The first column being column 0. Spans are used to cover
“padding columns” to indent grouped entries under their parent entry.

col-width

The suggested column width (in characters) to use for this column.

max-chars

The maximum entry’s length in that column (this includes the label).

avg-chars

The average entry’s length in that column (this includes the label). This value is rounded up to the nearest
integer.

<!ELEMENT %LIRE.column-info; EMPTY >
<!ATTLIST %LIRE.column-info;

name NMTOKEN #REQUIRED
class (categorical|numerical) #REQUIRED
type (%lire.types;) #REQUIRED

label CDATA #IMPLIED
col-start %int.type; #REQUIRED
col-end %int.type; #REQUIRED
col-width %int.type; #IMPLIED
max-chars %int.type; #IMPLIED
avg-chars %int.type; #IMPLIED >

69

Chapter 12. The Lire Report Markup Language

group-summary element
Thegroup-summary contains onevalue element for all the columns that contains numerical data. These
elements will contains the statistics computed over all the DLF records which were processed by the group or the
subreport.

group-summary ’s attribute

nrecords

The number of DLF records that were processed by this group or subreport.

missing-cases

This attribute contains the number ofLIRE_NOTAVAIL values found when computing the statistic. This
number represents the number of records which didn’t have the required information to group the records
appropriately. If ommited or equals to 0, it means that all records had all the required information.

row-idx

Specify the row index in the table at which the group’s summaryvalue should be displayed. If this is
attribute is omitted, the summary values won’t be displayed.

<!ELEMENT %LIRE.group-summary; (%LIRE.value;)* >
<!ATTLIST %LIRE.group-summary;

nrecords %int.type; #REQUIRED
missing-cases %int.type; #IMPLIED

row-idx %int.type; #IMPLIED >

group element
Thegroup element can be used to subdivide logically a report. It’s used for aggregate reports like message per
user per domain.

It contains agroup-summary element which contains the group’s values for the whole group followed by the
entries that makes the group.

Groups can be nested more than once, but too much nesting augments information clutter and isn’t useful for the
user.

group ’s attributes

id

A unique identifier that can be used to link to this element.

show

the number of entry to display. By default all entries should be displayed.

<!ELEMENT %LIRE.group; (%LIRE.group-summary;, (%LIRE.entry;)*)>
<!ATTLIST %LIRE.group;

id ID #IMPLIED

70

Chapter 12. The Lire Report Markup Language

show %int.type; #IMPLIED >

entry element
Theentry contains the data from the report. It is similar to a row in a table altough one entry may represents
several rows when it includes nested groups.

Thename elements contain categorical items of data like user name, email, browser type, url. Note that numeric
ranges (like time period for example) are also considered categorical data items.

Thevalue elements contain numericical data which are the result of a descriptive statistical operation: message
count, bytes transferred, average delay, etc.

entry ’s attribute

id

A unique identifier that can be used to link to this element.

row-idx

Specify the row index in the table at which this entry’sname andvalue elements should be rendered. If
this is attribute is omitted, the entry won’t be displayed.

<!--
-->

<!ELEMENT %LIRE.entry; (%LIRE.name;,
(%LIRE.name;|%LIRE.value;|%LIRE.group;)+)>
<!ATTLIST %LIRE.entry;

id ID #IMPLIED
row-idx %int.type; #IMPLIED >

name element
Thename elements contains categorical data column value. Its also used for numerical values that represents a
class of values (like produced by therangegroup or timegroup operations for example.)

name’s attributes

id

A unique identifier that can be used to link to this element.

col

The column’s name. It should be the same than the one in the correspondingcolumn-info element.

71

Chapter 12. The Lire Report Markup Language

value

When the displayed format is different from the DLF representation, this attribute contains the DLF
representation.

range

In some cases (like in report generated by thetimegroup , timeslot or rangegroup specification), this
attribute will contains the range’s length from the starting value which is in the ’value’ attribute.

<!ELEMENT %LIRE.name; (#PCDATA) >
<!ATTLIST %LIRE.name;

id ID #IMPLIED
col NMTOKEN #REQUIRED

value CDATA #IMPLIED
range %number.type; #IMPLIED >

value element
The value element contains numerical column value..

value ’s attributes

id

A unique identifier that can be used to link to this element.

col

The column’s name. It should be the same than the one in the correspondingcolumn-info element.

value

contains the value in numeric format. This is used when the value was scaled (1k, 5M, etc.)

total

for average value, this contains the total used to compute the average.

n

for average value, this contains the n value that was used to compute the average.

missing-cases

This attribute contains the number ofLIRE_NOTAVAIL values found when computing the statistic. When
omitted, its assume to have a value of 0, i.e. that the value was defined in each DLF record.

