
Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 1.0.8
Document version 1.9

May 2003

Michaël Van Canneyt

Contents

I The Pascal language 12

1 Pascal Tokens 13

1.1 Symbols. .13

1.2 Comments. .13

1.3 Reserved words. .14

Turbo Pascal reserved words. 14

Delphi reserved words. .15

Free Pascal reserved words. 15

Modifiers .15

1.4 Identifiers .15

1.5 Numbers. .16

1.6 Labels .17

1.7 Character strings. .17

2 Constants 18

2.1 Ordinary constants. .18

2.2 Typed constants. .18

2.3 Resource strings. .19

3 Types 21

3.1 Base types. .21

Ordinal types .22

Integers .22

Boolean types. .23

Enumeration types. 24

Subrange types. .25

Real types. .25

3.2 Character types. .26

Char .26

Strings. .26

Short strings. .26

1

CONTENTS

Ansistrings .27

Constant strings. .28

PChar - Null terminated strings. 29

3.3 Structured Types. .29

Arrays .30

Record types .31

Set types. .34

File types .35

3.4 Pointers .35

3.5 Forward type declarations. 37

3.6 Procedural types. .38

4 Objects 40

4.1 Declaration .40

4.2 Fields .41

4.3 Constructors and destructors. 42

4.4 Methods. .43

4.5 Method invocation .43

Static methods .44

Virtual methods. .44

Abstract methods. 45

4.6 Visibility .46

5 Classes 47

5.1 Class definitions. .47

5.2 Class instantiation. .48

5.3 Methods. .49

invocation .49

Virtual methods. .49

Message methods. .49

5.4 Properties. .51

6 Expressions 55

6.1 Expression syntax. .56

6.2 Function calls. .57

6.3 Set constructors. .58

6.4 Value typecasts. .59

6.5 The @ operator. .60

6.6 Operators .60

Arithmetic operators .60

Logical operators. .61

2

CONTENTS

Boolean operators. .62

String operators. .62

Set operators .62

Relational operators. .62

7 Statements 64

7.1 Simple statements. .64

Assignments. .64

Procedure statements. .65

Goto statements. .66

7.2 Structured statements. .66

Compound statements. .67

TheCase statement .67

TheIf..then..else statement . 68

TheFor..to/downto..do statement . 69

TheRepeat..until statement . 70

TheWhile..do statement . 71

TheWith statement .71

Exception Statements. .73

7.3 Assembler statements. .73

8 Using functions and procedures 75

8.1 Procedure declaration. .75

8.2 Function declaration. .76

8.3 Parameter lists. .76

Value parameters. .76

Variable parameters. .77

Constant parameters. .77

Open array parameters. .78

Array of const. .78

8.4 Function overloading. .80

8.5 Forward defined functions. 81

8.6 External functions. .82

8.7 Assembler functions. .83

8.8 Modifiers .83

alias .83

cdecl .84

export .85

inline .85

interrupt .85

pascal .85

3

CONTENTS

popstack. .85

public .85

register .86

saveregisters. .86

safecall .86

stdcall .86

8.9 Unsupported Turbo Pascal modifiers. 86

9 Operator overloading 88

9.1 Introduction. .88

9.2 Operator declarations. .88

9.3 Assignment operators. .89

9.4 Arithmetic operators .91

9.5 Comparision operator. .92

10 Programs, units, blocks 94

10.1 Programs .94

10.2 Units. .95

10.3 Blocks. .96

10.4 Scope .97

Block scope. .97

Record scope. .98

Class scope. .98

Unit scope. .98

10.5 Libraries. .99

11 Exceptions 100

11.1 The raise statement. .100

11.2 The try...except statement. .101

11.3 The try...finally statement. .102

11.4 Exception handling nesting. .103

11.5 Exception classes. .103

12 Using assembler 104

12.1 Assembler statements. .104

12.2 Assembler procedures and functions. .104

II Reference : The System unit 105

13 The system unit 106

13.1 Types, Constants and Variables. .106

4

CONTENTS

Types .106

Constants .109

Variables .112

13.2 Function list by category. .113

File handling .113

Memory management. .114

Mathematical routines .115

String handling .115

Operating System functions. .116

Miscellaneous functions. .116

13.3 Functions and Procedures. .117

Abs .117

Addr .117

Append .118

Arctan .118

Assert .119

Assign .119

Assigned .120

BinStr .120

Blockread .121

Blockwrite .121

Break .122

Chdir .122

Chr .123

Close .123

CompareByte. .124

CompareChar. .125

CompareDWord. .126

CompareWord. .127

Concat. .128

Continue. .129

Copy .129

Cos .130

CSeg. .130

Dec .131

Delete .131

Dispose .132

DSeg .133

Eof .133

Eoln .134

5

CONTENTS

Erase .134

Exclude .135

Exit .136

Exp .137

Filepos. .138

Filesize .138

FillByte .139

Fillchar .140

FillDWord .140

Fillword .141

Flush .141

Frac .142

Freemem .142

Getdir .143

Getmem. .143

GetMemoryManager. .144

Halt .144

HexStr .144

Hi .145

High .145

Inc .146

Include .147

IndexByte .147

IndexChar. .148

IndexDWord. .149

IndexWord .150

Insert .150

IsMemoryManagerSet .151

Int .151

IOresult .151

Length .153

Ln .153

Lo .154

LongJmp .154

Low .154

Lowercase. .155

Mark .155

Maxavail .156

Memavail .156

Mkdir .157

6

CONTENTS

Move .157

MoveChar0 .158

New .158

Odd .158

OctStr .159

Ofs .159

Ord .160

Paramcount. .160

Paramstr. .161

Pi .161

Pos. .162

Power .162

Pred .162

Ptr .163

Random .163

Randomize .164

Read. .164

Readln. .165

Real2Double .165

Release .166

Rename .166

Reset .167

Rewrite .167

Rmdir .168

Round .169

Runerror. .169

Seek .169

SeekEof .170

SeekEoln .171

Seg .171

SetMemoryManager .172

SetJmp. .172

SetLength .172

SetString .173

SetTextBuf .173

Sin .174

SizeOf .175

Sptr .175

Sqr .175

Sqrt .176

7

CONTENTS

SSeg. .176

Str .177

StringOfChar .177

Succ .178

Swap .178

Trunc .178

Truncate. .179

Upcase. .179

Val .180

Write .181

WriteLn .181

14 The OBJPAS unit 183

14.1 Types .183

14.2 Functions and Procedures. .183

AssignFile. .183

CloseFile .184

Freemem .184

Getmem. .185

GetResourceStringCurrentValue. .185

GetResourceStringDefaultValue. .186

GetResourceStringHash. .186

GetResourceStringName. .187

Hash. .187

Paramstr. .188

ReAllocMem .188

ResetResourceTables. .189

ResourceStringCount. .189

ResourceStringTableCount. .189

SetResourceStrings. .190

SetResourceStringValue. .190

8

List of Tables

3.1 Predefined integer types. .22

3.2 Predefined integer types. .23

3.3 Boolean types. .23

3.4 Supported Real types. .26

3.5 PChar pointer arithmetic. 30

3.6 Set Manipulation operators. 35

6.1 Precedence of operators. .55

6.2 Binary arithmetic operators. 61

6.3 Unary arithmetic operators. 61

6.4 Logical operators. .61

6.5 Boolean operators. .62

6.6 Set operators. .63

6.7 Relational operators. .63

7.1 Allowed C constructs in Free Pascal. 65

8.1 Unsupported modifiers. .87

9

LIST OF TABLES

About this guide

This document describes all constants, types, variables, functions and procedures as they are de-
clared in the system unit. Furthermore, it describes all pascal constructs supported by Free Pascal,
and lists all supported data types. It does not, however, give a detailed explanation of the pascal lan-
guage. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal implementation.

Notations
Throughout this document, we will refer to functions, types and variables withtypewriter font.
Functions and procedures have their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.

Description What does the procedure exactly do ?

Errors What errors can occur.

See AlsoCross references to other related functions/commands.

The cross-references come in two flavours:

• References to other functions in this manual. In the printed copy, a number will appear after
this reference. It refers to the page where this function is explained. In the on-line help pages,
this is a hyperlink, which can be clicked to jump to the declaration.

• References to Unix manual pages. (For linux and unix related things only) they are printed in
typewriter font, and the number after it is the Unix manual section.

Syntax diagrams
All elements of the pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the
arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this
means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

-- syntactical elements are like this -�

Keywords which must be typed exactly as in the diagram:

-- keywords are like this -�

When something can be repeated, there is an arrow around it:

--
6
this can be repeated -�

When there are different possibilities, they are listed in columns:

-- First possibility
Second possibility

-�

Note, that one of the possibilities can be empty:

10

LIST OF TABLES

--

First possibility
Second possibility

-�

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

11

Part I

The Pascal language

12

Chapter 1

Pascal Tokens

In this chapter we describe all the pascal reserved words, as well as the various ways to denote strings,
numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special ASCII symbols in a Pascal source file.

Recognised symbols

-- letter A...Z
a...z

-�

-- digit 0...9 -�

-- hex digit 0...9
A...F
a...f

-�

The following characters have a special meaning:

+ - * / = < > [] . , () : ^ @ { } $ #

and the following character pairs too:

<= >= := += -= *= /= (* *) (. .) //

When used in a range specifier, the character pair(. is equivalent to the left square bracket[.
Likewise, the character pair.) is equivalent to the right square bracket] . When used for comment
delimiters, the character pair(* is equivalent to the left brace{ and the character pair*) is equival-
ent to the right brace} . These character pairs retain their normal meaning in string expressions.

1.2 Comments

Free Pascal supports the use of nested comments. The following constructs are valid comments:

13

CHAPTER 1. PASCAL TOKENS

(* This is an old style comment *)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }
(* comment 1 // Comment 2 *)
// comment 1 (* comment 2 *)
// comment 1 { comment 2 }

The last two commentsmustbe on one line. The following two will give errors:

// Valid comment { No longer valid comment !!
}

and

// Valid comment (* No longer valid comment !!
*)

The compiler will react with a ’invalid character’ error when it encounters such constructs, regardless
of the-So switch.

1.3 Reserved words

Reserved words are part of the Pascal language, and cannot be redefined. They will be denoted as
this throughout the syntax diagrams. Reserved words can be typed regardless of case, i.e. Pascal is
case insensitive. We make a distinction between Turbo Pascal and Delphi reserved words, since with
the -So switch, only the Turbo Pascal reserved words are recognised, and the Delphi ones can be
redefined. By default, Free Pascal recognises the Delphi reserved words.

Turbo Pascal reserved words
The following keywords exist in Turbo Pascal mode

absolute
and
array
asm
begin
break
case
const
constructor
continue
destructor
div
do
downto

else
end
file
for
function
goto
if
implementation
in
inherited
inline
interface
label
mod

nil
not
object
of
on
operator
or
packed
procedure
program
record
repeat
self
set

shl
shr
string
then
to
type
unit
until
uses
var
while
with
xor

14

CHAPTER 1. PASCAL TOKENS

Delphi reserved words
The Delphi (II) reserved words are the same as the pascal ones, plus the following ones:

as
class
except
exports

finalization
finally
initialization
is

library
on
property
raise

try

Free Pascal reserved words
On top of the Turbo Pascal and Delphi reserved words, Free Pascal also considers the following as
reserved words:

dispose
exit

false
new

true

Modifiers
The following is a list of all modifiers. Contrary to Delphi, Free Pascal doesn’t allow the programmer
to redefine these modifiers.

absolute
abstract
alias
assembler
cdecl
default
export

external
far
forward
index
name
near
override

pascal
popstack
private
protected
public
published
read

register
saveregisters
stdcall
virtual
write

Remark: Predefined types such asByte , Boolean and constants such asmaxint arenot reserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in other
units. The programmer is, however, not encouraged to do this, as it will cause a lot of confusion.

1.4 Identifiers

Identifiers denote constants, types, variables, procedures and functions, units, and programs. All
names of things that are defined are identifiers. An identifier consists of 255 significant characters
(letters, digits and the underscore character), from which the first must be an alphanumeric character,
or an underscore (_) The following diagram gives the basic syntax for identifiers.

