FPDoc :
Free Pascal code documenter; Reference manual

Reference manual for FPDoc
Document version 0.9
May 30, 2003

Michaél Van Canneyt

Contents

1 Introduction 4
1.1 Aboutthisdocument. 4
1.2 AbOUtFPIDC. e 4
1.3 Getting more information.. 5

2 Compiling and Installing FPDoc 6
21 Compiling. e 6
2.2 Installation e e e 6

3 FPDoc usage 8
3.1 fpdoc 8
3.2 FPDbccommand-line optionsreference 9

content e 9
JESCr. . . o e e 9
format e 10
help e 10
hide-protected L 10
html-search. e 10
IMPOIT . . . 11
INPUL . . o o e e e e e 11
[ang e 11
latex-highlight. 12
OULPUL . . . o o e 12
package. 12
show-private. 12
3.3 makeskel e 12
introduction L e 12
3.4 Makeskeloptionreference e 13
disable-arguments 13
disable-errors. L e 13
disable-function-results 13

CONTENTS

disable-private 13
disable-protected. 13
disable-seealso. 14
emitclassseparator. 14

help . . . 14
INPUL . . . o e 14

ang e 14
OULPUL . . . o o o e e 14
package. 14

4 The description file 15
4.1 Introduction. e 15
4.2 Element names and cross-referencing o o oL 17
Elementname conventions. 17
Crossreferencing: thenk tag 17

4.3 Tagreference. 18
OVEIVIEW . . . o e e e e 18
b:formatbold 20
caption: Specify table caption oL 20
code: formataspascalcode 20
descr: Descriptions. 20

dd: definitiondata.. 21
dl:definitionlist. oL 21
dt:definitionterm.. 21
element: Identifier documentation L. 22
errors : Error Section. e e 22
fpdoc-description: Globaltag., 22
i:Formatitalics. 22
li:listelement 23

link : Cross-reference 23
module: Unitreference 24

ol: Numberedlist. 24
p:Paragraph. 24
package: Packagereference. 25
pre:Inserttextas-is. 25
remark : formatasremark Lo o 26
seealsa Cross-reference section. 26
short: Shortdescription. 26
table: Tablestart. 27
td:Tablecell 27

CONTENTS

th:Tableheader. 28
trotablerow e 28
u:Formatunderlined 28
ul:bulletedlist. 29
var:variable e 29

5 Generated output files. 30
51 HTMLoutput. 30
5.2 Latex output e 31

Chapter 1

Introduction

1.1 About this document

This is the reference manual for FBD, a free documentation tool for Pascal units. It describes the
usage of FPDc and how to write documentation with it.

It attempts to be complete, but the tool is under continuous development, and so there may be some

slight differences between the documentation and the actual program. In case of discrepancy, the

sources of the tool are the final referenceRBADME or CHANGES file may be provided, and can

also give some hints as to things which have changed. In case of doubt, these files or the sources are
authoritative.

1.2 About FPDoc

FPDoc s a tool that combines a Pascal unit file and a description file in XML format and produces
reference documentation for the unit. The reference documentation contains documentation for all
of the identifiers found in the unit’s interface section. The documentation is fully cross-referenced,
making it easy to navigate. It is also possible to refer to other documentation sets written with
FPDoc, making it possible to maintain larger documentation sets for large projects.

Contrary to some other documentation techniques, &®d@bes not require the presence of formatted
comments in the source code. It takes a source file and a documentation file (in XML format) and
merges these two together to a full documentation of the source. This means that the code doesn’t
get obfuscated with large pieces of comment, making it hard to read and understand.

FPDocis package-oriented, which means that it considers units as part of a package. Documentation
for all units in a package can be generated in one run.

At the moment of writing, the documentation can be generated in the following formats:

HTML Plain HTML. Javascript is used to be able to show a small window with class properties or
class methods, but the generated HTML will work without JavaScript as well. Style sheets are
used to do the markup, so the output can be customised.

XHTML As HTML, but using a more strict syntax.

LaTeX LaTeX files, which can be used with tffigc.sty file which comes with the Free Pascal doc-
umentation. From this output, PDF documents can be generated, and with the use of latex2rtf,
RTF or Winhelp files. Text files can also be generated.

Plans exist to create direct text output and RTF output as well.

CHAPTER 1. INTRODUCTION

1.3 Getting more information.

If the documentation doesn'’t give an answer to your questions, you can obtain more information on
the Internet, on the following address:

http://fpdoc.freepascal.org/
It contains links to download all FP&x related material.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact mematchael@freepascal.arg

http://fpdoc.freepascal.org
mailto:michael@freepascal.org

Chapter 2

Compiling and Installing FPDocC

2.1 Compiling
In order to compile FPDc, the following things are needed:

1. The fpdoc sources. These can be downloaded from thedeRiEbsite.

2. The Free Pascal compiler sources. FRIuses the scanner from the Free Pascal comiler to
scan the source file.

3. The FCL units (or their sources) should be installed.

4. fpcmake is needed to create the makefile for fpdoc. It comes with Free Pascal, so if Free Pascal
is installed, there should be no problem.

5. To make new internationalisation support filsgconv must be installed, and the GNU gettext
package.

Links to download all these programs can be found on the &®Website.

When the fpdoc sources have been unzipped, the Makefile must be generated. Before generating the
makefile, the location of the compiler source directory should be indicated. MdkRefile.fpc file,
which has a windows ini file format, locate thgcdir entry in thedefaults section:

fpedir=../..

and change it so it points to the top-level Free Pascal source directory.