<!ELEMENT %LIRE.value; (#PCDATA) >
<!ATTLIST %LIRE.value;

id ID #IMPLIED
col NMTOKEN #REQUIRED
missing-cases %int.type; #IMPLIED

value %number.type; #IMPLIED
total %number.type; #IMPLIED

72

Chapter 12. The Lire Report Markup Language

n %number.type; #IMPLIED >

chart-configs element
This element contains one or more chart configurations that should be generated from the table’s. These chart
configurations are specified using the Lire Report Configuration Markup Language.

This element has no attribute.

<!ELEMENT %LIRE.chart-configs; (%LRCML.param;)+ >

73

IV. Lire Developers’ Conventions

Chapter 13. Contributing Code to Lire
The LogReport team invites you to contribute code to Lire. We’re very happy with any code contributions which
work for you: it’ll very likely will make life easier for other people too! We ask you to consider some points,
when writing code to get distributed with Lire.

When adding new scripts, or extending and improving current Lire code, make sure you’re working with the
current Lire code. (When working with old code, the bug you’re working on might be fixed already by somebody
else.) You can get the current code by fetching our CVS from SourceForge, using the anonymously accessible
pserver:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/logreport login

When prompted for a password for anonymous, simply press the Enter key.

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/logreport co service

See also the instructions on the SourceForge website (http://sourceforge.net/cvs/?group_id=5049). Alternatively,
you can peek at the Lire CVS (http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/logreport/) using your webbrowser.

When you’d like to change e.g./usr/local/bin/lr_log2report , you’ll have to hack on
cvs/sourceforge/logreport/service/all/script/lr_log2report.in . This file will get converted
to lr_log2report by running./configure . Of course, when adding scripts or extending scripts, be sure to
update the scripts’ manpage too.

If you’d like the LogReport team to distribute your contribution, be sure to offer it to the team under a suitable
software license. Refer to the Licensing section in theLire FAQ (http://logreport.org/lire/faq.php)for details.

Once you’ve tested your script, you can send it too the LogReport development list on
development@logreport.org. The LogReport team will be happy to ship your contribution with the next Lire
release.

75

Chapter 14. Developers’ Toolbox

Required Tools To Build From CVS
In order to be able to build the program from the CVS tree and make a tarball distribution the following tools are
needed:

• DocBook XML 4.1.2 (http://www.oasis-open.org/docbook/)

• DocBook DSSSL stylesheets (http://docbook.sourceforge.net/projects/dsssl/)

• autotools

• Jade (http://www.jclark.com/jade/) or OpenJade

• lynx (http://lynx.isc.org/)

• GNU make

• Perl’s XML::Parser module

• dia

• epsffit

• epstopdf

• xsltproc

• xmllint

For Debian woody the packages are: docbook-utils (http://packages.debian.org/testing/text/docbook-utils.html),
docbook-xml-stylesheets, autoconf (http://packages.debian.org/testing/devel/autoconf.html), automake1.4
(http://packages.debian.org/testing/devel/automake.html), autotools-dev
(http://packages.debian.org/testing/devel/autotools-dev.html), jade
(http://packages.debian.org/testing/text/jade.html), lynx (http://packages.debian.org/testing/web/lynx.html),
make (http://packages.debian.org/testing/devel/make.html) and libxml-parser-perl.

You need automake version 1.4. Building using automake 1.7 will very likely not work.

Accessing Lire’s CVS
Make sure you’ve got an account onSourceForge(http://www.sourceforge.net). Get yourself added to the
logreport project. (Joost van Baal joostvb@logreport.org can do this for you.) Make sure your ssh public key is
on the sourceforge server.

A full backup of the complete LogReport CVS as hosted on SourceForge is made weekly and written to
hibou:/data/backup/cvs/ .

CVS primer
If you have a Unix like system, make sure you have this

CVSROOT=:ext:cvs.sourceforge.net:/cvsroot/logreport

76

Chapter 14. Developers’ Toolbox

CVS_RSH=ssh

in your shell environment.

Of course, you could do something like

$ eval ‘ssh-agent‘
$ ssh-add

to get a nice ssh-agent running.

Now do something like

$ cd ~/cvs-sourceforge/logreport
$ cvs co service

There are also repositories called ’docs’ and ’package’. In the former the webpages are located and in the latter
the package files for Debian GNU/Linux and other distributions are kept.

Files can then be edited and commited:

$ vi somefile
$ cvs commit somefile

and get flamed ;)

Subscribe yourself to the commit list (commit-request@logreport.org), to get all commit messages, along with
unified diffs.