Identifiers

-- identifier letter
_ 6 letter

digit
_

-�

15

CHAPTER 1. PASCAL TOKENS

1.5 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scientific notation (e.g.0.314E1).

For integer type constants, Free Pascal supports 4 formats:

1. Normal, decimal format (base 10). This is the standard format.

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sign ($). Thus, the hexadecimal$FF
equals 255 decimal. Note that case is insignificant when using hexadecimal constants.

3. As of version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with a ampersand (&). For instance 15 is specified in octal notation as&17.

4. Binary notation (base 2). A binary number can be specified by preceding it with a percent sign
(%). Thus,255 can be specified in binary notation as%11111111.

The following diagrams show the syntax for numbers.

Numbers

-- hex digit sequence
6
hex digit -�

-- octal digit sequence
6
octal digit -�

-- bin digit sequence
6

1
0

-�

-- digit sequence
6
digit -�

-- unsigned integer digit sequence
$ hex digit sequence
% bin digit sequence

-�

-- sign +
-

-�

-- unsigned real digit sequence
. digit sequence scale factor

-�

-- scale factor E
e sign

digit sequence -�

-- unsigned number unsigned real
unsigned integer

-�

-- signed number
sign

unsigned number -�

Remark: It is to note that all decimal constants which do no fit within the -2147483648..2147483647 range,
are silently and automatically parsed as real-type constants.

16

CHAPTER 1. PASCAL TOKENS

1.6 Labels

Labels can be digit sequences or identifiers.

Label

-- label digit sequence
identifier

-�

Remark: Note that the-Sg switch must be specified before labels can be used. By default, Free Pascal doesn’t
supportlabel andgoto statements.

1.7 Character strings

A character string (or string for short) is a sequence of zero or more characters from the ASCII
character set, enclosed by single quotes, and on 1 line of the program source. A character set with
nothing between the quotes (’’) is an empty string.

Character strings

-- character string
6

quoted string
control string

-�

-- quoted string ’
6
string character ’ -�

-- string character Any character except ’ or CR
”

-�

-- control string
6
unsigned integer -�

17

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both normal and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are not different from the Turbo Pascal or Delphi implementation.

Constant declaration

-- constant declaration
6
identifier = expression ; -�

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operators such as+, -, *, /, not, and, or, div, mod, ord, chr, sizeof, pi,
int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chapter6, page55. Only constants of the following types can be declared:Ordinal
types , Real types , Char , andString . The following are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c = ’4’; { Character type constant. }
s = ’This is a constant string’; {String type constant.}
s = chr(32)
ls = SizeOf(Longint);

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := ’some other string’;

2.2 Typed constants

Typed constants serve to provide a program with initialised variables. Contrary to ordinary constants,
they may be assigned to at run-time. The difference with normal variables is that their value is

18

CHAPTER 2. CONSTANTS

initialised when the program starts, whereas normal variables must be initialised explicitly.

Typed constant declaration

-- typed constant declaration
6
identifier : type = typed constant ; -�

-- typed constant constant
address constant

array constant
record constant

procedural constant

-�

Given the declaration:

Const
S : String = ’This is a typed constant string’;

The following is a valid assignment:

S := ’Result : ’+Func;

WhereFunc is a function that returns aString . Typed constants are often used to initialize arrays
and records. For arrays, the initial elements must be specified, surrounded by round brackets, and
separated by commas. The number of elements must be exactly the same as the number of elements
in the declaration of the type. As an example:

Const
tt : array [1..3] of string[20] = (’ikke’, ’gij’, ’hij’);
ti : array [1..3] of Longint = (1,2,3);

For constant records, each element of the record should be specified, in the formField : Value ,
separated by commas, and surrounded by round brackets. As an example:

Type
Point = record

X,Y : Real
end;

Const
Origin : Point = (X:0.0; Y:0.0);

The order of the fields in a constant record needs to be the same as in the type declaration, otherwise
a compile-time error will occur.

Remark: It should be stressed that typed constants are initialized at program start. This is also true for
local typed constants. Local typed constants are also initialized at program start. If their value was
changed during previous invocations of the function, they will retain their changed value, i.e. they
are not initialized each time the function is invoked.

2.3 Resource strings

A special kind of constant declaration part is theResourestring part. This part is like aConst
section, but it only allows to declare constant of type string. This part is only available in theDelphi
or objfpc mode.

19

CHAPTER 2. CONSTANTS

The following is an example of a resourcestring definition:

Resourcestring

FileMenu = ’&File...’;
EditMenu = ’&Edit...’;

All string constants defined in the resourcestring section are stored in special tables, allowing to
manipulate the values of the strings at runtime with some special mechanisms.

Semantically, the strings are like constants; Values can not be assigned to them, except through the
special mechanisms in the objpas unit. However, they can be used in assignments or expressions
as normal constants. The main use of the resourcestring section is to provide an easy means of
internationalization.

More on the subject of resourcestrings can be found in theProgrammers guide, and in the chapter on
theobjpas later in this manual.

20

file:../prog/prog.html

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some
extra types from Delphi. The programmer can declare his own types, which is in essence defining an
identifier that can be used to denote this custom type when declaring variables further in the source
code.

Type declaration

-- type declaration identifier = type ; -�

There are 7 major type classes :

Types

-- type simple type
string type

structured type
pointer type

procedural type
type identifier

-�

The last class,type identifier, is just a means to give another name to a type. This presents a way
to make types platform independent, by only using these types, and then defining these types for
each platform individually. The programmer that uses these units doesn’t have to worry about type
size and so on. It also allows to use shortcut names for fully qualified type names. e.g. define
system.longint asOlongint and then redefinelongint .

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each separate.

Simple types

21

CHAPTER 3. TYPES

-- simple type ordinal type
real type

-�

-- real type real type identifier -�

Ordinal types
With the exception ofint64 , qword and Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one bye one, in a specified order. This property allows the operation of functions asInc (146),
Ord (160), Dec (131) on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to apply thePred (162) function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply theSucc (178) function on the
largest possible value will generate a range check error if range checking is enabled.

Integers

A list of pre-defined integer types is presented in table (3.1) The integer types, and their ranges and

Table 3.1: Predefined integer types

Name
Integer
Shortint
SmallInt
Longint
Longword
Int64
Byte
Word
Cardinal
QWord
Boolean
ByteBool
LongBool
Char

sizes, that are predefined in Free Pascal are listed in table (3.2). It is to note that theqword and
int64 types are not true ordinals, so some pascal constructs will not work with these two integer
types.

The integer type maps to the smallint type in the default Free Pascal mode. It maps to either a
longint or int64 in either Delphi or ObjFPC mode. Thecardinal type is currently always mapped
to the longword type. The definition of thecardinal andinteger types may change from one
architecture to another and from one compiler mode to another. They usually have the same size as
the underlying target architecture.

22

CHAPTER 3. TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0 .. 255 1
Shortint -128 .. 127 1
Smallint -32768 .. 32767 2
Word 0 .. 65535 2
Integer either smallint, longint or int64 size 2,4 or 8
Cardinal either word, longword or qword size 2,4 or 8
Longint -2147483648 .. 2147483647 4
Longword 0..4294967295 4
Int64 -9223372036854775808 .. 9223372036854775807 8
QWord 0 .. 18446744073709551615 8

Free Pascal does automatic type conversion in expressions where different kinds of integer types are
used.

Boolean types

Free Pascal supports theBoolean type, with its two pre-defined possible valuesTrue andFalse .
It also supports theByteBool , WordBool andLongBool types. These are the only two values
that can be assigned to aBoolean type. Of course, any expression that resolves to aboolean
value, can also be assigned to a boolean type. AssumingB to be of typeBoolean , the following

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

are valid assignments:

B := True;
B := False;
B := 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

Remark: In Free Pascal, boolean expressions are always evaluated in such a way that when the result is known,
the rest of the expression will no longer be evaluated (Called short-cut evaluation). In the following
example, the functionFunc will never be called, which may have strange side-effects.

...
B := False;
A := B and Func;

HereFunc is a function which returns aBoolean type.

23

CHAPTER 3. TYPES

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free
Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

Enumerated types

-- enumerated type (
6

identifier list
assigned enum list

,

) -�

-- identifier list
6
identifier

,
-�

-- assigned enum list
6
identifier := expression

,
-�

(see chapter6, page55 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

The C style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40,fortyone);

As a result, the ordinal number offorty is 40 , and not3, as it would be when the’:= 40’
wasn’t present. The ordinal value offortyone is then 41, and not4, as it would be when the
assignment wasn’t present. After an assignment in an enumerated definition the compiler adds 1 to
the assigned value to assign to the next enumerated value. When specifying such an enumeration
type, it is important to keep in mind that the enumerated elements should be kept in ascending order.
The following will produce a compiler error:

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

It is necessary to keepforty andthirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. ThePred andSucc functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in a compiler error.

2. Enumeration types stored using a default size. This behaviour can be changed with the{$PACKENUM
n} compiler directive, which tells the compiler the minimal number of bytes to be used for
enumeration types. For instance

24

CHAPTER 3. TYPES

Type
{$PACKENUM 4}

LargeEnum = (BigOne, BigTwo, BigThree);
{$PACKENUM 1}

SmallEnum = (one, two, three);
Var S : SmallEnum;

L : LargeEnum;
begin

WriteLn (’Small enum : ’,SizeOf(S));
WriteLn (’Large enum : ’,SizeOf(L));

end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in theProgrammers guide, in the compiler directives section.

Subrange types

A subrange type is a range of values from an ordinal type (thehosttype). To define a subrange type,
one must specify it’s limiting values: the highest and lowest value of the type.

Subrange types

-- subrange type constant .. constant -�

Some of the predefinedinteger types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

Subrange types of enumeration types can also be defined:

Type
Days = (monday,tuesday,wednesday,thursday,friday,

saturday,sunday);
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

Real types
Free Pascal uses the math coprocessor (or emulation) for all its floating-point calculations. The Real
native type is processor dependant, but it is either Single or Double. Only the IEEE floating point
types are supported, and these depend on the target processor and emulation options. The true Turbo
Pascal compatible types are listed in table (3.4). TheComptype is, in effect, a 64-bit integer and
is not available on all target platforms. To get more information on the supported types for each
platform, refer to theProgrammers guide.

25

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 3. TYPES

Table 3.4: Supported Real types

Type Range Significant digits Size
Real platform dependant ??? 4 or 8
Single 1.5E-45 .. 3.4E38 7-8 4
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4951 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8

3.2 Character types

Char
Free Pascal supports the typeChar . A Char is exactly 1 byte in size, and contains one character.
A character constant can be specified by enclosing the character in single quotes, as follows : ’a’ or
’A’ are both character constants. A character can also be specified by its ASCII value, by preceding
the ASCII value with the number symbol (#). For example specifying#65 would be the same as
’A’ . Also, the caret character (^) can be used in combination with a letter to specify a character
with ASCII value less than 27. ThuŝG equals#7 (G is the seventh letter in the alphabet.) When
the single quote character must be represented, it should be typed two times successively, thus””
represents the single quote character.

Strings
Free Pascal supports theString type as it is defined in Turbo Pascal (A sequence of characters with
a specified length) and it supports ansistrings as in Delphi. To declare a variable as a string, use the
following type specification:

ShortString

-- string type string
[unsigned integer]

-�

The meaning of a string declaration statement is interpreted differently depending on the{$H}
switch. The above declaration can declare an ansistrng or a short string.

Whatever the actual type, ansistrings and short strings can be used interchangeably. The compiler
always takes care of the necessary type conversions. Note, however, that the result of an expression
that contains ansistrings and short strings will always be an ansistring.

Short strings
A string declaration declares a short string in the following cases:

1. If the switch is off:{$H-} , the string declaration will always be a short string declaration.

2. If the switch is on{$H+} , and there is a length specifier, the declaration is a short string
declaration.

The predefined typeShortString is defined as a string of length 255:

26

CHAPTER 3. TYPES

ShortString = String[255];

If the size of the string is not specified,255 is taken as a default. The length of the string can be
obtained with theLength (153) standard runtime routine. For example in

{$H-}

Type
NameString = String[10];
StreetString = String;

NameString can contain a maximum of 10 characters. WhileStreetString can contain up to
255 characters.