After that, runningpcmake will produce theMakefile, and runningnake should produce 2 execut-
ables:fpdoc andmakeskel.

2.2 Installation

When installing from sources, a simple

make install
cd intl
make install

CHAPTER 2. COMPILING AND INSTALLING FPDOC

should completely install the documentation tool.

When installing from a archive with the binaries, it should be sufficient to copy the binaries to a
directory in thePATH

To have fpdoc available in several languages, the language files should be installed in the following
directory on Unix systems:

/usr/local/share/locale/XX/LC_MESSAGES/
or
/usr/share/locale/XX/LC_MESSAGES/

Depending on the setup. Hex&Xshould be replaced by the locale identifier.

Chapter 3

FPDoc usage

3.1 fpdoc

Using FPDpcis quite simple. It takes some command-line options, and based on these options, cre-
ates documentation. The command-line options can be given as long or short options, as is common
for most GNU programs.

In principle, only 2 command-line options are needed:

package This specifies the name of the package for which documentation must be created. Exactly
one package option can be specified.

input The name of a unit file for which documentation should be generated. This can be a simple
filename, but can also contain some syntax options as they could be given to the Free Pascal
scanner. More than orieput option can be given, and documentation will be generated for
all specified input files.

Some examples:

fpdoc --package=fcl --input=crt.pp

This will scan thecrt.pp file and generate documentation for it in a directory catdd
fpdoc --package=fcl --input="-l../inc -S2 -DDebug classes.pp’

This will scan the fileclasses.pp, with theDEBUGymbol defined, the scanner will look for include
files in the../inc directory, andDBJFPGmode syntax will be accepted.

(for more information about these options, see the Free Pascal compiler user’s guide)

With the above commands, a set of documentation files will be generated in HTML format (this is the
standard). There will be no description of any of the identifiers found in the unit’s interface section,
but all identifiers declarations will be present in the documentation.

The actual documentation (i.e. the description of each of the identifiers) resides in a description file,
which can be specified with thdescr option:

fpdoc --package=fcl --descr=crt.xml --input=crt.pp

This will scan thecrt.pp file and generate documentation for it, using the descriptions found in the
filecrt.xml file. The documentation will be written in a directory calfedd

CHAPTER 3. FPDOCUSAGE

fpdoc --package=fcl --descr=classes.xml \
--input="-l../inc -S2 -DDebug classes.pp’

All options should be given on one line. This will scan the @lasses.pp, with the DEBUGymbol
defined, the scanner will look for include files in thénc directory, andDBJFPGmode syntax will
be accepted.

More than one input file or description file can be given:

fpdoc --package=fcl --descr=classes.xml --descr=process.xml \
--input="-l../inc -S2 -DDebug classes.pp’ \
--input="-l../inc -S2 -DDebug process.pp’

Here, documentation will be generated for 2 unifsisses andprocess
The format of the description file is discussed in the next chapter.
Other formats can be generated, such as latex:

fpdoc --format=latex --package=fcl \
--descr=classes.xml --descr=process.xml\
--input="-Il../inc -S2 -DDebug classes.pp’ \
--input="-Il../inc -S2 -DDebug process.pp’

This will generate a LaTeX file calledl.tex, which contains the documentation of the ucigsses
andprocess . The latex file contains no document preamble, it starts with a chapter command. It
is meant to be included (using the LaTeX include command) in a latex document with a preamble.

The output of FP@C can be further customised by several command-line options, which will be
explained in the next section.

3.2 FPDoc command-line options reference

In this section all FPDc command-line options are explained.

content

This option tells FP@C to generate a content file. A content file contains a list of all the possible
anchors (labels) in the generated documentation file, and can be used to create cross-links in doc-
umentation for units in other packages, using the counterpart of the content optiompibre

option (sectiorB.2, pagell).

descr

This option specifies the name of a description file that contains the actual documentation for the
unit. This option can be given several times, for several description files. The file will be searched
relative to the current directory. No extension is added to the file, it should be a complete filename.

If the filename starts with an 'at’ sig@ then it is interpreted as a text file which contains a list of
filenames, one per line. Each of these files will be added to the list of description files.

The nodes in the description files will be merged into one big tree. This means that the documentation
can be divided over multiple files. When merging the description files, nodes that occur twice will
end up only once in the big node tree: the last node will always be the node that ends up in the parse
tree. This means that the order of the various input commands or the ordering of the files in the file
list is important.

CHAPTER 3. FPDOCUSAGE

Examples:

--descr=crt.xml

will tell FPDoc to read documentation froert.xml, while
--descr=@fcl.Ist

will tell FPDoc to read filenames frorftl.Ist; each of the filenames found in it will be added to the
list of files to be scanned for descriptions.

format
Specifies the output format in which the documentation will be generated. Currently, the following
formats are known:

htm Plain HTML with 8.3 conforming filenames.

html HTML with long filenames.

xhtml XHTML with long filenames.

latex LaTex, which uses thipc.sty style used by the Free Pascal documentation.

xml-struct Structured XML.

help

Gives a short copyright notice.

hide-protected

By default, the documentation will include descriptions and listings of protected fields and methods
in classes or objects. This option changes this behaviour; if it is specified, no documentation will
be generated for these methods. Note that public methods or properties that refer to these protected
methods will then have a dangling (i.e. unavailable) link.

html-search

This option can be used when generating HTML documentation, to specify an url that can be used
to search in the generated documentation. The URL will be included in the header of each generated
page with @&Search caption. The option is ignored for non-html output formats.