SourceForge

Mailing Lists

77

Chapter 15. Coding Standards
Indentation should be four spaces. No tabs please.

See also Message-Id: <1028238571.1085.185.camel@Arendt.Contre.COM> on the development mailing list for
some rationale on coding standards.

Shell Coding Standards
Shell scripts should run -e. Shell script should be portable. Refer to
http://doc.mdcc.cx/doc/autobook/html/autobook_208.html
(http://doc.mdcc.cx/doc/autobook/html/autobook_208.html).

Perl Coding Standards
Perl scripts should use strict, and run -w. Documentation should come in .pod format, documentation about
script internals should be in perl comments.

No & in function call unless necessary.

Split long lines using hard return; try to respect the 72th column margin (this is kind of a soft limit).

Refer to the Lire::Program manpage for more details.

78

Chapter 16. Making Lire “Test-infected”
Soon after the release of Lire 1.2.1, unit tests were introduced in the source tree. Unit tests help development in
several ways; the most important one being that you can make changes to code and run the unit tests to make
sure that nothing was broken by that changes.

You can find helpful resources on Unit testing on the PerlUnit home page (http://perlunit.sourceforge.net/) as
well as on the JUnit home page (http://perlunit.sourceforge.net/) from which it was inspired.

Unit Tests in Lire

PerlUnit
Unit tests are written using the PerlUnit framework. You need to install version 0.24 or later of the Test::Unit to
run the unit tests.

Writing Tests
General information on using the PerlUnit framework can be found in the Test::Unit man page. Information on
writing individual test cases can be found in the Test::Unit::TestCase man page.

Tests for individual modules should be defined in tests::module Test package. You can omit the Lire:: prefix and
you can inline intermediary package names. For example, the unit tests of the Lire::ExtendedDlfSchema module
are in the tests::ExtendedDlfSchemaTest package and the tests of the Lire::Timegroup module are in the
tests::TimegroupTest package.

The Lire::Tests namespace is reserved for extensions to the PerlUnit framework that will be used to provide
“fixtures” and “assertions” that are of general use for common Lire extensions.

Note: This section will be expanded as common patterns for writing unit test for DLF converters, analyzers
and other common Lire extension are developped.

Running Tests
To run tests, you use theTestRunner.pl script included with the PerlUnit distribution. You’ll need to add the
directory containing the Lire libraries to perl library path. For example, if you haveTestRunner.pl in your
~/bin directory, you can run a test case from the top level source directory like this:

$ perl -Iall/lib ~/bin/TestRunner.pl tests::ExtendedDlfSchemaTest

tests::ExtendedDlfSchemaTest can be replaced by your TestCase module.

79

Chapter 16. Making Lire “Test-infected”

Some “Best Practices” on Unit Testing
This section lists some tips on how to make effective use of Unit tests in common development situations on Lire.

Changing interface/implementation.Before changing a module interface or implementation, make sure that
this module has test cases and that it passes its tests before changing the implementation. This way you can know
that your changes didn’t break anything.

Debugging.A good opportunity for writing tests is when bugs are reported. Before trying to chase the bug using
the debugger or addingprint statements, write a test case that will fail as long as the bug isn’t fixed. This
achieves two purpose: first, you’ll know when the bug is fixed as soon as the test pass; secondly, we now have a
test case that will warn us if we regress and the bug reappears.

80

Chapter 17. Commit Policy
Make sure your changes run on your own platform before committing. Try not to break things for other
platforms though. Currently, Lire supported platforms are GNU/Linux (Debian GNU/Linux, Red Hat Linux,
Mandrake Linux), FreeBSD, OpenBSD and Solaris.

Documentation should be updated ASAP, in case it’s obsolete or incomplete by new commits.

CVS Branches
When doing major architectural changes to Lire, branches in CVS are created to make it possible to continue to
fix bugs and to add small enhancements to the stable version while development continues on the unstable
version. This applies mainly to the service repository. The doc and package repositories generally don’t need
branching.

BTW: A nice CVS tutorial is available in the Debian cvsbook package.

Hands-on example
A branching gets announced. Be sure to have all your pending changes commited before the branching occurs.
After a branch has been made, one can do this:

$ cd ~/cvs-sourceforge/logreport
$ mv service service-HEAD
$ cvs co -r lire-20010924 service
$ mv service service-lire-20010924

or (with the same result)

$ mv service service-HEAD
$ cvs co -r lire-20010924 -d service-lire-20010924 service

Now, when working on stuff which should be shipped in the coming release, one should work in
service-lire-20010924. When working on stuff which is rather fancy and experimental, and which needs a lot of
work to get stabilized, one should work in service-HEAD.