Ansistrings
Ansistrings are strings that have no length limit. They are reference counted and null terminated.
Internally, an ansistring is treated as a pointer. This is all handled transparantly, i.e. they can be
manipulated as a normal short string. Ansistrings can be defined using the predefinedAnsiString
type.

If the {$H} switch is on, then a string definition using the regularString keyword and that doesn’t
contain a length specifier, will be regarded as an ansistring as well. If a length specifier is present, a
short string will be used, regardless of the{$H} setting.

If the string is empty (”), then the internal pointer representation of the string pointer isNil . If the
string is not empty, then the pointer points to a structure in heap memory.

The internal representation as a pointer, and the automatic null-termination make it possible to
typecast an ansistring to a pchar. If the string is empty (so the pointer is nil) then the compiler
makes sure that the typecasted pchar will point to a null byte.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement

S2:=S1;

results in the reference count ofS2 being decreased by one, The referece count ofS1 is increased by
one, and finallyS1 (as a pointer) is copied toS2. This is a significant speed-up in the code.

If the reference count reaches zero, then the memory occupied by the string is deallocated automat-
ically, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be nil, meaning that the string is initially empty. This is true
for local and global ansistrings or anstrings that are part of a structure (arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[1..100000] of string;

Will copy 100,000 timesnil into A. WhenA goes out of scope, then the reference count of the
100,000 strings will be decreased by 1 for each of these strings. All this happens invisibly for the
programmer, but when considering performance issues, this is important.

Memory will be allocated only when the string is assigned a value. If the string goes out of scope,
then its reference count is automatically decreased by 1. If the reference count reaches zero, the
memory reserved for the string is released.

If a value is assigned to a character of a string that has a reference count greater than 1, such as in the
following statements:

27

CHAPTER 3. TYPES

S:=T; { reference count for S and T is now 2 }
S[I]:=’@’;

then a copy of the string is created before the assignment. This is known ascopy-on-writesemantics.

TheLength (153) function must be used to get the length of an ansistring.

To set the length of an ansistring, theSetLength (172) function must be used. Constant ansistrings
have a reference count of -1 and are treated specially.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecasted toPChar or Pointer types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begin
S :=’This is an ansistring’;
PC:=Pchar(S);
P :=Pointer(S);

There is a difference between the two typecasts. When an empty ansistring is typecasted to a pointer,
the pointer wil beNil . If an empty ansistring is typecasted to aPChar , then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result
of such a typecast as read-only, i.e. suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore NOT advisable to typecast one of the following:

1. expressions.

2. strings that have reference count larger than 0. (call uniquestring to ensure a string has refer-
ence count 1)

Constant strings
To specify a constant string, it must be enclosed in single-quotes, just as aChar type, only now more
than one character is allowed. Given thatS is of typeString , the following are valid assignments:

S := ’This is a string.’;
S := ’One’+’, Two’+’, Three’;
S := ’This isn’’t difficult !’;
S := ’This is a weird character : ’#145’ !’;

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their ASCII value. The example shows also that two
strings can be added. The resulting string is just the concatenation of the first with the second string,
without spaces in between them. Strings can not be substracted, however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{$H} switch.

28

CHAPTER 3. TYPES

PChar - Null terminated strings
Free Pascal supports the Delphi implementation of thePChar type.PChar is defined as a pointer to
aChar type, but allows additional operations. ThePChar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of typePChar is a pointer that points
to an array of typeChar , which is ended by a null-character (#0). Free Pascal supports initializing
of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var p : PChar;
begin

P := ’This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;
const P : PChar = ’This is a null-terminated string.’
begin

WriteLn (P);
end.

These examples also show that it is possible to writethe contentsof the string to a file of type
Text . Thestringsunit contains procedures and functions that manipulate thePChar type as in the
standard C library. Since it is equivalent to a pointer to a typeChar variable, it is also possible to do
the following:

Program three;
Var S : String[30];

P : PChar;
begin

S := ’This is a null-terminated string.’#0;
P := @S[1];
WriteLn (P);

end.

This will have the same result as the previous two examples. Null-terminated strings cannot be added
as normal Pascal strings. If twoPChar strings mustt be concatenated; the functions from the unit
stringsmust be used.

However, it is possible to do some pointer arithmetic. The operators+ and - can be used to do
operations onPChar pointers. In table (3.5), P andQare of typePChar , andI is of typeLongint .

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured types can be
nested to unlimited levels.

Structured Types

29

file:../strings/strings.html
file:../strings/strings.html

CHAPTER 3. TYPES

Table 3.5:PChar pointer arithmetic

Operation Result
P + I AddsI to the address pointed to byP.
I + P AddsI to the address pointed to byP.
P - I SubstractsI from the address pointed to byP.
P - Q Returns, as an integer, the distance between 2 addresses

(or the number of characters betweenP andQ)

-- structured type array type
record type
object type
class type

class reference type
set type
file type

-�

Unlike Delphi, Free Pascal does not support the keywordPacked for all structured types, as can be
seen in the syntax diagram. It will be mentioned when a type supports thepacked keyword. In the
following, each of the possible structured types is discussed.

Arrays
Free Pascal supports arrays as in Turbo Pascal, multi-dimensional arrays and packed arrays are also
supported:

Array types

-- array type
packed

array [
6
ordinal type

,
] of type -�

The following is a valid array declaration:

Type
RealArray = Array [1..100] of Real;

As in Turbo Pascal, if the array component type is in itself an array, it is possible to combine the two
arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

is equivalent to the following declaration:

Type
APoints = array[1..100,1..3] of Real;

The functionsHigh (145) andLow (154) return the high and low bounds of the leftmost index type
of the array. In the above case, this would be 100 and 1.

30

CHAPTER 3. TYPES

Record types
Free Pascal supports fixed records and records with variant parts. The syntax diagram for a record
type is

Record types

-- record type
packed

record
field list

end -�

-- field list fixed fields

fixed fields ;
variant part ;

-�

-- fixed fields
6
identifier list : type

;
-�

-- variant part case
identifier :

ordinal type identifier of
6
variant

;
-�

-- variant
6
constant , : (

field list
) -�

So the following are valid record types declarations:

Type
Point = Record

X,Y,Z : Real;
end;

RPoint = Record
Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

The variant part must be last in the record. The optional identifier in the case statement serves to
access the tag field value, which otherwise would be invisible to the programmer. It can be used to
see which variant is active at a certain time. In effect, it introduces a new field in the record.

Remark: It is possible to nest variant parts, as in:

Type
MyRec = Record

X : Longint;
Case byte of

2 : (Y : Longint;
case byte of
3 : (Z : Longint);
);

end;

31

CHAPTER 3. TYPES

The size of a record is the sum of the sizes of its fields, each size of a field is rounded up to a power of
two. If the record contains a variant part, the size of the variant part is the size of the biggest variant,
plus the size of the tag field typeif an identifier was declared for it. Here also, the size of each
part is first rounded up to two. So in the above example,SizeOf (175) would return 24 forPoint ,
24 for RPoint and 26 forBetterRPoint . For MyRec, the value would be 12. If a typed file
with records, produced by a Turbo Pascal program, must be read, then chances are that attempting
to read that file correctly will fail. The reason for this is that by default, elements of a record are
aligned at 2-byte boundaries, for performance reasons. This default behaviour can be changed with
the {$PackRecords n} switch. Possible values forn are 1, 2, 4, 16 orDefault . This switch
tells the compiler to align elements of a record or object or class that have size larger thann onn byte
boundaries. Elements that have size smaller or equal thann are aligned on natural boundaries, i.e.
to the first power of two that is larger than or equal to the size of the record element. The keyword
Default selects the default value for the platform that the code is compiled for (currently, this is 2
on all platforms) Take a look at the following program:

Program PackRecordsDemo;
type

{$PackRecords 2}
Trec1 = Record

A : byte;
B : Word;

end;

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}
Trec3 = Record

A,B : byte;
end;

{$PackRecords 1}
Trec4 = Record

A,B : Byte;
end;

{$PackRecords 4}
Trec5 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;

end;

{$PackRecords 8}
Trec6 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;
end;

{$PackRecords 4}
Trec7 = Record

A : Byte;
B : Array[1..7] of byte;

32

CHAPTER 3. TYPES

C : byte;
end;

{$PackRecords 8}
Trec8 = Record

A : Byte;
B : Array[1..7] of byte;
C : byte;
end;

Var rec1 : Trec1;
rec2 : Trec2;
rec3 : TRec3;
rec4 : TRec4;
rec5 : Trec5;
rec6 : TRec6;
rec7 : TRec7;
rec8 : TRec8;

begin
Write (’Size Trec1 : ’,SizeOf(Trec1));
Writeln (’ Offset B : ’,Longint(@rec1.B)-Longint(@rec1));
Write (’Size Trec2 : ’,SizeOf(Trec2));
Writeln (’ Offset B : ’,Longint(@rec2.B)-Longint(@rec2));
Write (’Size Trec3 : ’,SizeOf(Trec3));
Writeln (’ Offset B : ’,Longint(@rec3.B)-Longint(@rec3));
Write (’Size Trec4 : ’,SizeOf(Trec4));
Writeln (’ Offset B : ’,Longint(@rec4.B)-Longint(@rec4));
Write (’Size Trec5 : ’,SizeOf(Trec5));
Writeln (’ Offset B : ’,Longint(@rec5.B)-Longint(@rec5),

’ Offset C : ’,Longint(@rec5.C)-Longint(@rec5));
Write (’Size Trec6 : ’,SizeOf(Trec6));
Writeln (’ Offset B : ’,Longint(@rec6.B)-Longint(@rec6),

’ Offset C : ’,Longint(@rec6.C)-Longint(@rec6));
Write (’Size Trec7 : ’,SizeOf(Trec7));
Writeln (’ Offset B : ’,Longint(@rec7.B)-Longint(@rec7),

’ Offset C : ’,Longint(@rec7.C)-Longint(@rec7));
Write (’Size Trec8 : ’,SizeOf(Trec8));
Writeln (’ Offset B : ’,Longint(@rec8.B)-Longint(@rec8),

’ Offset C : ’,Longint(@rec8.C)-Longint(@rec8));
end.

The output of this program will be :

Size Trec1 : 4 Offset B : 2
Size Trec2 : 3 Offset B : 1
Size Trec3 : 2 Offset B : 1
Size Trec4 : 2 Offset B : 1
Size Trec5 : 8 Offset B : 4 Offset C : 7
Size Trec6 : 8 Offset B : 4 Offset C : 7
Size Trec7 : 12 Offset B : 4 Offset C : 11
Size Trec8 : 16 Offset B : 8 Offset C : 15

And this is as expected. InTrec1 , sinceB has size 2, it is aligned on a 2 byte boundary, thus leaving
an empty byte betweenA andB, and making the total size 4. InTrec2 , B is aligned on a 1-byte

33

CHAPTER 3. TYPES

boundary, right afterA, hence, the total size of the record is 3. ForTrec3 , the sizes ofA,B are 1,
and hence they are aligned on 1 byte boundaries. The same is true forTrec4 . ForTrec5 , since the
size of B – 3 – is smaller than 4,B will be on a 4-byte boundary, as this is the first power of two that
is larger than it’s size. The same holds forTrec6 . For Trec7 , B is aligned on a 4 byte boundary,
since it’s size – 7 – is larger than 4. However, inTrec8 , it is aligned on a 8-byte boundary, since 8
is the first power of two that is greater than 7, thus making the total size of the record 16. Free Pascal
supports also the ’packed record’, this is a record where all the elements are byte-aligned. Thus the
two following declarations are equivalent:

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}

and

Trec2 = Packed Record
A : Byte;
B : Word;
end;

Note the{$PackRecords 2} after the first declaration !

Set types
Free Pascal supports the set types as in Turbo Pascal. The prototype of a set declaration is:

Set Types

-- set type set of ordinal type -�

Each of the elements ofSetType must be of typeTargetType . TargetType can be any ordinal
type with a range between0 and255 . A set can contain maximally255 elements. The following
are valid set declaration:

Type
Junk = Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
WorkDays : Set of days;

Given this set declarations, the following assignment is legal:

WorkDays := [Mon, Tue, Wed, Thu, Fri];

The operators and functions for manipulations of sets are listed in table (3.6). Two sets can be
compared with the<> and= operators, but not (yet) with the< and> operators. The compiler stores
small sets (less than 32 elements) in a Longint, if the type range allows it. This allows for faster
processing and decreases program size. Otherwise, sets are stored in 32 bytes.