FPDoc does not generate a search page, this should be made by some external tool. Only the url to
such a page can be specified.

Example:

--html-search=../search.html

10

CHAPTER 3. FPDOCUSAGE

import

Import a table of contents file, generated by FiRIfor another package with tteontent option
(section3.2, page9). This option can be used to refer to documentation nodes in documentation sets
for other packages. The argument consists of two parts: a filename, and a link prefix.

The filename is the name of the file that will be imported. The link prefix is a prefix that will be made
to each HTML link; this needs to be done to be able to place the files in different directories.

Example:
--import=../fcl.cnt,../fcl

This will read the file fcl.cnt in the parent directory. For HTML documentation, all links to items in
the fcl.cnt file, the link will be prepended withifcl.

This allows a setup where all packages have their own subdirectory of a common documentation
directory, and all content files reside in the main documentation directory, as e.g. in the following
directory tree:

/docs/fcl
[fpdoc

[fpgui
fpgfx
[fpimg

The file fcl.cnt would reside in théocs directory. Similarly, for each package a contentsxit®.cnt
could be places in that directory. Inside the subdirectory, commands as the above could be used to
provide links to other documentation packages.

Note that for Latex documentation, this option is ignored.

input

This option tells FPDc what input file should be used. The argument can be just a filename, but
can also be a complete compiler command-line with options that concern the scanning of the Pascal
source: defines, include files, syntax options, as they would be specified to the Free Pascal compiler
when compiling the file. If a complete command is used, then it should be enclosed in single or
double quotes, so the shell will not break them in parts.

Itis possible to specify multiple input commands; they will be treated one by one, and documentation
will be generated for each of the processed files.

lang

Select the language for the generated documentation. This will change all header names to the equi-
valent in the specified language. The documentation itself will not be translated, only the captions
and headers used in the text.

Currently, valid choices are

de German.
fr French.

nl Dutch.

Example:

11

CHAPTER 3. FPDOCUSAGE

--lang=de

Will select German language for headers.

The language files should be installed correctly for this option to work. See the section on installing
to check whether the languages are installed correctly.

latex-highlight

Switches on an internal latex syntax highlighter. This is not yet implemented. By default, syntax
highlighting is provided by the syntax package that comes with Free Pascal.

output

This option tells FP@c where the output file should be generated. How this option is interpreted
depends on the format that is used. For latex, this is interpreted as the filename for the tex file. For all
other formats, this is interpreted as the directory where all documentation files will be written. The
directory will be created if it does not yet exist.

The filename or directory name is interpreted as relative to the current directory.
Example:

--format=html| --output=docs/classes
will generate HTML documentation in the directatgcs/classes.
--format=latex --output=docs/classes.tex

will generate latex documentation in the filecs/classes.

package

This option specifies the name of the package to be used. The package name will also be used as a
default for theoutput option (sectiorB.2, pagel?).

show-private

By default, no documentation is generated for private methods or fields of classes or objects. This
option causes FP®&C to generate documentation for these methods and fields as well.

3.3 makeskel

introduction

The makeskel tool can be used to generate an empty description file for a unit. The description file
will contain an element node for each identifier in the interface section of the Pascal unit.

It's usage is quite straightforward: the name of an input file (one or more) must be specified (as for
FPDoc), an output file, and the name of a package:

makeskel --package=rtl --input=crt.pp --output=crt.xml

12

CHAPTER 3. FPDOCUSAGE

This will read the filecrt.pp and will create a fileert.xml which contains empty nodes for all identi-
fiers found incrt.pp, all in a package nametl

Theinput option can be given more than once, as forffidoc command:
makeskel --input="-Sn system.pp’ --input=crt.pp --output=rtl.xml

As can be seen, theput option can contain some compiler options, as is the case fordePD
The above command will process the figgstem.pp andcrt.pp , and will createelementtags for
the identifiers in both units in the fikdl.xml

The output oimakeskel is a valid, empty description file. It will containraodule tag for each unit
specified, and eaalmodule will have elementtags for each identifier in the unit.

Eachelementtag will by default contairshort, descr, errors and seealsatags, but this can be
customised.

3.4 Makeskel option reference

The output ofmakeskel can be customised using several options, which are discussed below.

disable-arguments

By default, for each function or procedure argumengjementtag will be generated. This option
disables this behaviour: redementtags will be generated for procedure and function arguments.

disable-errors

If this option is specified, nerrors tag will be generated in the element nodes. By default all element
tags contain &rrors node.

Theerrors tag is ignored when it is not needed; Normally,arors tag is only needed for procedure
and function elements.

disable-function-results

If this option is specified, then nelementtag will be generated for function results. By default,
makeskel will generate a result node for each function in the interface section. The result node is
used in the documentation to document the return value of the function under a separate heading in
the documentation page. Specifying this option suppresses the generatiorleitieattag for the
function result.

disable-private

If this option is specified, then nelementtags will be generated for private methods or fields of
classes or objects. The default behaviour is to generate nodes for private methods or fields. It can be
used to generate a skeleton for end-user and developer documentation.

disable-protected

If this option is specified, then nelementtags will be generated for protected and private methods
or fields of classes or objects. The default is to generate nodes for protected methods or fields. If this

13

CHAPTER 3. FPDOCUSAGE

option is given, the optiondisable-private is implied. It can be used to generate end-user-
only documentation for classes.