Naming, what it looks like
Here is what branches schematically look like:

release-20010629_1 ---> lire-unstable-20010703 ---> HEAD
\

\
lire-20010630 ---> lire-stable-20010701

81

Chapter 17. Commit Policy

In this diagram a branch namedlire-20010630 was created from therelease-20010629_1 tag.
lire-unstable-20010703 is another tag on thetrunk (thetrunk is the main branch).HEADisn’t a real tag, it
always points to latest version on the trunk.

Creating a Branch
To create a branch, one runs the commandcvs rtag -b -r release-tag branch-name module .
Note that this command doesn’t need a checkout version of the repository. For example, to create the
release-20010629_1-bugfixes branch in the service repository, e.g. to backport bugfixes to version
20010629_1, one would usecvs rtag -b -r release-20010629_1
release-20010629_1-bugfixes service . When ready for release, this could get tagged as
release-20010629_2 .

Therelease-tag should exist before creating the branch. In case you want to branch from HEAD, use-r
HEAD. E.g.cvs rtag -b -r HEAD release_1_1-branch service . Once Lire 1.1 gets released,
tag it asrelease_1_1 .

Accessing a Branch
To start working on a particular branch, you docvs update -r branch-name . For example, to work on
therelease_1_1-branch branch, you do in your checked out version,cvs update -r
release_1_1-branch . This will update your copy to the versionrelease_1_1-branch and will commit
all future changes on that branch.

Alternatively, you can also specify a branch when checking out a module usingcvs co -r branch-name
module . For example, you could checkout the stable version of Lire by usingcvs co -r
release_1_1-branch service .

To see if you are working on a particular branch, you can use thecvs status file command. For example,
runningcvs status NEWS could show:

===
File: NEWS Status: Up-to-date

Working revision: 1.74
Repository revision: 1.74 /cvsroot/logreport/service/NEWS,v
Sticky Tag: lire-stable
Sticky Date: (none)
Sticky Options: (none)

The branch is indicated by theSticky Tag: keyword. If its value is(none) you are working on theHEAD

branch.

To work on theHEAD, you remove the sticky tag by using the commandcvs update -A .

Merging Branches on the Trunk
You can bring bug fixes and small enhancements that were made on a branch into the unstable version on the
trunk by doing a merge. You do a merge by using the commandcvs update -j branch-to-merge in

82

Chapter 17. Commit Policy

your working directory of the trunk. Conflicts are resolved in the usual CVS way. For example, to merge the
changes of the stable branch in the development branch, you would usecvs update -j lire-stable .

You should tag the branch after each successful merge so that future changes can be easily merged. For example,
after merging, you do in a checked out copy of thelire-stable branch:cvs tag
lire-stable-merged-20010715 . In this way, one week later we can merge the week’s changes of the
stable branch into the unstable branch by doingcvs update -j lire-stable-merged-20010715
-j lire-stable .

83

Chapter 18. Testing
One week before release the software should be tested on all supported platforms. In between releases the
system gets tested on various platforms on an ad hoc basis. When testing, use the to-be-released tarball. Run
make dist to generate such a tarball.

Especially when changes to the Lire core have been made, the "test" superservice can be handy, for easy setting
up of tests of your code. See also the section on Unit Testing in this document.

84

Chapter 19. Making a Release
Before making an official Lire release, it should have been tested on all supported platforms. A release shouldn’t
be made unless Lire builds, installs and generates an ASCII report from all supported log files on all supported
platforms. If this is not the case, the release should be delayed untill this is fixed.

Making a new release of Lire involves many steps:

1. Writing the final version number in NEWS.

2. Tagging the CVS tree.

3. Building the "Standard" Lire tarball.

4. Building the Debian GNU/Linux package.

5. Building the RPM package.

6. Making sure the FreeBSD package gets updated.

7. Uploading the tarballs and making packages available.

8. Advertising the release.

Setting version in NEWS file, checking ChangeLog
Inbetween releases, the NEWS file generally reads "version in cvs". This should of course be changed to e.g.
"version 20011205".

We maintain a ChangeLog file. Make sure the ChangeLog in the toplevel directory is not too big. If needed, split
off a chunk and move it to doc/. The ChangeLog is autogenerated from the CVS commits, using thecvs2cltool.
One could e.g. runcvs2cl --prune --stdout -l "-d \>yesterday" -U
../CVSROOT/users .

Tagging the CVS
Run e.g.cvs tag release-20011017 .

Building The Tarball

1. Start from a fresh copy by running the commandmake maintainer-clean-recursive in the
directory where you checked out Lire’s source code.

a. Make sure that there are no tarballs in theextras subdirectory.