34

CHAPTER 3. TYPES

Table 3.6: Set Manipulation operators

Operation Operator
Union +
Difference -
Intersection *
Add element include
Delete element exclude

File types
File types are types that store a sequence of some base type, which can be any type except another file
type. It can contain (in principle) an infinite number of elements. File types are used commonly to
store data on disk. Nothing prevents the programmer, however, from writing a file driver that stores
it’s data in memory. Here is the type declaration for a file type:

File types

-- file type file
of type

-�

If no type identifier is given, then the file is an untyped file; it can be considered as equivalent to a file
of bytes. Untyped files require special commands to act on them (seeBlockread (121), Blockwrite
(121)). The following declaration declares a file of records:

Type
Point = Record

X,Y,Z : real;
end;

PointFile = File of Point;

Internally, files are represented by theFileRec record, which is declared in the DOS unit.

A special file type is theText file type, represented by theTextRec record. A file of typeText
uses special input-output routines.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an address in memory,
where the data of another variable may be stored.

Pointer types

-- pointer type ˆ type identifier -�

35

CHAPTER 3. TYPES

As can be seen from this diagram, pointers are typed, which means that they point to a particular kind
of data. The type of this data must be known at compile time. Dereferencing the pointer (denoted by
addingˆ after the variable name) behaves then like a variable. This variable has the type declared
in the pointer declaration, and the variable is stored in the address that is pointed to by the pointer
variable. Consider the following example:

Program pointers;
type

Buffer = String[255];
BufPtr = ^Buffer;

Var B : Buffer;
BP : BufPtr;
PP : Pointer;

etc..

In this example,BP is a pointer toa Buffer type; whileB is a variable of typeBuffer . B takes
256 bytes memory, andBPonly takes 4 bytes of memory (enough to keep an adress in memory).

Remark: Free Pascal treats pointers much the same way as C does. This means that a pointer to some type
can be treated as being an array of this type. The pointer then points to the zeroeth element of this
array. Thus the following pointer declaration

Var p : ^Longint;

Can be considered equivalent to the following array declaration:

Var p : array[0..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If the former is used, the memory
must be allocated manually, using theGetmem (143) function. The referencePˆ is then the same
asp[0] . The following program illustrates this maybe more clear:

program PointerArray;
var i : Longint;

p : ^Longint;
pp : array[0..100] of Longint;

begin
for i := 0 to 100 do pp[i] := i; { Fill array }
p := @pp[0]; { Let p point to pp }
for i := 0 to 100 do

if p[i]<>pp[i] then
WriteLn (’Ohoh, problem !’)

end.

Free Pascal supports pointer arithmetic as C does. This means that, ifP is a typed pointer, the
instructions

Inc(P);
Dec(P);

Will increase, respectively decrease the address the pointer points to with the size of the typeP is a
pointer to. For example

Var P : ^Longint;
...

Inc (p);

36

CHAPTER 3. TYPES

will increasePwith 4. Normal arithmetic operators on pointers can also be used, that is, the following
are valid pointer arithmetic operations:

var p1,p2 : ^Longint;
L : Longint;

begin
P1 := @P2;
P2 := @L;
L := P1-P2;
P1 := P1-4;
P2 := P2+4;

end.

Here, the value that is added or substractedis multiplied by the size of the type the pointer points to.
In the previous exampleP1 will be decremented by 16 bytes, andP2 will be incremented by 16.

3.5 Forward type declarations

Programs often need to maintain a linked list of records. Each record then contains a pointer to the
next record (and possibly to the previous record as well). For type safety, it is best to define this
pointer as a typed pointer, so the next record can be allocated on the heap using theNewcall. In
order to do so, the record should be defined something like this:

Type
TListItem = Record

Data : Integer;
Next : ^TListItem;

end;

When trying to compile this, the compiler will complain that theTListItem type is not yet defined
when it encounters theNext declaration: This is correct, as the definition is still being parsed.

To be able to have theNext element as a typed pointer, a ’Forward type declaration’ must be intro-
duced:

Type
PListItem = ^TListItem;
TListItem = Record

Data : Integer;
Next : PTListItem;

end;

When the compiler encounters a typed pointer declaration where the referenced type is not yet known,
it postpones resolving the reference later on: The pointer definition is a ’Forward type declaration’.
The referenced type should be introduced later in the sameType block. No other block may come
between the definition of the pointer type and the referenced type. Indeed, even the wordType
itself may not re-appear: in effect it would start a new type-block, causing the compiler to resolve
all pending declarations in the current block. In most cases, the definition of the referenced type will
follow immediatly after the definition of the pointer type, as shown in the above listing. The forward
defined type can be used in any type definition following its declaration.

Note that a forward type declaration is only possible with pointer types and classes, not with other
types.

37

CHAPTER 3. TYPES

3.6 Procedural types

Free Pascal has support for procedural types, although it differs a little from the Turbo Pascal imple-
mentation of them. The type declaration remains the same, as can be seen in the following syntax
diagram:

Procedural types

-- procedural type function header
procedure header of object ; call modifiers

-�

-- function header function formal parameter list : result type -�

-- procedure header procedure formal parameter list -�

-- call modifiers register
cdecl

pascal
stdcall
safecall

saveregisters
popstack

-�

For a description of formal parameter lists, see chapter8, page75. The two following examples are
valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNoArg;

One can assign the following values to a procedural type variable:

1. Nil , for both normal procedure pointers and method pointers.

2. A variable reference of a procedural type, i.e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

4. A method address.

Given these declarations, the following assignments are valid:

Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
...
Proc := @printit;
Func := @Pi;

38

CHAPTER 3. TYPES

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’t necessary to
use the address operator (@) when assigning a procedural type variable, whereas in Free Pascal it is
required (unless the-So switch is used, in which case the address operator can be dropped.)

Remark: The modifiers concerning the calling conventions must be the same as the declaration; i.e. the
following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
begin
Proc := @printit;
end.

Because theTOneArgCcall type is a procedure that uses the cdecl calling convention.

39

Chapter 4

Objects

4.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is written using
objects. Here we present some technical questions regarding object oriented programming in Free
Pascal. Objects should be treated as a special kind of record. The record contains all the fields that
are declared in the objects definition, and pointers to the methods that are associated to the objects’
type.

An object is declared just as a record would be declared; except that now,procedures and functions
can be declared as if they were part of the record. Objects can ”inherit” fields and methods from
”parent” objects. This means that these fields and methods can be used as if they were included in
the objects declared as a ”child” object.

Furthermore, a concept of visibility is introduced: fields, procedures and functions can be delcared
aspublic or private . By default, fields and methods arepublic , and are exported outside the
current unit. Fields or methods that are declaredprivate are only accessible in the current unit.
The prototype declaration of an object is as follows:

object types

--

packed
object

heritage
6

component list
object visibility specifier

end -�

-- heritage (object type identifier) -�

-- component list

6
field definition

6
method definition

-�

-- field definition identifier list : type ; -�

-- method definition function header
procedure header
constructor header
desctuctor header

; method directives -�

-- method directives
virtual ; abstract ; call modifiers ;

-�

40

CHAPTER 4. OBJECTS

-- object visibility specifier private
protected

public

-�

As can be seen, as manyprivate and public blocks as needed can be declared.Method
definitions are normal function or procedure declarations. Fields cannot be declared after meth-
ods in the same block, i.e. the following will generate an error when compiling:

Type MyObj = Object
Procedure Doit;
Field : Longint;

end;

But the following will be accepted:

Type MyObj = Object
Public

Procedure Doit;
Private

Field : Longint;
end;

because the field is in a different section.

Remark: Free Pascal also supports the packed object. This is the same as an object, only the elements (fields)
of the object are byte-aligned, just as in the packed record. The declaration of a packed object is
similar to the declaration of a packed record :

Type
TObj = packed object;

Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Similarly, the{$PackRecords } directive acts on objects as well.

4.2 Fields

Object Fields are like record fields. They are accessed in the same way as a record field would be
accessed : by using a qualified identifier. Given the following declaration:

Type TAnObject = Object
AField : Longint;
Procedure AMethod;
end;

Var AnObject : TAnObject;

then the following would be a valid assignment:

AnObject.AField := 0;

41

CHAPTER 4. OBJECTS

Inside methods, fields can be accessed using the short identifier:

Procedure TAnObject.AMethod;
begin

...
AField := 0;
...

end;

Or, one can use theself identifier. Theself identifier refers to the current instance of the object:

Procedure TAnObject.AMethod;
begin

...
Self.AField := 0;
...

end;

One cannot access fields that are in a private section of an object from outside the objects’ methods. If
this is attempted anyway, the compiler will complain about an unknown identifier. It is also possible
to use thewith statement with an object instance:

With AnObject do
begin
Afield := 12;
AMethod;
end;

In this example, between thebegin andend , it is as ifAnObject was prepended to theAfield
andAmethod identifiers. More about this in section7.2, page71

4.3 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports constructors and
destructors. The programmer is responsible for calling the constructor and the destructor explicitly
when using objects. The declaration of a constructor or destructor is as follows:

Constructors and destructors

-- constructor declaration constructor header ; subroutine block -�

-- destructor declaration destructor header ; subroutine block -�

-- constructor header constructor identifier
qualified method identifier

-

- formal parameter list -�

-- desctructor header destructor identifier
qualified method identifier

-

- formal parameter list -�

42

CHAPTER 4. OBJECTS

A constructor/destructor pair isrequiredif the object uses virtual methods. In the declaration of the
object type, a simple identifier should be used for the name of the constuctor or destructor. When
the constructor or destructor is implemented, A qualified method identifier should be used, i.e. an
identifier of the formobjectidentifier.methodidentifier . Free Pascal supports also the
extended syntax of theNewandDispose procedures. In case a dynamic variable of an object type
must be allocated the constructor’s name can be specified in the call toNew. TheNewis implemented
as a function which returns a pointer to the instantiated object. Consider the following declarations:

Type
TObj = object;

Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Then the following 3 calls are equivalent:

pp := new (Pobj,Init);

and

new(pp,init);

and also

new (pp);
pp^.init;

In the last case, the compiler will issue a warning that the extended syntax ofnew anddispose
must be used to generate instances of an object. It is possible to ignore this warning, but it’s better
programming practice to use the extended syntax to create instances of an object. Similarly, the
Dispose procedure accepts the name of a destructor. The destructor will then be called, before
removing the object from the heap.

In view of the compiler warning remark, the following chapter presents the Delphi approach to
object-oriented programming, and may be considered a more natural way of object-oriented pro-
gramming.

4.4 Methods

Object methods are just like ordinary procedures or functions, only they have an implicit extra para-
meter :self . Self points to the object with which the method was invoked. When implementing
methods, the fully qualified identifier must be given in the function header. When declaring methods,
a normal identifier must be given.

4.5 Method invocation

Methods are called just as normal procedures are called, only they have an object instance identifier
prepended to them (see also chapter7, page64). To determine which method is called, it is necessary
to know the type of the method. We treat the different types in what follows.

43

CHAPTER 4. OBJECTS

Static methods

Static methods are methods that have been declared without aabstract or virtual keyword.
When calling a static method, the declared (i.e. compile time) method of the object is used. For
example, consider the following declarations:

Type
TParent = Object

...
procedure Doit;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method calledDoit . Consider now the
following declarations and calls:

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Of the three invocations ofDoit , only the last one will callTChild.Doit , the other two calls will
call TParent.Doit . This is because for static methods, the compiler determines at compile time
which method should be called. SinceParentB is of typeTParent , the compiler decides that
it must be called withTParent.Doit , even though it will be created as aTChild . There may
be times when the method that is actually called should depend on the actual type of the object at
run-time. If so, the method cannot be a static method, but must be a virtual method.

Virtual methods

To remedy the situation in the previous section,virtual methods are created. This is simply
done by appending the method declaration with thevirtual modifier. Going back to the previous
example, consider the following alternative declaration:

Type
TParent = Object

...
procedure Doit;virtual;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...