disable-seealso

If this option is specified, neeealsatag will be generated in the element nodes. By default all
elementtags contain aeealsdag.

emitclassseparator

When this option is specified, at the beginning of the elements for the documentation of a class, a
comment tag is emitted which contains a separator text. This can be useful to separate documentation
of different classes and make the description file more understandable.

help

Makeskel emits a short copyright notice and exits when this option is specified.

input

This option is identical in meaning and functionality as thput option for FPDpC. (section

3.2, pagell) It specifies the Pascal unit source file that will be scanned and for which a skeleton
description file will be generated. Multipieput options can be given, arelementtags will be
written for all the files, in one big output file.

lang

This option is used to specify the language for messages emittedakgskel. The supported
languages are identical to the ones for FRD

de German.
fr French.

nl Dutch.

output

This option specifies the name of the output file. A full flename must be given, no extension will be
added. If this option is omitted, the output will be sent to standard output.

package

This option specifies the package name that will be used when generating the skeleton. It is a man-
datory option.

14

Chapter 4

The description file

4.1 Introduction

The description file is a XML document, which means that it is a kind of HTML or SGML like
format, however it is more structured than HTML, making it easier to parse - and makes it easier to
connect or merge it with a Pascal source file. Since the allowed syntax uses a lot of HTML tags, this
makes it easy to write code for those that are familiar with writing HTML.

More information about the XML format, SGML and HTML can be found on the website of the W3
(World Wide Web) consortiumittp://www.w3.org/

The remaining of this chapter assumes a basic knowledge of tags, their attributes and markup lan-
guage, so these terms will not be explained here.

The minimal documentation file would look something like this:

<?xml version="1.0" encoding="ISO8859-1"?>
<fpdoc-descriptions>

<package name="fpc">

<module name="Classes">

</module>

</fpdoc-description>

</package>

The headexml tag is mandatory, and indicates that the file contains a documentation XML docu-
ment.

Inside the document, one or more top-lefdoc-descriptionstags may appear. Each of these tags
can contain one or mogackagetags, which must haveraameattribute. The name attribute will be
used by fpdoc to select the documentation nodes.

Inside apackagetag, one or morenoduletags may appear. there should be oralule tag per unit
that should be documented. The value of tlaeneattribute of themodule should be the name of
the unit for which themodule tag contains the documentation. The value ofriaene attribute is
case insensitive, i.e.

<module name="CRT">

can be used for the documentation of dneunit.

As it is above, the documentation description does not do much. To write real documentation, the
module tag must be filled with the documentation for each identifier that appears in the unit interface
header.

15

http://www.w3.org

CHAPTER 4. THE DESCRIPTION FILE

For each identifier in the unit interface header, tedule should contain a tag that documents the
identifier: this is theelementtag. The name attribute of the element tag links the documentation to
the identifier: thenameattribute should have as value the fully qualified name of the identifier in the
unit.

For example, to document the type

Type
MyEnum = (meOne,meTwo,meThree);

anelementtag callednyenumshould exist:

<element name="myenum">
</element>

But also for each of the three enumerated valueslamenttag should exist:

<element name="myenum.meOne">
</element>

<element name="myenum.meTwo">
</element>

<element name="myenum.meThree">
</element>

As it can be seen, the names of the identifiers follow a hierarchical structure. More about this in the
next section.

Now the tags for the types are present, all that should be done is to fill it with the actual description.
For this, several tags can be placed insiddeamenttag. The most important tag is tlescrtag.
The contents of thdescrtag will be used to describe a type, function, constant or variable:

<element name="myenum">

<descr>

The MyEnum type is a simple enumeration type which is not
really useful, except for demonstration purposes.

</descr>

</element>

A second important tag is thehort tag. It should contain a short description of the identifier, prefer-
ably a description that fits on one line. Thleort tag will be used in various overviews, at the top of

a page in the HTML documentation (a synopsis) or will be used instead afetber tag if that one

is not available. It can also be used in different other cases: For instance the different values of an
enumeration type will be laid out in a table, using #h®rt description:

<element name="myenum.meOne">
<short>The first enumeration value</short>
</element>

<element name="myenum.meTwo">
<short>The second enumeration value</short>
</element>

<element name="myenum.meThree">
<short>The third enumeration value</short>
</element>

This will be converted to a table looking more or less like this:

16

CHAPTER 4. THE DESCRIPTION FILE

meOne The first enumeration value
meTwo The second enumeration value
meThree The third enumeration value

For functions and procedures, a list of possible error conditions can be documented iesiols a
tag. This tag is equivalent to thlescrtag, but is placed under a different heading in the generated
documentation.

Finally, to cross-reference between related functions, types or classesgladag is also introduced.
This will be used to lay out a series of links to related information. This tag can only have sub-tags
which arelink tags. For more about tHimk tag, sedink (23).

4.2 Element names and cross-referencing

Element name conventions

As mentioned in the previous section, thllement tag’snameattribute is hierarchical. All levels
in the hierarchy are denoted by a dot (.) in the name attribute.