2. Set the version and prepare the source tree by running the command./bootstrap . (You can overwrite
the pre-cooked version by doing e.g.echo ‘date +%Y%m%d‘-R-f-jvb-1 > VERSION . Make
sure your version hasn’t got too many characters. Non-GNU tar chokes if pathnames in the archive are too
long.)

3. Generate Makefiles

a. Run./configure

85

Chapter 19. Making a Release

4. Build Lire and create the tarball by running the commandmake distcheck .

This will build a tarballlire- version .tar.gz and then make sure that the content of this tarball can be
built and installed. If that command fails, Lire isn’t ready to be released. Fix the errors before making the
release.

5. Sign Lire’s tarball with your public key. To do this with GnuPG, rungpg --detach-sign --armor
lire- version .tar.gz .

A file lire- version .tar.gz.asc will be created. Publish this file together with the tarball. Now, people
downloading the tarball can verify its integrity by downloading the .asc as well as your public key, and
runninggpg --verify lire- version .tar.gz.asc .

Building The Debian Package
This is a raw unformatted dump of what we did to build and upload the Lire .deb.

$ cd ~/cvs-sourceforge/logreport/package/debian
$ vi changelog

:r !date --rfc

$ cd /usr/local/src/debian/lire/debian/20010219

Run something like ’DIB_V=20020214 DIB_P=lire DIB_TARDIR=../archive/ ./debian-install-build’. This does:

$ cd /usr/local/src/debian/lire/debian/20010219
$ cp \

~/cvs-sourceforge/logreport/service/lire-20010219.tar.gz .

$ tar zxf lire-20010219.tar.gz
$ cd lire/20010418
$ mv lire-20010418 lire-20010418.orig
$ tar zxf lire-20010418.tar.gz
$ cd lire-20010418
$ mkdir debian
$ cp \

~/cvs-sourceforge/logreport/package/debian/[^C]* debian/

Export the shell environment variable EMAIL, it should hold your email address, as it is to appear in the
maintainers field of the package. (One could use ’dh_make --copyright gpl -s’ on first time debianizing.) Build
the .deb by running:

$ debuild 2>&1 | tee /tmp/build

Check the .deb:

$ debc | less

You might also want to test wether the Debianized sources build fine on other machines: copy diff.gz, orig.tar.gz
and .dsc. Then do

86

Chapter 19. Making a Release

$ dpkg-source -x lire_*.dsc
$ cd lire-version
$ dpkg-buildpackage -rfakeroot

After havingreally tested it (dpkg -i, purge, etc.), optionally install it on any local apt-able websites you might
have (Joost has one on http://mdcc.cx/debian/) and upload it to hibou’s apt-able archive:

$ scp lire_20010418-1_all.deb \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/binary-all/admin/

$ scp lire_20010418*.gz \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

$ scp lire_20010418*.*s* \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

Move the old debian stuff on hibou to hibou:/pub/archive/debian/ . Update the Packages file by running

$ cd /var/www/logreport.org/pub/debian
$ make

To upload it to the official debian mirrors:

vanbaal@gelfand:/usr...src/debian/lire/20010418% date; \
dupload lire_20010418-1_i386.changes

Thu Apr 19 14:27:38 CEST 2001
Uploading (ftp) to ftp.uk.debian.org:debian/UploadQueue/
[job lire_20010418-1_i386 from lire_20010418-1_i386.changes New dpkg-dev, announcement will NOT be sent

lire_20010418.orig.tar.gz, md5sum ok
lire_20010418-1.diff.gz, md5sum ok
lire_20010418-1_all.deb, md5sum ok
lire_20010418-1.dsc, md5sum ok
lire_20010418-1_i386.changes ok]

Uploading (ftp) to uk (ftp.uk.debian.org)
lire_20010418.orig.tar.gz 163.1 kB , ok (12 s, 13.59 kB/s)
lire_20010418-1.diff.gz 32.6 kB , ok (3 s, 10.88 kB/s)
lire_20010418-1_all.deb 222.4 kB , ok (16 s, 13.90 kB/s)
lire_20010418-1.dsc 0.6 kB , ok (0 s, 0.60 kB/s)
lire_20010418-1_i386.changes 1.2 kB , ok (1 s, 1.22 kB/s)]

check ftp://ftp.uk.debian.org/debian/UploadQueue/

Building The RPM Package

87

Chapter 19. Making a Release

Making sure the FreeBSD port gets updated
Since August 21, 2002, Lire is in the FreeBSD ports collection. Edwin Groothuis has build a FreeBSD port. Ask
him if he’s available for updating his port. Alternatively, Cédric Gross might be able to help. If not, the
LogReport team should take care of it, and submit a Problem Report to the FreeBSD system, asking for
inclusion of the updated port.