44

CHAPTER 4. OBJECTS

procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method calledDoit . Consider now the
following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Now, different methods will be called, depending on the actual run-time type of the object. For
ParentA , nothing changes, since it is created as aTParent instance. ForChild , the situation
also doesn’t change: it is again created as an instance ofTChild . For ParentB however, the
situation does change: Even though it was declared as aTParent , it is created as an instance of
TChild . Now, when the program runs, before callingDoit , the program checks what the actual
type ofParentB is, and only then decides which method must be called. Seeing thatParentB is
of typeTChild , TChild.Doit will be called. The code for this run-time checking of the actual
type of an object is inserted by the compiler at compile time. TheTChild.Doit is said tooverride
theTParent.Doit . It is possible to acces theTParent.Doit from within the varTChild.Doit,
with the inherited keyword:

Procedure TChild.Doit;
begin

inherited Doit;
...

end;

In the above example, whenTChild.Doit is called, the first thing it does is callTParent.Doit .
The inherited keyword cannot be used in static methods, only on virtual methods.

Abstract methods

An abstract method is a special kind of virtual method. A method can not be abstract if it is not virtual
(this is not obvious from the syntax diagram). An instance of an object that has an abstract method
cannot be created directly. The reason is obvious: there is no method where the compiler could jump
to ! A method that is declaredabstract does not have an implementation for this method. It is up
to inherited objects to override and implement this method. Continuing our example, take a look at
this:

Type
TParent = Object

...
procedure Doit;virtual;abstract;
...
end;

PParent=^TParent;
TChild = Object(TParent)

45

CHAPTER 4. OBJECTS

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method calledDoit . Consider now the
following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

First of all, Line 3 will generate a compiler error, stating that one cannot generate instances of objects
with abstract methods: The compiler has detected thatPParent points to an object which has an
abstract method. Commenting line 3 would allow compilation of the program.

Remark: If an abstract method is overridden, The parent method cannot be called withinherited , since
there is no parent method; The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can’t be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-time error will
occur. (run-time error 211, to be precise)

4.6 Visibility

For objects, 3 visibility specifiers exist :private , protected and public . If a visibility
specifier is not specified,public is assumed. Both methods and fields can be hidden from a pro-
grammer by putting them in aprivate section. The exact visibility rule is as follows:

Private All fields and methods that are in aprivate block, can only be accessed in the module
(i.e. unit or program) that contains the object definition. They can be accessed from inside the
object’s methods or from outside them e.g. from other objects’ methods, or global functions.

Protected Is the same asPrivate , except that the members of aProtected section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible, from everywhere. Fields and metods in apublic section
behave as though they were part of an ordinaryrecord type.

46

Chapter 5

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around the concept of
’Classes’. A class can be seen as a pointer to an object, or a pointer to a record.

Remark: In earlier versions of Free Pascal it was necessary, in order to use classes, to put theobjpas unit in
the uses clause of a unit or program.This is no longer neededas of version 0.99.12. As of version
0.99.12 thesystem unit contains the basic definitions ofTObject andTClass , as well as some
auxiliary methods for using classes. Theobjpas unit still exists, and contains some redefinitions of
basic types, so they coincide with Delphi types. The unit will be loaded automatically when the-S2
or -Sd options are specified.

5.1 Class definitions

The prototype declaration of a class is as follows :

Class types

--

packed
class

heritage
6

component list
class visibility specifier

end -�

-- heritage (class type identifier) -�

-- component list

6
field definition

6
method definition
property definition

-�

-- field definition identifier list : type ; -�

-- method definition
class

function header
procedure header

constructor header
desctuctor header

; -

-

virtual
; abstract

override
message integer constant

string constant

; call modifiers ;
-�

47

CHAPTER 5. CLASSES

-- class visibility specifier private
protected

public
published

-�

As manyprivate , protected , published andpublic blocks as needed can be repeated.
Methods are normal function or procedure declarations. As can be seen, the declaration of a class is
almost identical to the declaration of an object. The real difference between objects and classes is
in the way they are created (see further in this chapter). The visibility of the different sections is as
follows:

Private All fields and methods that are in aprivate block, can only be accessed in the module
(i.e. unit) that contains the class definition. They can be accessed from inside the classes’
methods or from outside them (e.g. from other classes’ methods)

Protected Is the same asPrivate , except that the members of aProtected section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible.

Published Is the same as aPublic section, but the compiler generates also type information that
is needed for automatic streaming of these classes. Fields defined in apublished section
must be of class type. Array peroperties cannot be in apublished section.

5.2 Class instantiation

Classes must be created using their constructor. Remember that a class is a pointer to an object, so
when a variable of some class is declared, the compiler just allocates a pointer, not the entire object.
The constructor of a class returns a pointer to an initialized instance of the object. So, to initialize an
instance of some class, one would do the following :

ClassVar := ClassType.ConstructorName;

The extended syntax ofnew anddispose can be used to instantiate and destroy class instances.
That construct is reserved for use with objects only. Calling the constructor will provoke a call to
getmem, to allocate enough space to hold the class instance data. After that, the constuctor’s code
is executed. The constructor has a pointer to it’s data, inself .

Remark:

• The {$PackRecords } directive also affects classes. i.e. the alignment in memory of the
different fields depends on the value of the{$PackRecords } directive.

• Just as for objects and records, a packed class can be declared. This has the same effect as on
an object, or record, namely that the elements are aligned on 1-byte boundaries. i.e. as close
as possible.

• SizeOf(class) will return 4, since a class is but a pointer to an object. To get the size of
the class instance data, use theTObject.InstanceSize method.

48

CHAPTER 5. CLASSES

5.3 Methods

invocation
Method invocation for classes is no different than for objects. The following is a valid method
invocation:

Var AnObject : TAnObject;
begin

AnObject := TAnObject.Create;
ANobject.AMethod;

Virtual methods
Classes have virtual methods, just as objects do. There is however a difference between the two.
For objects, it is sufficient to redeclare the same method in a descendent object with the keyword
virtual to override it. For classes, the situation is different: virtual methodsmustbe overridden
with theoverride keyword. Failing to do so, will start anewbatch of virtual methods, hiding the
previous one. TheInherited keyword will not jump to the inherited method, if virtual was used.

The following code iswrong:

Type ObjParent = Class
Procedure MyProc; virtual;

end;
ObjChild = Class(ObjPArent)

Procedure MyProc; virtual;
end;

The compiler will produce a warning:

Warning: An inherited method is hidden by OBJCHILD.MYPROC

The compiler will compile it, but usingInherited can produce strange effects.

The correct declaration is as follows:

Type ObjParent = Class
Procedure MyProc; virtual;

end;
ObjChild = Class(ObjPArent)

Procedure MyProc; override;
end;

This will compile and run without warnings or errors.

Message methods
New in classes aremessage methods. Pointers to message methods are stored in a special table,
together with the integer or string cnstant that they were declared with. They are primarily intended to
ease programming of callback functions in severalGUI toolkits, such asWin32 or GTK. In difference
with Delphi, Free Pascal also accepts strings as message identifiers.

Message methods that are declared with an integer constant can take only one var argument (typed
or not):

49

CHAPTER 5. CLASSES

Procedure TMyObject.MyHandler(Var Msg); Message 1;

The method implementation of a message function is no different from an ordinary method. It is also
possible to call a message method directly, but this should not be done. Instead, theTObject.Dispatch
method should be used.

The TOBject.Dispatch method can be used to call amessage handler. It is declared in the
system unit and will accept a var parameter which must have at the first position a cardinal with the
message ID that should be called. For example:

Type
TMsg = Record

MSGID : Cardinal
Data : Pointer;

Var
Msg : TMSg;

MyObject.Dispatch (Msg);

In this example, theDispatch method will look at the object and all it’s ancestors (starting at the
object, and searching up the class tree), to see if a message method with messageMSGIDhas been
declared. If such a method is found, it is called, and passed theMsg parameter.

If no such method is found,DefaultHandler is called.DefaultHandler is a virtual method
of TObject that doesn’t do anything, but which can be overridden to provide any processing that
might be needed.DefaultHandler is declared as follows:

procedure defaulthandler(var message);virtual;

In addition to the message method with aInteger identifier, Free Pascal also supports a message
method with a string identifier:

Procedure TMyObject.MyStrHandler(Var Msg); Message ’OnClick’;

The working of the string message handler is the same as the ordinary integer message handler:

TheTOBject.DispatchStr method can be used to call amessage handler. It is declared in
the system unit and will accept one parameter which must have at the first position a string with the
message ID that should be called. For example:

Type
TMsg = Record

MsgStr : String[10]; // Arbitrary length up to 255 characters.
Data : Pointer;

Var
Msg : TMSg;

MyObject.DispatchStr (Msg);

In this example, theDispatchStr method will look at the object and all it’s ancestors (starting at
the object, and searching up the class tree), to see if a message method with messageMsgStr has
been declared. If such a method is found, it is called, and passed theMsg parameter.

If no such method is found,DefaultHandlerStr is called.DefaultHandlerStr is a virtual
method ofTObject that doesn’t do anything, but which can be overridden to provide any processing
that might be needed.DefaultHandlerStr is declared as follows:

50

CHAPTER 5. CLASSES

procedure DefaultHandlerStr(var message);virtual;

In addition to this mechanism, a string message method accepts aself parameter:

TMyObject.StrMsgHandler(Data : Pointer; Self : TMyObject);Message ’OnClick’;

When encountering such a method, the compiler will generate code that loads theSelf parameter
into the object instance pointer. The result of this is that it is possible to passSelf as a parameter to
such a method.

Remark: The type of theSelf parameter must be of the same class as the class the method is defined in.

5.4 Properties

Classes can contain properties as part of their fields list. A property acts like a normal field, i.e. its
value can be retrieved or set, but it allows to redirect the access of the field through functions and
procedures. They provide a means to associate an action with an assignment of or a reading from a
class ’field’. This allows for e.g. checking that a value is valid when assigning, or, when reading,
it allows to construct the value on the fly. Moreover, properties can be read-only or write only. The
prototype declaration of a property is as follows:

Properties

-- property definition property identifier
property interface

-

- property specifiers -�

-- property interface
property parameter list

: type identifier -

-

index integerconstant

-�

-- property parameter list [
6
parameter declaration

;
] -�

-- property specifiers
read specifier write specifier default specifier

-�

-- read specifier read field or method -�

-- write specifier write field or method -�

-- default specifier default
constant

nodefault

-�

-- field or method field identifier
method identifier

-�

A read specifier is either the name of a field that contains the property, or the name of a
method function that has the same return type as the property type. In the case of a simple type,
this function must not accept an argument. Aread specifier is optional, making the property
write-only. A write specifier is optional: If there is nowrite specifier , the property

51

CHAPTER 5. CLASSES

is read-only. A write specifier is either the name of a field, or the name of a method procedure that
accepts as a sole argument a variable of the same type as the property. The section (private ,
published) in which the specified function or procedure resides is irrelevant. Usually, however,
this will be a protected or private method. Example: Given the following declaration:

Type
MyClass = Class

Private
Field1 : Longint;
Field2 : Longint;
Field3 : Longint;
Procedure Sety (value : Longint);
Function Gety : Longint;
Function Getz : Longint;
Public
Property X : Longint Read Field1 write Field2;
Property Y : Longint Read GetY Write Sety;
Property Z : Longint Read GetZ;
end;

Var MyClass : TMyClass;

The following are valid statements:

WriteLn (’X : ’,MyClass.X);
WriteLn (’Y : ’,MyClass.Y);
WriteLn (’Z : ’,MyClass.Z);
MyClass.X := 0;
MyClass.Y := 0;

But the following would generate an error:

MyClass.Z := 0;

because Z is a read-only property. What happens in the above statements is that when a value needs
to be read, the compiler inserts a call to the variousgetNNN methods of the object, and the result of
this call is used. When an assignment is made, the compiler passes the value that must be assigned
as a paramater to the varioussetNNN methods. Because of this mechanism, properties cannot be
passed as var arguments to a function or procedure, since there is no known address of the property
(at least, not always). If the property definition contains an index, then the read and write specifiers
must be a function and a procedure. Moreover, these functions require an additional parameter : An
integer parameter. This allows to read or write several properties with the same function. For this,
the properties must have the same type. The following is an example of a property with an index:

{$mode objfpc}
Type TPoint = Class(TObject)

Private
FX,FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);
Public
Property X : Longint index 1 read GetCoord Write SetCoord;
Property Y : Longint index 2 read GetCoord Write SetCoord;
Property Coords[Index : Integer]:Longint Read GetCoord;
end;

52

CHAPTER 5. CLASSES

Procedure TPoint.SetCoord (Index : Integer; Value : Longint);
begin

Case Index of
1 : FX := Value;
2 : FY := Value;

end;
end;
Function TPoint.GetCoord (INdex : Integer) : Longint;
begin

Case Index of
1 : Result := FX;
2 : Result := FY;

end;
end;
Var P : TPoint;
begin

P := TPoint.create;
P.X := 2;
P.Y := 3;
With P do

WriteLn (’X=’,X,’ Y=’,Y);
end.