As shown in the previous example, for an enumerated type, the various enumeration constants can
be documented by specifying their namesasimname.constname . For example, given the type

Type
MyEnum = (meOne,meTwo,meThree);

The various enumeration values can be documented using the element MgE@sm.meOne
MyEnum.meTwoandMyEnum.meThree :

<element name="myenum.meOne">
</element>

<element name="myenum.meTwo">
</element>

<element name="myenum.meThree">
</element>

Note that the casing of the name attribute need not be the same as the casing of the declaration.
This hierarchical structure can be used for all non-simple types:
e Enumeration type values.

e Fields in records, objects, classes. For nested record definitions, multiple levels are possible in
the name.

e Methods of classes and objects.
e Properties of classes.
e Function and procedure arguments.

e Function results. The name is always the function name followdddsult

Cross referencing: the link tag

To refer to another point in the documentation (a related function, class or whatdirg)tag exists.
Thelink tag takes as a sole attribute a tarigeattribute. The link tag usually encloses a piece of

17

CHAPTER 4. THE DESCRIPTION FILE

text. In the HTML version of the documentation, this piece of text will function as a hyperlink. In
the latex version, a page number reference will be printed.

Theid attribute contains the name of an element to which the link refers. The name is not case
sensitive, but it must be a fully qualified name.

An example of the link type would be:

The <link id="MyEnum">MyEnum</link> type is a simple type.
The link attribute also has a short form:

The <link id="MyEnum"/> type is a simple type.

In the short form, the value of thid attribute will be used as the text which will be hyperlinked. This
is especially useful in theeealsdag.

To refer to a type in another unit, the unit name must be prepended i dtigibute:
<link id="myunit.myenum"/>

will link to the myenumtype in a unit namedyunit.

To refer to a node in the documentation of another package, the package name should be prepended
to theid attribute, and it should be prepended with the hash symbol (#):

<link id="#fcl.classes.sofrombeginning"/>

will link to the constansofrombeginning in the classes unit of the FCL reference document-
ation. Note that for this to work correctly, the contents file which was created when generating the
documentation of the type must be imported correctly (seétpert option).

4.3 Tag reference

Overview
The tags can roughly be divided in 2 groups:

1. Documentation structure tags. These are needed for fpdoc to do it's work. They determine
what elements are documented. See tabl® (

2. Text structure and formartting tags. These tags indicate blocks of text, such as paragraphs,
tables, lists and remarks, but also specify formatting: apply formatting (make-up) to the text,
or to provide links to other parts of the text. These mostly occur in text structure tags. See

table @.2)

The nodes for formatting a text resemble closely the basic HTML formatting tags with the following
exceptions:

e Each opening tag must have a corresponding closing tag.
e Tags are case sensitive.

e Tables and paragraphs are at the same level, i.e. a table cannot occur inside a paragraph. The
same is true for all 'structural’ tags such as lists,

Also, if special formatting tags such as a table or lists are inserted, then the remaining text must be
inside a paragraph tag. This means that the following is wrong:

18

CHAPTER 4. THE DESCRIPTION FILE
Table 4.1: Documentation structure tags
Tag Description Page
descr Element description 20
element Identifier documentation 22
errors Error section 22
fpdoc-description Global tag 22
module Unit tag 24
package Package global tab 25
seealso Cross-reference section 26
short Short description 26
Table 4.2: Text formatting tags
Tag Description Page
b Format bold 20
caption Specify table caption 20
code Syntax highlight code 20
dd definition data 21
dl definition list 21
dt Definition term 21
i format italics 22
li list element 23
link Cross-reference 23
ol numbered list 24
p paragraph 24
pre Preformatted text 25
remark remark paragraph 26
table Table 27
td Table cell 27
th Table header 28
tr Table row 28
u format underlined 28
ul bulleted list 29
var format as variable 29
<descr>

Some beginning text

A list item

some ending text

</descr>

Instead, the correct XML should be

<descr>

<p>Some beginning text</p>

A list item

<p>some ending text</p>

</descr>

19

CHAPTER 4. THE DESCRIPTION FILE

b : format bold
This tag will cause the text inside it to be formatted using a bold font.
Example:

Normal text Bold text normal text.

will be formatted as:
Normal textBold text normal text.

See alsoi (22), u (28).

caption : Specify table caption
This tag can occur insidetable tag and serves to set the table caption.
Example

<table>

<caption>This caption will end up above the table</caption>
<th><td>Column 1</td><td>Column 2</td></th>

</table>

See alsotable (27)

code : format as pascal code

The codetag serves to insert Pascal code into the text. When possible this code will be highlighted
in the output. It can be used to put highlighted Pascal code in the documentation of some identifier.
It can occur insidelescror errors tags.

Note that any text surrounding tltedetag should be placed in paragraph tags
Example:

<code>
With Strings do
For i:=Count-1 downto 0 do
Delete(i);
</code>

Seealsopre (25), p (24)

descr : Descriptions

This is the actual documentation tag. The contents of this tag will be written as the documentation of
the element. It can contain any mixture of text and markup tagsd&kertag can only occur inside
aelementor module.

Example:

<element name="MyEnym">

<descr>Myenum is a simple enumeration type</descr>
</element>

See alsoelement(22), short (26), errors (22), seealsd26)

20

CHAPTER 4. THE DESCRIPTION FILE

dd : definition data.

Thedd tag is used to denote the definition of a term in a definition list. It can occur only inside a
definition list tag €ll), after a definition termdt) tag. It's usage is identical to the one in HTML.

Example:

<dI>
<dt>FPC</dt><dd>stands for Free Pascal Compiler.</dd>
</dI>

Will be typeset as
FPC stands for Free Pascal Compiler.

See alsodl| (21), dt (212), ol (24), ul (29)

dl : definition list.