Uploading The Release
To release a new distribution, publish the tarball on various places and send an announcement to the
<announcement@logreport.org > mailinglist, stating the most interesting new features. Furthermore, add a
newsitem to the news list of the website. We’ll describe how to upload the tarball to various places.

The LogReport Webserver
Upload the tarball to the pub area on the LogReport server. The area is mirrored automagically by the
download.logreport.org servers; updates are done every 6 hours. Upload like this:

$ scp lire-20001211.tar.gz hibou.logreport.org:/var/www/logreport.org/pub/

On hibou, do:

$ cd /var/www/logreport.org/pub
$ chown .www lire-20010525.tar.gz
$ chmod g+w lire-20010525.tar.gz

$ tar zxf lire-20001211.tar.gz
$ rm current && ln -s lire-20001211 current
$ rm current.tar.gz && ln -s lire-20001211.tar.gz current.tar.gz
$ rm -rf lire-20001205
$ mv lire-20001205.tar.gz archive

Update theREADME.txt file: Run

$ cd /var/www/logreport.org/pub
$ (echo \

’current is the latest official release’; echo; ls -lF c*) > README.txt

Check the symlink to the documentation stuff in the tarball.

Check if the stuff in http://logreport.org/pub/docs is still up to date.

88

Chapter 19. Making a Release

Advertising The Release

SourceForge
In order to release a distribution on SourceForge (SF), you login with your SF account on the SF website. Once
logged in you go to the project webpage (https://sourceforge.net/projects/logreport/) and chooseAdmin. Down at
the bottom of that page is a a[Edit/Add File Releases]link (click it
(https://sourceforge.net/project/admin/editpackages.php?group_id=5049)).

You are able to edit packages, like the Lire package in the LogReport project. To add a new release, choose[Add
Release]. As a release name uses the date, like 20010407, assign it to the Lire package and then use theCreate
This Releasebutton to makes it effective.

The next page shows 4 steps of which only one (step 2) is not straightforward. In that step you assign files to a
release (.tar.gz, .deb, .rpm). These files should be uploaded to SF’s Upload anonymous FTP site at
ftp://upload.sourceforge.net/incoming/. Make sure the file is placed in the/incoming directory. ClickRefresh
View in Step 2 to add the files you uploaded to the FTP site. Check the files belonging to the release and Click
Add Files. In step 3, set Processor to any. Set file type to .deb and source.gz. Click update/refresh. Step 4: send
notice. Done.

Freshmeat.net
On Freshmeat.net, releases are not released, but get announced only. These announcements attract a lot of
attention. The webpage for the Lire package can be found at http://freshmeat.net/projects/lire/.

To announce a new release go to Lire - development branch (http://freshmeat.net/branches/14593/) webpage.
ChooseAdd Releasefrom the Project pull down menu in the light blue area. The rest is very straightforward.

89

Chapter 20. Website Maintenance
We give hints on how to upgrade the website: installing stuff from current CVS on http://logreport.org
(http://logreport.org/).

Commits to the CVS tree of the website are automatically propagated to hibou. For more information on the
markup language of the website, see the WJML documentation (http://logreport.org/doc/wjml/).

Documentation on the LogReport Website
Be sure the links to stuff under/pub/current are still alive. E.g. the filesTODO, dev-manual.html and
user-manual.html are linked to.

Publishing the DTD’s
The DTD’s are published as HTML on the website by using
hibou:/usr/local/src/dtdparse/dtdparse-2.0b2-LogReportPatched.tar.gz , which is a patched
version of Norman Walsh’s dtdparse utility. Before the utility is run, make sure that the DocBook DTD is not
included in the parsing process, because the DocBook DTD should not be published. This is done by changing
the line:

<!ENTITY % load.docbookx "INCLUDE" >

into:

<!ENTITY % load.docbookx "IGNORE" >

The webpages are then generated with:

perl ~/dtdparse-2.0b2-patched/dtdparse.pl --title "XML Lire Report Markup Language" --output lire.xml lire.dtd
perl ~/dtdparse-2.0b2-patched/dtdformat.pl --html lire.xml

The resultinglire directory can be tar-ed, gziped and unpacked again on hibou in the directory
/var/www/logreport.org/pub/docs/dtd/ .

The other two DTD’s are HTML-ized similarly, but remember to change the title when runningdtdparse.pl.

90

Chapter 21. Writing Documentation
Documentation which comes with the Lire tarball is maintained in four formats: plain text, Perl POD, DocBook
XML and UML diagrams. We’ll talk about all four of these here.

Plain Text
Small files likeREADME, NEWS, AUTHORS, doc/BUGS, anddoc/TODO are traditionally maintained in plain text
format. We adhere to this common practice.