When the compiler encounters an assignment toX, thenSetCoord is called with as first parameter
the index (1 in the above case) and with as a second parameter the value to be set. Conversely, when
reading the value ofX, the compiler callsGetCoord and passes it index 1. Indexes can only be
integer values. Array propertie also exist. These are properties that accept an index, just as an array
does. Only now the index doesn’t have to be an ordinal type, but can be any type.

A read specifier for an array property is the name method function that has the same return
type as the property type. The function must accept as a sole arguent a variable of the same type as
the index type. For an array property, one cannot specify fields asread specifiers .

A write specifier for an array property is the name of a method procedure that accepts two
arguments: The first argument has the same type as the index, and the second argument is a parameter
of the same type as the property type. As an example, see the following declaration:

Type TIntList = Class
Private
Function GetInt (I : Longint) : longint;
Function GetAsString (A : String) : String;
Procedure SetInt (I : Longint; Value : Longint;);
Procedure SetAsString (A : String; Value : String);
Public
Property Items [i : Longint] : Longint Read GetInt

Write SetInt;
Property StrItems [S : String] : String Read GetAsString

Write SetAsstring;
end;

Var AIntList : TIntList;

Then the following statements would be valid:

AIntList.Items[26] := 1;
AIntList.StrItems[’twenty-five’] := ’zero’;

53

CHAPTER 5. CLASSES

WriteLn (’Item 26 : ’,AIntList.Items[26]);
WriteLn (’Item 25 : ’,AIntList.StrItems[’twenty-five’]);

While the following statements would generate errors:

AIntList.Items[’twenty-five’] := 1;
AIntList.StrItems[26] := ’zero’;

Because the index types are wrong. Array properties can be declared asdefault properties. This
means that it is not necessary to specify the property name when assigning or reading it. If, in the
previous example, the definition of the items property would have been

Property Items[i : Longint]: Longint Read GetInt
Write SetInt; Default;

Then the assignment

AIntList.Items[26] := 1;

Would be equivalent to the following abbreviation.

AIntList[26] := 1;

Only one default property per class is allowed, and descendent classes cannot redeclare the default
property.

54

Chapter 6

Expressions

Expressions occur in assignments or in tests. Expressions produce a value, of a certain type. Expres-
sions are built with two components: Operators and their operands. Usually an operator is binary, i.e.
it requires 2 operands. Binary operators occur always between the operands (as inX/Y). Sometimes
an operator is unary, i.e. it requires only one argument. A unary operator occurs always before the
operand, as in-X .

When using multiple operands in an expression, the precedence rules of table (6.1) are used. When

Table 6.1: Precedence of operators

Operator Precedence Category
Not, @ Highest (first) Unary operators
* / div mod and shl shr as Second Multiplying operators
+ - or xor Third Adding operators
< <> < > <= >= in is Lowest (Last) relational operators

determining the precedence, the compiler uses the following rules:

1. In operations with unequal precedences the operands belong to the operater with the highest
precedence. For example, in5*3+7 , the multiplication is higher in precedence than the addi-
tion, so it is executed first. The result would be 22.

2. If parentheses are used in an expression, their contents is evaluated first. Thus,5*(3+7)
would result in 50.

Remark: The order in which expressions of the same precedence are evaluated is not guaranteed to be left-
to-right. In general, no assumptions on which expression is evaluated first should be made in such a
case. The compiler will decide which expression to evaluate first based on optimization rules. Thus,
in the following expression:

a := g(3) + f(2);

f(2) may be executed beforeg(3) . This behaviour is distinctly different from Delphior Turbo
Pascal.

If one expressionmustbe executed before the other, it is necessary to split up the statement using
temporary results:

55

CHAPTER 6. EXPRESSIONS

e1 := g(3);
a := e1 + f(2);

6.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions are a series of
terms (what a term is, is explained below), joined by adding operators.

Expressions

-- expression simple expression
*

<=
>

>=
=

<>
in
is

simple expression

-�

-- simple expression
6

term
+
-

or
xor

-�

The following are valid expressions:

GraphResult<>grError
(DoItToday=Yes) and (DoItTomorrow=No);
Day in Weekend

And here are some simple expressions:

A + B
-Pi
ToBe or NotToBe

Terms consist of factors, connected by multiplication operators.

Terms

-- term
6

factor
*
/

div
mod
and
shl
shr
as

-�

56

CHAPTER 6. EXPRESSIONS

Here are some valid terms:

2 * Pi
A Div B
(DoItToday=Yes) and (DoItTomorrow=No);

Factors are all other constructions:

Factors

-- factor (expression)
variable reference

function call
unsigned constant

not factor
sign factor

set constructor
value typecast
address factor

-�

-- unsigned constant unsigned number
character string

constant identifier
Nil

-�

6.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can be statements too).
They are constructed as follows:

Function calls

-- function call function identifier
method designator

qualified method designator
variable reference

actual parameter list

-�

-- actual parameter list (

6
expression

,

) -�

The variable reference must be a procedural type variable reference. A method designator can
only be used inside the method of an object. A qualified method designator can be used outside
object methods too. The function that will get called is the function with a declared parameter list
that matches the actual parameter list. This means that

1. The number of actual parameters must equal the number of declared parameters.

57

CHAPTER 6. EXPRESSIONS

2. The types of the parameters must be compatible. For variable reference parameters, the para-
meter types must be exactly the same.

If no matching function is found, then the compiler will generate an error. Depending on the fact of
the function is overloaded (i.e. multiple functions with the same name, but different parameter lists)
the error will be different. There are cases when the compiler will not execute the function call in an
expression. This is the case when assigning a value to a procedural type variable, as in the following
example:

Type
FuncType = Function: Integer;

Var A : Integer;
Function AddOne : Integer;
begin

A := A+1;
AddOne := A;

end;
Var F : FuncType;

N : Integer;
begin

A := 0;
F := AddOne; { Assign AddOne to F, Don’t call AddOne}
N := AddOne; { N := 1 !!}

end.

In the above listing, the assigment to F will not cause the function AddOne to be called. The assign-
ment to N, however, will call AddOne. A problem with this syntax is the following construction:

If F = AddOne Then
DoSomethingHorrible;

Should the compiler compare the addresses ofF andAddOne, or should it call both functions, and
compare the result ? Free Pascal solves this by deciding that a procedural variable is equivalent to a
pointer. Thus the compiler will give a type mismatch error, since AddOne is considered a call to a
function with integer result, and F is a pointer, Hence a type mismatch occurs. How then, should one
compare whetherF points to the functionAddOne ? To do this, one should use the address operator
@:

If F = @AddOne Then
WriteLn (’Functions are equal’);

The left hand side of the boolean expression is an address. The right hand side also, and so the
compiler compares 2 addresses. How to compare the values that both functions return ? By adding
an empty parameter list:

If F()=Addone then
WriteLn (’Functions return same values ’);

Remark that this behaviour is not compatible with Delphi syntax.

6.3 Set constructors

When a set-type constant must be entered in an expression, a set constructor must be given. In
essence this is the same thing as when a type is defined, only there is no identifier to identify the set
with. A set constructor is a comma separated list of expressions, enclosed in square brackets.

58

CHAPTER 6. EXPRESSIONS

Set constructors

-- set constructor [

6
set group

,

] -�

-- set group expression
.. expression

-�

All set groups and set elements must be of the same ordinal type. The empty set is denoted by[] ,
and it can be assigned to any type of set. A set group with a range[A..Z] makes all values in the
range a set element. If the first range specifier has a bigger ordinal value than the second the set is
empty, e.g.,[Z..A] denotes an empty set. The following are valid set constructors:

[today,tomorrow]
[Monday..Friday,Sunday]
[2, 3*2, 6*2, 9*2]
[’A’..’Z’,’a’..’z’,’0’..’9’]

6.4 Value typecasts

Sometimes it is necessary to change the type of an expression, or a part of the expression, to be able
to be assignment compatible. This is done through a value typecast. The syntax diagram for a value
typecast is as follows:

Typecasts

-- value typecast type identifier (expression) -�

Value typecasts cannot be used on the left side of assignments, as variable typecasts. Here are some
valid typecasts:

Byte(’A’)
Char(48)
boolean(1)
longint(@Buffer)

The type size of the expression and the size of the type cast must be the same. That is, the following
doesn’t work:

Integer(’A’)
Char(4875)
boolean(100)
Word(@Buffer)

This is different from Delphi or Turbo Pascal behaviour.

59

CHAPTER 6. EXPRESSIONS

6.5 The @ operator

The address operator@returns the address of a variable, procedure or function. It is used as follows:

Address factor

-- addressfactor @ variable reference
procedure identifier
function identifier

qualified method identifier

-�

The@operator returns a typed pointer if the$T switch is on. If the$T switch is off then the address
operator returns an untyped pointer, which is assigment compatible with all pointer types. The type
of the pointer iŝ T , whereT is the type of the variable reference. For example, the following will
compile

Program tcast;
{$T-} { @ returns untyped pointer }

Type art = Array[1..100] of byte;
Var Buffer : longint;

PLargeBuffer : ^art;

begin
PLargeBuffer := @Buffer;

end.

Changing the{$T-} to {$T+} will prevent the compiler from compiling this. It will give a type
mismatch error. By default, the address operator returns an untyped pointer. Applying the address
operator to a function, method, or procedure identifier will give a pointer to the entry point of that
function. The result is an untyped pointer. By default, the address operator must be used if a value
must be assigned to a procedural type variable. This behaviour can be avoided by using the-So or
-S2 switches, which result in a more compatible Delphi or Turbo Pascal syntax.

6.6 Operators

Operators can be classified according to the type of expression they operate on. We will discuss them
type by type.

Arithmetic operators
Arithmetic operators occur in arithmetic operations, i.e. in expressions that contain integers or reals.
There are 2 kinds of operators : Binary and unary arithmetic operators. Binary operators are listed
in table (6.2), unary operators are listed in table (6.3). With the exception ofDiv andMod, which
accept only integer expressions as operands, all operators accept real and integer expressions as
operands. For binary operators, the result type will be integer if both operands are integer type
expressions. If one of the operands is a real type expression, then the result is real. As an exception :
division (/) results always in real values. For unary operators, the result type is always equal to the
expression type. The division (/) andModoperator will cause run-time errors if the second argument
is zero. The sign of the result of aModoperator is the same as the sign of the left side operand of the
Modoperator. In fact, theModoperator is equivalent to the following operation :

60

CHAPTER 6. EXPRESSIONS

Table 6.2: Binary arithmetic operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
Div Integer division
Mod Remainder

Table 6.3: Unary arithmetic operators

Operator Operation
+ Sign identity
- Sign inversion

I mod J = I - (I div J) * J

but it executes faster than the right hand side expression.