Definition lists are meant to type a set of terms together with their explanation. It's usage is identical
to the one in HTML, with the exception that it cannot occur inside ordinary text: surrounding text
should always be enclosed in paragraph tags.

Example:

<dI>

<dt>meOne</dt><dd>First element of the enumeration type.</dd>
<dt>meTwo</dt><dd>Second element of the enumeration type.</dd>
<dt>meThree</dt><dd>Thir element of the enumeration type.</dd>
</dI>

Will be typeset as

meOne First element of the enumeration type.
meTwo Second element of the enumeration type.

meThree Third element of the enumeration type.

See alsodt (21), dd (21), ol (24), ul (29)

dt : definition term.

Thedt tag is used in definition lists to enclose the term for which a definition is presented. It's usage
is identical to the usage in HTML.

Example:

<dI>

<dt>FPC</dt><dd>stands for Free Pascal Compiler.</dd>
</dI>

Will be typeset as

FPC stands for Free Pascal Compiler.

See alsod! (21), dd (21), ol (24), ul (29)

21

CHAPTER 4. THE DESCRIPTION FILE

element : Identifier documentation

Theelementcontains the documentation for an identifier in a unit. It should occur insidechule
tag. It can contain 4 tags:

short For a one-line description of the identifier. Is used as a header or is used in overviews of
constants, types, variables or classes.

descr Contains the actual description of the identifier.

errors For functions an procedures this can be used to describe error conditions. It will be putin a
separate section below the description section.

seealsoUsed to refer to other nodes. will be typeset in a separate section.

The elementtag should have at least timameattribute, it is used to link the element node to the
actual identifier in the Pascal unit. Other attributes may be added in future.

Example:

<element name="MyEnym">

<descr>Myenum is a simple enumeration type</descr>
</element>

See alsodescr(20), short (26), errors (22), seealsd26)

errors : Error section.

Theerrors tag is used to document any errors that can occur when calling a function or procedure.
it is placed in a different section in the generated documentation. It occurs insldmanttag, at
the same level as@escror short tag. It's contents can be any text or formatting tag.

Example:

<element name="MyDangerousFunction">
<descr>MyDangerousFunction is a dangerous function</descr>
<errors>When MyDangerousFunction fails, all is lost</errors>
</element>

See alsodescr(20), short (26), element(22), seealsd26)

fpdoc-description : Global tag

The fpdoc-description tag is the topmost tag in a description file. It contains a seriggokage
tags, one for each package that is described in the file.

See alsopackage(25)

i : Format italics
Thei tag will cause its contents to be typeset in italics. It can occur mixed with any text.
Example:

Normal text <i>italic text</i> normal text.

will be formatted as:
Normal textitalic text normal text.

See alsob (20), u (28)

22

CHAPTER 4. THE DESCRIPTION FILE

li : list element

The tagli denotes an element inahor ul list. The usage is the same as for it's HTML counterpart:
It can occur only inside one of tha or ul list tags. It's contents may be arbitrary text and formatting
tags, contrary to HTML tags, tHetag always must have a closing tag. Note that it cannot be used in
a definition list @l (21)).

Example:

First item in the list

Second item in the list

Will be typeset as

e Firstitem in the list.

e Second item in the list.

See alsool (24), ul (29).

link ;: Cross-reference

Thelink tag is used to insert a reference to an element inside some piece of text or ingdedts®
section. It is similar in functionality to the

some linked text

construct in HTML.

The mandatoryd attribute of thdink tag should have the name of an element tag in it. This name
is not case sensitive. FRIZ will issue a warning if it cannot find a matching name. It will look for
matching names in the current file, and in all content files that have been specified viitiptire
command-line option.

The link tag can exist in 2 forms: one with separate closing tag, surrounding a piece of text, one
without separate closing tag. If a piece of text is surrounded by the link tag, then the text will be
converted to a hyperlink in the HTML documentation. If there is no surrounded text, then the value
of theid attribute will be used as the text. This means that

<link id="TStream">TStream</link>

and

<link id="TStream"/>

are completely equivalent.
Example:

The <link id="TStringlist">stringlist</link> class is a descendent of the
<link id="TStrings"/> class.

See alsoelement(22), theimport option (sectiorB8.2, pagell).

23

CHAPTER 4. THE DESCRIPTION FILE

module : Unit reference

The module tag encloses aklementtags for a unit. It can contain onlementtags for all iden-
tifiers in the unit and aescrtag describing the unit itself. Thaodule tag should occur inside a
packagetag.

The nameattribute should have as a value the name of the unit which is described by the module.
This name is not case sensitive.

Example:

<module name="classes">

<descr>

The classes unit contains basic class definitions for the FCL.
</descr>

</module>

See alsopackage(25), descr(20), element(22)

ol : Numbered list.

Theol tag starts a numbered list. It can contain dn23) tags, which denote the various elements in
the list. Each item will be preceded by a number. Bhiag can occur inside a text, but surrounding
text should always be enclosed irpd24) paragraph tag, i.e. an tag should occur always at the
same level as p tag.

Example:

<p> some text before</p>

First item in the list
Second item in the list

Will be typeset as:
some text before

1. Firstitem in the list.

2. Second item in the list.

See alsoli (23), ul (29).

p : Paragraph

Thep tag is the paragraph tag. Every description text should be enclosqutaga Only when there
is only one paragraph (and no lists or tables or remarks) in a description node, tipetaghmay be
skipped.