Perl’s Plain Old Documentation: maintaining manpages
We use Perl’s pod (plain old documentation) for manpages. Every file installed with Lire in/usr/bin/ must
have a manpage. Every file installed in/usr/share/perl5/Lire/ and/usr/lib/lire/ should have a
manpage. It would be nice if the files in/etc/lire/ were documented in manpages too. And perhaps for some
files in /usr/share/lire/xml/ , /usr/share/lire/reports/ , /usr/share/lire/filters/ and
/usr/share/lire/schemas/ manpages could be useful.

Since the files in/usr/bin/ are commands, ran by Lire users, the manpages describing these should focus on
the user perspective. Describing the inner workings and implementations of the commands is less important than
describing why someone would want to run the specific command. If there’s need to make some remarks on the
internals of these scripts, a section called DEVELOPERS could be added to the manpage. The perl modules
installed in/usr/share/perl5/Lire/ and the commands in/usr/lib/lire/ are not intended as interfaces
for the user. Only people wanting to change or study the operation of Lire itself will interact with these files;
therefore, the manpages should explain the inner workings and implementations of these files. The configuration
files in /etc/lire/ might be changed by users. These should be properly documented: in manpages or in the
Lire User’s Manual.

Docbook XML: Reference Books and Extensive User
Manuals
The main documentation of the Lire project is done in DocBook XML 4.1.2. E.g. this document is maintained in
DocBook XML, as is theLire User’s Manual. TheLire User’s Manualhas more information about DocBook.

After editing theLire Developer’s Manualor theLire User’s Manual, you should runmake check-xml to
make sure the document is still a valid DocBook document. You should fix any errors before committing your
changes.

If everything went right, documentation is built in txt, tex, html and pdf format by runningmake dist , or just
make in doc/ . We give some hints which might be helpful in case you have to build the documentation
manually.

To generate PDF:

$ jade -t tex -d /path/to/DSSSL/docbook/print/docbook.dsl roadmap.xml
$ pdfjadetex roadmap.tex

The last step is actually done two or three times to resolve page numbers.

To generate HTML:

91

Chapter 21. Writing Documentation

$ jade -t sgml -d html.dsl roadmap.xml

And now you can use thehtml.dsl in thedoc/source directory. (If necessary, adjust it to reflect the location
of your DSSSL stylesheets). Use lynx to generate TXT output from HTML with:

$ lynx -nolist -dump roadmap.html > roadmap.txt

92

V. Implementation Details

Chapter 22. Adding a New Superservice in Lire’s
Distribution
Integrating a new superservice in the Lire’s several things:

1. Making new directories in CVS:

• /service/<superservice>/

• /service/<superservice>/script/

• /service/<superservice>/reports/

2. Adding several files:

• /service/<superservice>/Makefile.am

• /service/<superservice>/reports/Makefile.am

• /service/<superservice>/script/Makefile.am

• /service/<superservice>/<superservice>.cfg

• /service/< superservice>/<superservice>.xml This file specifies the DLF format of the
superservice. Ideally, it should offer a place for each and every snippet of information which will ever be
found in a logfile from a program which offers functionality defined by the superservice. This file should
have documentation embedded; this will show up in this manual.

3. Writing service plugins (2dlf scripts):

• /service/<superservice>/script/<service>2dlf.in

4. Adapting several files:

• /service/configure.in (add the Makefiles and 2dlf script to AC_OUTPUT, to get them converted
from <service>2dlf.in to <service>2dlf.)

• /service/Makefile.am (add the superservice directory to SUBDIRS, so that make gets run there too,
when called from the root source directory.)

• /service/all/etc/address.cf (to make the new service known as a member of a superservice.)

5. Update Documentation:

• User Manual: Chapter "Supported Applications".

• Add manpages for scripts

6. Update the configuration by writing a custom config spec or extended the current one as well as by added
default values to the defaults configuration files.

94

Chapter 23. Issues with Report Merging
In some cases, a merged report doesn’t display the right information. We outline some worst case scenarios, and
justify our implementation.