Logical operators
Logical operators act on the individual bits of ordinal expressions. Logical operators require operands
that are of an integer type, and produce an integer type result. The possible logical operators are listed
in table (6.4). The following are valid logical expressions:

Table 6.4: Logical operators

Operator Operation
not Bitwise negation (unary)
and Bitwise and
or Bitwise or
xor Bitwise xor
shl Bitwise shift to the left
shr Bitwise shift to the right

A shr 1 { same as A div 2, but faster}
Not 1 { equals -2 }
Not 0 { equals -1 }
Not -1 { equals 0 }
B shl 2 { same as B * 2 for integers }
1 or 2 { equals 3 }
3 xor 1 { equals 2 }

61

CHAPTER 6. EXPRESSIONS

Boolean operators
Boolean operators can be considered logical operations on a type with 1 bit size. Therefore theshl
andshr operations have little sense. Boolean operators can only have boolean type operands, and
the resulting type is always boolean. The possible operators are listed in table (6.5)

Table 6.5: Boolean operators

Operator Operation
not logical negation (unary)
and logical and
or logical or
xor logical xor

Remark: Boolean expressions are always evaluated with short-circuit evaluation. This means that from the
moment the result of the complete expression is known, evaluation is stopped and the result is re-
turned. For instance, in the following expression:

B := True or MaybeTrue;

The compiler will never look at the value ofMaybeTrue , since it is obvious that the expression will
always be true. As a result of this strategy, ifMaybeTrue is a function, it will not get called ! (This
can have surprising effects when used in conjunction with properties)

String operators
There is only one string operator :+. It’s action is to concatenate the contents of the two strings
(or characters) it stands between. One cannot use+ to concatenate null-terminated (PChar) strings.
The following are valid string operations:

’This is ’ + ’VERY ’ + ’easy !’
Dirname+’\’

The following is not:

Var Dirname = Pchar;
...

Dirname := Dirname+’\’;

BecauseDirname is a null-terminated string.

Set operators
The following operations on sets can be performed with operators: Union, difference and intersec-
tion. The operators needed for this are listed in table (6.6). The set type of the operands must be the
same, or an error will be generated by the compiler.

Relational operators
The relational operators are listed in table (6.7) Left and right operands must be of the same type.

62

CHAPTER 6. EXPRESSIONS

Table 6.6: Set operators

Operator Action
+ Union
- Difference
* Intersection

Table 6.7: Relational operators

Operator Action
= Equal
<> Not equal
< Stricty less than
> Strictly greater than
<= Less than or equal
>= Greater than or equal
in Element of

Only integer and real types can be mixed in relational expressions. Comparing strings is done on
the basis of their ASCII code representation. When comparing pointers, the addresses to which they
point are compared. This also is true forPChar type pointers. To compare the strings thePchar
point to, theStrComp function from thestrings unit must be used. Thein returnsTrue if the
left operand (which must have the same ordinal type as the set type, and which must be in the range
0..255) is an element of the set which is the right operand, otherwise it returnsFalse

63

Chapter 7

Statements

The heart of each algorithm are the actions it takes. These actions are contained in the statements of
a program or unit. Each statement can be labeled and jumped to (within certain limits) withGoto
statements. This can be seen in the following syntax diagram:

Statements

-- statement
label : simple statement

structured statement
asm statement

-�

A label can be an identifier or an integer digit.

7.1 Simple statements

A simple statement cannot be decomposed in separate statements. There are basically 4 kinds of
simple statements:

Simple statements

-- simple statement assignment statement
procedure statement

goto statement
raise statement

-�

Of these statements, theraise statementwill be explained in the chapter on Exceptions (chapter11,
page100)

Assignments
Assignments give a value to a variable, replacing any previous value the variable might have had:

64

CHAPTER 7. STATEMENTS

Assignments

-- assignment statement variable reference
function identifier

:=
+=
-=
*=
/=

expression -�

In addition to the standard Pascal assignment operator (:=), which simply replaces the value of
the varable with the value resulting from the expression on the right of the := operator, Free Pascal
supports some c-style constructions. All available constructs are listed in table (7.1). For these

Table 7.1: Allowed C constructs in Free Pascal

Assignment Result
a += b Addsb to a, and stores the result ina.
a -= b Substractsb from a, and stores the result ina.
a *= b Multipliesa with b, and stores the result ina.
a /= b Dividesa throughb, and stores the result ina.

constructs to work, the-Sc command-line switch must be specified.

Remark: These constructions are just for typing convenience, they don’t generate different code. Here are
some examples of valid assignment statements:

X := X+Y;
X+=Y; { Same as X := X+Y, needs -Sc command line switch}
X/=2; { Same as X := X/2, needs -Sc command line switch}
Done := False;
Weather := Good;
MyPi := 4* Tan(1);

Procedure statements
Procedure statements are calls to subroutines. There are different possibilities for procedure calls: A
normal procedure call, an object method call (fully qualified or not), or even a call to a procedural
type variable. All types are present in the following diagram.

Procedure statements

-- procedure statement procedure identifier
method identifier

qualified method identifier
variable reference

actual parameter list

-�

The Free Pascal compiler will look for a procedure with the same name as given in the procedure
statement, and with a declared parameter list that matches the actual parameter list. The following
are valid procedure statements:

65

CHAPTER 7. STATEMENTS

Usage;
WriteLn(’Pascal is an easy language !’);
Doit();

Goto statements
Free Pascal supports thegoto jump statement. Its prototype syntax is

Goto statement

-- goto statement goto label -�

When usinggoto statements, the following must be kept in mind:

1. The jump label must be defined in the same block as theGoto statement.

2. Jumping from outside a loop to the inside of a loop or vice versa can have strange effects.

3. To be able to use theGoto statement, the-Sg compiler switch must be used.

Goto statements are considered bad practice and should be avoided as much as possible. It is always
possible to replace agoto statement by a construction that doesn’t need agoto , although this
construction may not be as clear as a goto statement. For instance, the following is an allowed goto
statement:

label
jumpto;

...
Jumpto :

Statement;
...
Goto jumpto;
...

7.2 Structured statements

Structured statements can be broken into smaller simple statements, which should be executed re-
peatedly, conditionally or sequentially:

Structured statements

-- structured statement compound statement
repetitive statement

conditional statement
exception statement

with statement

-�

Conditional statements come in 2 flavours :

66

CHAPTER 7. STATEMENTS

Conditional statements

-- conditional statement if statement
case statement

-�

Repetitive statements come in 3 flavours:

Repetitive statements

-- repetitive statement for statament
repeat statement
while statement

-�

The following sections deal with each of these statements.

Compound statements
Compound statements are a group of statements, separated by semicolons, that are surrounded by
the keywordsBegin andEnd. The Last statement doesn’t need to be followed by a semicolon,
although it is allowed. A compound statement is a way of grouping statements together, executing
the statements sequentially. They are treated as one statement in cases where Pascal syntax expects
1 statement, such as inif ... then statements.

Compound statements

-- compound statement begin
6
statement

;
end -�

The Case statement
Free Pascal supports thecase statement. Its syntax diagram is

Case statement

-- case statement case expression of
6
case

; else part ;
end -�

-- case
6
constant

.. constant
,

: statement -�

-- else part else statement -�

67

CHAPTER 7. STATEMENTS

The constants appearing in the various case parts must be known at compile-time, and can be of the
following types : enumeration types, Ordinal types (except boolean), and chars. The expression must
be also of this type, or a compiler error will occur. All case constants must have the same type. The
compiler will evaluate the expression. If one of the case constants values matches the value of the
expression, the statement that follows this constant is executed. After that, the program continues
after the finalend . If none of the case constants match the expression value, the statement after
theelse keyword is executed. This can be an empty statement. If no else part is present, and no
case constant matches the expression value, program flow continues after the finalend . The case
statements can be compound statements (i.e. abegin..End block).

Remark: Contrary to Turbo Pascal, duplicate case labels are not allowed in Free Pascal, so the following code
will generate an error when compiling:

Var i : integer;
...
Case i of

3 : DoSomething;
1..5 : DoSomethingElse;

end;

The compiler will generate aDuplicate case label error when compiling this, because the 3
also appears (implicitly) in the range1..5 . This is similar to Delphi syntax.

The following are valid case statements:

Case C of
’a’ : WriteLn (’A pressed’);
’b’ : WriteLn (’B pressed’);
’c’ : WriteLn (’C pressed’);

else
WriteLn (’unknown letter pressed : ’,C);

end;

Or

Case C of
’a’,’e’,’i’,’o’,’u’ : WriteLn (’vowel pressed’);
’y’ : WriteLn (’This one depends on the language’);

else
WriteLn (’Consonant pressed’);

end;

Case Number of
1..10 : WriteLn (’Small number’);
11..100 : WriteLn (’Normal, medium number’);

else
WriteLn (’HUGE number’);

end;

The If..then..else statement
TheIf .. then .. else.. prototype syntax is

If then statements

68

CHAPTER 7. STATEMENTS

-- if statement if expression then statement
else statement

-�

The expression between theif andthen keywords must have a boolean return type. If the expres-
sion evaluates toTrue then the statement followingthen is executed.

If the expression evaluates toFalse , then the statement followingelse is executed, if it is present.

Be aware of the fact that the boolean expression will be short-cut evaluated. (Meaning that the
evaluation will be stopped at the point where the outcome is known with certainty) Also, before
the else keyword, no semicolon (;) is allowed, but all statements can be compound statements.
In nestedIf.. then .. else constructs, some ambiguity may araise as to whichelse
statement pairs with whichif statement. The rule is that theelse keyword matches the firstif
keyword not already matched by anelse keyword. For example:

If exp1 Then
If exp2 then

Stat1
else

stat2;

Despite it’s appearance, the statement is syntactically equivalent to

If exp1 Then
begin
If exp2 then

Stat1
else

stat2
end;

and not to

{ NOT EQUIVALENT }
If exp1 Then

begin
If exp2 then

Stat1
end

else
stat2

If it is this latter construct is needed, thebegin andend keywords must be present. When in doubt,
it is better to add them.

The following is a valid statement:

If Today in [Monday..Friday] then
WriteLn (’Must work harder’)

else
WriteLn (’Take a day off.’);

The For..to/downto..do statement
Free Pascal supports theFor loop construction. A for loop is used in case one wants to calculated
something a fixed number of times. The prototype syntax is as follows:

69

CHAPTER 7. STATEMENTS

For statement

-- for statement for control variable := initial value to
downto

-

- final value do statement -�

-- control variable variable identifier -�

-- initial value expression -�

-- final value expression -�

Statement can be a compound statement. When this statement is encountered, the control variable
is initialized with the initial value, and is compared with the final value. What happens next depends
on whetherto or downto is used:

1. In the caseTo is used, if the initial value larger than the final value thenStatement will
never be executed.

2. In the caseDownTo is used, if the initial value larger than the final value thenStatement
will never be executed.

After this check, the statement afterDo is executed. After the execution of the statement, the control
variable is increased or decreased with 1, depending on whetherTo or Downto is used. The control
variable must be an ordinal type, no other types can be used as counters in a loop.

Remark: Contrary to ANSI pascal specifications, Free Pascal first initializes the counter variable, and only
then calculates the upper bound.

The following are valid loops:

For Day := Monday to Friday do Work;
For I := 100 downto 1 do

WriteLn (’Counting down : ’,i);
For I := 1 to 7*dwarfs do KissDwarf(i);

If the statement is a compound statement, then theBreak (122) andContinue (129) reserved words
can be used to jump to the end or just after the end of theFor statement.

The Repeat..until statement
The repeat statement is used to execute a statement until a certain condition is reached. The
statement will be executed at least once. The prototype syntax of theRepeat..until statement
is

Repeat statement

-- repeat statement repeat
6
statement

;
until expression -�

70

CHAPTER 7. STATEMENTS

This will execute the statements betweenrepeat anduntil up to the moment whenExpression
evaluates toTrue . Since theexpression is evaluatedafter the execution of the statements, they
are executed at least once. Be aware of the fact that the boolean expressionExpression will be
short-cut evaluated. (Meaning that the evaluation will be stopped at the point where the outcome is
known with certainty) The following are validrepeat statements

repeat
WriteLn (’I =’,i);
I := I+2;

until I>100;
repeat

X := X/2
until x<10e-3

TheBreak (122) andContinue (129) reserved words can be used to jump to the end or just after the
end of therepeat .. until statement.

The While..do statement
A while statement is used to execute a statement as long as a certain condition holds. This may
imply that the statement is never executed. The prototype syntax of theWhile..do statement is

While statements

-- while statement while expression do statement -�

This will executeStatement as long asExpression evaluates toTrue . SinceExpression
is evaluatedbeforethe execution ofStatement , it is possible thatStatement isn’t executed at
all. Statement can be a compound statement. Be aware of the fact that the boolean expression
Expression will be short-cut evaluated. (Meaning that the evaluation will be stopped at the point
where the outcome is known with certainty) The following are validwhile statements:

I := I+2;
while i<=100 do

begin
WriteLn (’I =’,i);
I := I+2;
end;

X := X/2;
while x>=10e-3 do

X := X/2;

They correspond to the example loops for therepeat statements.