Note that if a description node containsadble, pre, codeor any list tag, then the text surrounding
these tagsnustbe put inside g paragraph tag. This is different from the behaviour in HTML.

The paragraph tag must always have an opening tag and a closing tag, unlike html where only the
opening tag may be present.

Example:

24

CHAPTER 4. THE DESCRIPTION FILE

<descr>
This is a paragraph which need not be surrounded by paragraph tags.
</descr>

<descr>

<p>

This is the first paragraph.
</p>

<p>

This is the second paragraph.
</p>

</descr>

See alsotable (27), dl (21), remark (26),code(20), ol (24),ul (29),0l (24)

package : Package reference

The packagetag indicates the package for which the description file contains documentation. A
package is a collection of units which are logically grouped together (for a library, program, com-
ponent suites). Theameattribute of thepackagetag will be used to select the package node in
the description file: Only thpackagenode with name as specified by theckage command-line
option will be used when generating documentation. All other package nodes will be ignored.

Thepackagenode must always reside iffladoc-descriptionnode. It can contain descrnode, and
variousmodule nodes, one node per unit in the package.

See alsofpdocdescription (22), module (24), descr(20)

pre : Insert text as-is

Thepre tag can be used to insert arbitrary text in the documentation. The text will not be formatted
in any way, and will be displayed as it is encountered in the description node. It is functionally
equivalent to thepre tag in HTML.

Note that if there is text surrounding tpee tag, it should be placed insidepgparagraph tag.
Example:
<pre>
This is some text.
This is some more text

And yet more text...
</pre>

This will be typeset as:

This is some text.
This is some more text

And yet more text...

See alsocode(20), p (24)

25

Remark:

CHAPTER 4. THE DESCRIPTION FILE

remark : format as remark

A remark tag can be used to make a paragraph stand outrérhark is equivalent to the tag, but
it's contents is formatted in a way that makes it stand out from the rest of the text.

Note that any text before or after themark tag must be enclosed in paragraph tags.
Example:

<p>Normal text.</p>
<remark>

This text will stand out.
<example>

<p>Again normal text.</p>

Will be formatted as

Normal text.

This text will stand out.

Again normal text.

See alsop (24), code(20), pre (25

seealso : Cross-reference section

The seealsosection can occur inside amfementtag, and will be used to create a list of cross-
references. The contents of theealsdag is a list oflink tags. No other text is allowed inside this
tag. Note that both the long and short form if the link tag may be used.

Example:

<seealso>

<link id="TStrings"/>

<link id="TStringList.Create">Create</link>
</seealso>

See alsolink (23), element(22)

short : Short description

Theshort description is used to give a short description of an identifier. If possible, the description
should fit on a single line of text. The contents of this tag will be used for the following purposes:

e Used as the synopsis on a page that describes an identifier.

e Used in overviews of constants, types, variables, record fields, functions and procedures,
classes, and for method and property listings of classes.

e Replaces thdescrtag in anelementif no descrtag is present.

¢ In the description of an enumerated type, the enumeration values are typeset in a table, each
row containing the name of the value and the short description.

¢ In the description of a function or procedure that accepts arguments, the arguments are fol-
lowed by their short description.

¢ In the declaration of a class or record, each method, field or property is followed by the short
description.

26

CHAPTER 4. THE DESCRIPTION FILE

Example:

<element name="MyEnum.meOne">
<short>First element of MyEnum</short>
</element>

See alsoelement(22), descr(20)

table : Table start

Thetable tag starts a table, as in HTML. A table can contirftable row),th (table header row)
or caption tags. Any text surrounding the table must be enclosed in paragraptp)ags (

Example:

<table>
<caption>
<var>TALignment</var> values and their meanings.
</caption>
<th><td>Value</td><td>Meaning</td></th>
<tr>

<td><var>taleftJustify</var></td>

<td>Text is displayed aligned to the left.</td>
</tr>
<tr>

<td><var>taRightJustify</var></td>

<td>Text is displayed aligned to the right</td>
</tr>
<tr>

<td><var>taCenter</var></td>

<td>Text is displayed centred.</td>
</tr>
</table>

Will be formatted approximately as follows:

Value Meaning

taLeftJustify Text is displayed aligned to the left.
taRightJustify Text is displayed aligned to the right
taCenter Text is displayed centred.

See alsoth (28), caption (20), tr (28), p (24)

td : Table cell

Thetd tag is used to denote one cell in a table. It occurs insittea th tag, and can contain any
text and formatting tags.

Example:

<table>

<tr><td>Cell (1,1)</td><td>Cell (2,1)</td></tr>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</table>

Will be formatted approximately as

27

CHAPTER 4. THE DESCRIPTION FILE

Cell(1,1) Cell (2,1)
Cell (1,2) Cell (2,2)

See alsotable (27), th (28), tr (28)

th : Table header

Theth table header tag is used to denote the first row(s) of a table: It (they) will be made up
differently from the other rows in the table. Exactly how it is made up depends on the format. In
printed documentation (latex) a line will be drawn under the row. In HTML, the font and background
may be formatted differently.

Theth tag can only occur insidetable tag, and can contain onty tags.
Example:

<table>
<th><td>Cell (1,1)</td><td>Cell (2,1)</td></th>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</table>

Will be formatted approximately as

Cell(1,1) Cell (2,1)
Cell(1,2) Cell (2,2)

See alsotr (28), table (27)

tr : table row

Thetr tag denotes a row in a table. It works the same as in HTML. It can occur onlyeibl@tag,
and should contain onlg table data tags.