Suppose log file 1 (“requests” with “sizes”) looks like:

request size

A 12

B 11

C 10

while log file 2 looks like:

request size

D 3

E 2

F 1

We report on the top 2 biggest requests, so the report from log 1 looks like:

request size

A 12

B 11

while the report from log 2 would look like:

request size

D 3

E 2

Now we change the superservice.cfg file to list the top-4 biggest items. A naive merge would lead to:

request size

A 12

B 11

D 3

E 2

Of course, this should’ve been:

request size

A 12

B 11

C 10

95

Chapter 23. Issues with Report Merging

request size

D 3

This effect does not occur when keeping the top-limit to the same value. However, when we’re not reporting on
distinct values in the log, but are summing, more horrible things might happen. Consider this: We want to report
on the total size by client. Logs look like:

client size

a 12

b 11

c 10

and

client size

d 4

e 4

c 3

Reports from these logs would look like:

client size

a 12

b 11

client size

d 4

e 4

After naively merging, one would get:

client size

a 12

b 11

In fact, the complete report should look like:

client size

c 13

a 12

Luckily, the Lire merging algorithm is notthisnaive: in fact, the XML reports store a little more records than
actually needed. This heuristic trick leads to sane merged reports in most cases. However, since this is merely a
heuristic trick, it is no waterproof guarantee.

96

Chapter 23. Issues with Report Merging

See the description of the guess_extra_entries routine in the Lire::Group manpage for more implementation
details.

97

Chapter 24. Overview of Lire scripts
An overview of the main scripts involved.lr_spoold is the engine behind a Lire Online Responder.
lr_log2report is the main Lire command line interface. Thelr_log2xml command is a helper scripts. The
lr_xml2report command can be used by the user to merge XML reports. Thelr_sql2report is not yet fully
integrated in the Lire system. Thelr_rawmail2mail command manages a Lire client setup. Thelr_cron is fired
of by cron, in a cron-driven setup.

lr_spoold
|
_ lr_check_service
_ lr_spool

|
_ lr_processmail

_ lr_getbody
|
_ lr_log2mail

lr_log2report
lr_log2xml
lr_xml2report
lr_rawmail2mail
_ lr_getbody
_ lr_deanonymize
_ lr_xml2mail

lr_cron

lr_spoold monitors a Maildir spool for each responder address. lr_processmail processes an email message with
a compressed log file attached. Refer to the manpages for the gory details.

98

Chapter 25. Source Tree Layout
Service specific scripts should reside in $CVSROOT/service/<service>/script/. Configuration data should be in
<service>/etc/. Service specific documentation in <service>/doc/.

Furthermore, in each subdirectory there should be a Makefile.am.

99

Glossary
Definitions of particular terms used in Lire.

DLF

See:Distilled Log Format

Distilled Log Format

Example 1. DNS DLF Excerpts

1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912592 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 207.7.178.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 tr16.kennisnet.nl A recurs
1010912616 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912630 10.0.0.2 207.7.178.212.rbl.maps.vix.com ANY recurs
1010912630 10.0.0.2 NLnet.nl ANY recurs

This is the generic log format used by Lire to normalise the log files from different products.

Currenlty, this normalised log is a simple ASCII format where each event is represented by one line. The
information about the event is represented by fields separated by spaces. All non-printable ASCII characters
are replaced by?. Spaces in a field’s value are replaced by_ (an underscore). Each line must have the same
number of fields. A DLF file doesn’t contain any header information.Example 1shows an excerpt of a DNS
DLF file.

See Also:Superservice, DLF Schema.

DLF Schema

Information about the order of the fields in a DLF file, their types and what they represent is specified in the
DLF’s schema. Schemas are defined in XML files using the Lire DLF Schema Markup Language
(LDSML). Lire’s offers an API (only in Perl for now) to programmatically access the information of a
schema.

Log files of many different products can share a common DLF schema that makes Lire’sreportseasily
comparable.

Report

A report is what is generated by Lire. It consists of severalsubreports. Those subreports can be grouped into
sections. The report is computed from the DLF file (and not the native log file) based on a configuration file
which describes the subreports that make up the final report along with their parameters. (Consult theLire
User’s ManualsectionCustomizing Lirefor more information.)

100

Glossary

Service

Put simply, a service is a specific application that produces log files. It is usually the case that one
application will be equivalent to one service. For example, the mysql service is used to process MySQL’s
log files.

But more precisely, a service is a specific log format. For example, the common service can be used for all
web servers that support the Common Log Format. Similarly, the welf service can be used to process
firewall log files written using WebTrends Enhanced Log Format.

In order to generate areporton it, the native log will be converted to the appropriatesuperservice’s DLF
schema

Subreport

A subreport is a particular view on the DLF log’s data. Subreports are defined in XML files using the Lire
Report Specification Markup Language (LRSML). (Although it defines subreports, it is called a Report
Specification because a report is made up out of several subreports.) Example of a subreport would be
Requests by Hours of the Day.

Subreports are defined for a particularDLF schema.

Superservice

A superservice is a collection of services that share the sameDLF schemaandreport. It is used to group
together applications (services) that offer the same kind of functionality.

Lire currently supports eight superservices: database, dns, email, firewall, ftp, print, proxy, and www.

101