Example:

<table>
<tr><td>Cell (1,1)</td><td>Cell (2,1)</td></tr>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</table>

Will be formatted approximately as

Cell (1,1) Cell (2,1)
Cell (1,2) Cell (2,2)

See alsotable (27), th (28), td (27)

u : Format underlined

Example:
Normal text <u>underlined text</u> normal text.

will be formatted as:
Normal text underlined textormal text.

See alsoi (22), b (20).

28

CHAPTER 4. THE DESCRIPTION FILE

ul : bulleted list

The ul tag starts a bulleted list. This works as under HTML, with the exception that any text
surrounding the list must be enclosed in paragraph agsThe list elements should be enclosed in
li tags.

Example:

<p> some text before</p>

First item in the list

Second item in the list

Will be typeset as:
some text before

e Firstitem in the list.

e Second item in the list.

See alsoli (23), ol (24).

var : variable

Thevar tag is used to mark a piece of text as a variable (or, more general, as an identifier). It will be
typeset differently from the surrounding text. Exactly how this is done depends on the output format.

Example:
The <var>ltems</var> property gives indexed access to...

Will be typeset as
Theltems property gives indexed access to...
See alsob (20), u (28), i (22), code(20)

29

Chapter 5

Generated output files.

5.1 HTML output

The HTML output consists of the following files, per unit:

1. A general unit description with the contents of the modutiEscrtag. Theuses clause is
documented here as well. All units in thiees clause together with theghort description
tags are typeset in a table.

A listing of all constants in the unit.

A listing of all types in the unit (except classes).

2.

3.

4. A listing of all variables in the unit.

5. Alisting of all functions/procedures in the unit.
6.

A listing of all classes in the unit.

All these overviews are hyperlinked to pages which contain the documentation of each identifier.
Each page starts with the name of the identifier, plus a synopsis (made frehoitiéag’s contents).

After that follows the declaration, and the description. The description is filled witdeékernode

of the identifierselementtag.

If an errors tag was present, an 'Errors’ section follows the description. Similarly, if there is a
seealsdag, a 'See also’ section with cross-reference links is made.

For classes, the declaration contains hyperlinks to separate pages which document all the members
of the class. Each member in the declaration is followed byshwet tag of the member'slement

tag, if one exists. As an extra, the class hierarchy is given, plus links to pop-up pages (if JavaScript is
available, otherwise they are normal links) which contain alphabetical or hierarchical listings of the
methods, fields or properties of the class.

For functions and procedures, the declaration will be typeset in such a way that all function arguments
(if they are present) are in tabular format, followed by the short description of the argument. If it
concerns a function, and a result element exists, the result description will be provided in a separate
section, before the actual description.

The declaration of an enumerated type will be laid out in a table, with the enumeration value at the
left, and the short description node of the value’s element.

30

CHAPTER 5. GENERATED OUTPUT FILES.

5.2 Latex output

The latex output is in one big file with the name of the package as specified on the command line. in
this file, one chapter is made per unit.

Per unit the following sections are made:

1. A section with all constants.

2. A section with all types.

3. A section with all variables.

4. A section with all functions and procedures.

5. A section per declared class.

For the constants, types and variables, the declaration is given, followed bigshenode of the
element corresponding to the identifier. All other nodes are ignored.

For functions and procedures, a subsection is made per procedure or function. This subsection con-
sists of a list with the following entries:

Synopsis filled with the contents of thehort tag.

Declaration Filled with the declaration of the function.

Arguments A tabular description of all arguments short tags are found for them.
Description Description of the function. Filled with the contents of thescrtag.
Errors Description of any error conditions. Filled with the contents ofehers tag.

See Also Cross-references to other functions. Filled with the contents afe¢balsdag.

For classes, a subsection is made with an overview of implemented methods. Then a subsection is
presented with available properties.

Then follows a subsection per method. These are formatted as a function, with an adifisdmnal
ility list element, giving the visibility of the function.

After the methods, a list of properties is given , formatted as a method, with an addiicreds
list element, specifying whether the property is read/write or not.

31

	Introduction
	About this document
	About FPDoc
	Getting more information.

	Compiling and Installing FPDoc
	Compiling
	Installation

	FPDoc usage
	fpdoc
	FPDoc command-line options reference
	content
	descr
	format
	help
	hide-protected
	html-search
	import
	input
	lang
	latex-highlight
	output
	package
	show-private

	makeskel
	introduction

	Makeskel option reference
	disable-arguments
	disable-errors
	disable-function-results
	disable-private
	disable-protected
	disable-seealso
	emitclassseparator
	help
	input
	lang
	output
	package

	The description file
	Introduction
	Element names and cross-referencing
	Element name conventions
	Cross referencing: the link tag

	Tag reference
	Overview
	b : format bold
	caption : Specify table caption
	code : format as pascal code
	descr : Descriptions
	dd : definition data.
	dl : definition list.
	dt : definition term.
	element : Identifier documentation
	errors : Error section.
	fpdoc-description : Global tag
	i : Format italics
	li : list element
	link : Cross-reference
	module : Unit reference
	ol : Numbered list.
	p : Paragraph
	package : Package reference
	pre : Insert text as-is
	remark : format as remark
	seealso : Cross-reference section
	short : Short description
	table : Table start
	td : Table cell
	th : Table header
	tr : table row
	u : Format underlined
	ul : bulleted list
	var : variable

	Generated output files.
	HTML output
	Latex output