If the statement is a compound statement, then theBreak (122) andContinue (129) reserved words
can be used to jump to the end or just after the end of theWhile statement.

The With statement
Thewith statement serves to access the elements of a record or object or class, without having to
specify the name of the each time. The syntax for awith statement is

71

CHAPTER 7. STATEMENTS

With statement

-- with statement
6
variable reference

,
do statement -�

The variable reference must be a variable of a record, object or class type. In thewith statement,
any variable reference, or method reference is checked to see if it is a field or method of the record
or object or class. If so, then that field is accessed, or that method is called. Given the declaration:

Type Passenger = Record
Name : String[30];
Flight : String[10];
end;

Var TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustomer.Name := ’Michael’;
TheCustomer.Flight := ’PS901’;

and

With TheCustomer do
begin
Name := ’Michael’;
Flight := ’PS901’;
end;

The statement

With A,B,C,D do Statement;

is equivalent to

With A do
With B do

With C do
With D do Statement;

This also is a clear example of the fact that the variables are triedlast to first, i.e., when the compiler
encounters a variable reference, it will first check if it is a field or method of the last variable. If not,
then it will check the last-but-one, and so on. The following example shows this;

Program testw;
Type AR = record

X,Y : Longint;
end;
PAR = Record;

Var S,T : Ar;
begin

S.X := 1;S.Y := 1;

72

CHAPTER 7. STATEMENTS

T.X := 2;T.Y := 2;
With S,T do

WriteLn (X,’ ’,Y);
end.

The output of this program is

2 2

Showing thus that theX,Y in theWriteLn statement match theT record variable.

Remark: When using aWith statement with a pointer, or a class, it is not permitted to change the pointer or
the class in theWith block. With the definitions of the previous example, the following illustrates
what it is about:

Var p : PAR;

begin
With P^ do

begin
// Do some operations
P:=OtherP;
X:=0.0; // Wrong X will be used !!
end;

The reason the pointer cannot be changed is that the address is stored by the compiler in a temporary
register. Changing the pointer won’t change the temporary address. The same is true for classes.

Exception Statements
Free Pascal supports exceptions. Exceptions provide a convenient way to program error and error-
recovery mechanisms, and are closely related to classes. Exception support is explained in chapter
11, page100

7.3 Assembler statements

An assembler statement allows to insert assembler code right in the pascal code.

Assembler statements

-- asm statement asm assembler code end
registerlist

-�

-- registerlist [
6
stringconstant

,
] -�

More information about assembler blocks can be found in theProgrammers guide. The register list is
used to indicate the registers that are modified by an assembler statement in the assembler block. The
compiler stores certain results in the registers. If the registers are modified in an assembler statement,

73

file:../prog/prog.html

CHAPTER 7. STATEMENTS

the compiler should, sometimes, be told about it. The registers are denoted with their Intel names
for the I386 processor, i.e.,’EAX’ , ’ESI’ etc... As an example, consider the following assembler
code:

asm
Movl $1,%ebx
Movl $0,%eax
addl %eax,%ebx

end; [’EAX’,’EBX’];

This will tell the compiler that it should save and restore the contents of theEAXandEBXregisters
when it encounters this asm statement.

Free Pascal supports various styles of assembler syntax. By default,AT&Tsyntax is assumed for the
80386 and compatibles platform. The default assembler style can be changed with the{$asmmode
xxx} switch in the code, or the-R command-line option. More about this can be found in the
Programmers guide.

74

file:../prog/prog.html

Chapter 8

Using functions and procedures

Free Pascal supports the use of functions and procedures, but with some extras: Function overloading
is supported, as well asConst parameters and open arrays.

Remark: In many of the subsequent paragraphs the wordsprocedure andfunction will be used inter-
changeably. The statements made are valid for both, except when indicated otherwise.

8.1 Procedure declaration

A procedure declaration defines an identifier and associates it with a block of code. The procedure
can then be called with a procedure statement.

Procedure declaration

-- procedure declaration procedure header ; subroutine block ; -�

-- procedure header procedure identifier
qualified method identifier

-

- formal parameter list
modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

See section8.3, page76 for the list of parameters. A procedure declaration that is followed by a
block implements the action of the procedure in that block. The following is a valid procedure :

Procedure DoSomething (Para : String);
begin

Writeln (’Got parameter : ’,Para);
Writeln (’Parameter in upper case : ’,Upper(Para));

end;

Note that it is possible that a procedure calls itself.

75

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

8.2 Function declaration

A function declaration defines an identifier and associates it with a block of code. The block of
code will return a result. The function can then be called inside an expression, or with a procedure
statement, if extended syntax is on.

Function declaration

-- function declaration function header ; subroutine block ; -�

-- function header function identifier
qualified method identifier

-

- formal parameter list : result type
modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

The result type of a function can be any previously declared type. contrary to Turbo pascal, where
only simple types could be returned.

8.3 Parameter lists

When arguments must be passed to a function or procedure, these parameters must be declared in the
formal parameter list of that function or procedure. The parameter list is a declaration of identifiers
that can be referred to only in that procedure or function’s block.

Parameters

-- formal parameter list (
6
parameter declaration

;
) -�

-- parameter declaration value parameter
variable parameter
constant parameter

-�

Constant parameters and variable parameters can also beuntyped parameters if they have no type
identifier.

Value parameters
Value parameters are declared as follows:

Value parameters

76

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

-- value parameter identifier list :
array of

parameter type -�

When parameters are declared as value parameters, the procedure getsa copyof the parameters that
the calling block passes. Any modifications to these parameters are purely local to the procedure’s
block, and do not propagate back to the calling block. A block that wishes to call a procedure with
value parameters must pass assignment compatible parameters to the procedure. This means that the
types should not match exactly, but can be converted (conversion code is inserted by the compiler
itself)

Care must be taken when using value parameters: Value parameters makes heavy use of the stack,
especially when using large parameters. The total size of all parameters in the formal parameter list
should be below 32K for portability’s sake (the Intel version limits this to 64K).

Open arrays can be passed as value parameters. See section8.3, page78 for more information on
using open arrays.

Variable parameters
Variable parameters are declared as follows:

Variable parameters

-- variable parameter var identifier list
:

array of
parameter type

-�

When parameters are declared as variable parameters, the procedure or function accesses immediatly
the variable that the calling block passed in its parameter list. The procedure gets a pointer to the
variable that was passed, and uses this pointer to access the variable’s value. From this, it follows that
any changes made to the parameter, will propagate back to the calling block. This mechanism can be
used to pass values back in procedures. Because of this, the calling block must pass a parameter of
exactlythe same type as the declared parameter’s type. If it does not, the compiler will generate an
error.

Variable and constant parameters can be untyped. In that case the variable has no type, and hence
is incompatible with all other types. However, the address operator can be used on it, or it can be
can passed to a function that has also an untyped parameter. If an untyped parameter is used in an
assigment, or a value must be assigned to it, a typecast must be used.

File type variables must always be passed as variable parameters.

Open arrays can be passed as variable parameters. See section8.3, page78 for more information on
using open arrays.

Constant parameters
In addition to variable parameters and value parameters Free Pascal also supports Constant paramet-
ers. A constant parameter as can be specified as follows:

Constant parameters

77

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

-- constant parameter const identifier list
:

array of
parameter type

-

- -�

A constant argument is passed by reference if it’s size is larger than a pointer. It is passed by value if
the size is equal or is less then the size of a native pointer. This means that the function or procedure
receives a pointer to the passed argument, but it cannot be assigned to, this will result in a compiler
error. Furthermore a const parameter cannot be passed on to another function that requires a variable
parameter. The main use for this is reducing the stack size, hence improving performance, and still
retaining the semantics of passing by value...

Constant parameters can also be untyped. See section8.3, page77 for more information about
untyped parameters.

Open arrays can be passed as constant parameters. See section8.3, page78 for more information on
using open arrays.

Open array parameters
Free Pascal supports the passing of open arrays, i.e. a procedure can be declared with an array
of unspecified length as a parameter, as in Delphi. Open array parameters can be accessed in the
procedure or function as an array that is declared with starting index 0, and last element index
High(paremeter) . For example, the parameter

Row : Array of Integer;

would be equivalent to

Row : Array[0..N-1] of Integer;

WhereN would be the actual size of the array that is passed to the function.N-1 can be calculated
asHigh(Row) . Open parameters can be passed by value, by reference or as a constant parameter.
In the latter cases the procedure receives a pointer to the actual array. In the former case, it receives a
copy of the array. In a function or procedure, open arrays can only be passed to functions which are
also declared with open arrays as parameters,not to functions or procedures which accept arrays of
fixed length. The following is an example of a function using an open array:

Function Average (Row : Array of integer) : Real;
Var I : longint;

Temp : Real;
begin

Temp := Row[0];
For I := 1 to High(Row) do

Temp := Temp + Row[i];
Average := Temp / (High(Row)+1);

end;

Array of const
In Object Pascal or Delphi mode, Free Pascal supports theArray of Const construction to pass
parameters to a subroutine.

78

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

This is a special case of theOpen array construction, where it is allowed to pass any expression
in an array to a function or procedure.

In the procedure, passed the arguments can be examined using a special record:

Type
PVarRec = ^TVarRec;
TVarRec = record

case VType : Longint of
vtInteger : (VInteger: Longint);
vtBoolean : (VBoolean: Boolean);
vtChar : (VChar: Char);
vtExtended : (VExtended: PExtended);
vtString : (VString: PShortString);
vtPointer : (VPointer: Pointer);
vtPChar : (VPChar: PChar);
vtObject : (VObject: TObject);
vtClass : (VClass: TClass);
vtAnsiString : (VAnsiString: Pointer);
vtWideString : (VWideString: Pointer);
vtInt64 : (VInt64: PInt64);

end;

Inside the procedure body, the array of const is equivalent to an open array of TVarRec:

Procedure Testit (Args: Array of const);

Var I : longint;

begin
If High(Args)<0 then

begin
Writeln (’No aguments’);
exit;
end;

Writeln (’Got ’,High(Args)+1,’ arguments :’);
For i:=0 to High(Args) do

begin
write (’Argument ’,i,’ has type ’);
case Args[i].vtype of

vtinteger :
Writeln (’Integer, Value :’,args[i].vinteger);

vtboolean :
Writeln (’Boolean, Value :’,args[i].vboolean);

vtchar :
Writeln (’Char, value : ’,args[i].vchar);

vtextended :
Writeln (’Extended, value : ’,args[i].VExtended^);

vtString :
Writeln (’ShortString, value :’,args[i].VString^);

vtPointer :
Writeln (’Pointer, value : ’,Longint(Args[i].VPointer));

vtPChar :
Writeln (’PCHar, value : ’,Args[i].VPChar);

vtObject :

79

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

Writeln (’Object, name : ’,Args[i].VObject.Classname);
vtClass :

Writeln (’Class reference, name :’,Args[i].VClass.Classname);
vtAnsiString :

Writeln (’AnsiString, value :’,AnsiString(Args[I].VAnsiStr
else

Writeln (’(Unknown) : ’,args[i].vtype);
end;
end;

end;

In code, it is possible to pass an arbitrary array of elements to this procedure:

S:=’Ansistring 1’;
T:=’AnsiString 2’;
Testit ([]);
Testit ([1,2]);
Testit ([’A’,’B’]);
Testit ([TRUE,FALSE,TRUE]);
Testit ([’String’,’Another string’]);
Testit ([S,T]) ;
Testit ([P1,P2]);
Testit ([@testit,Nil]);
Testit ([ObjA,ObjB]);
Testit ([1.234,1.234]);
TestIt ([AClass]);

If the procedure is declared with thecdecl modifier, then the compiler will pass the array as a C
compiler would pass it. This, in effect, emulates the C construct of a variable number of arguments,
as the following example will show:

program testaocc;
{$mode objfpc}

Const
P : Pchar = ’example’;
Fmt : PChar =

’This %s uses printf to print numbers (%d) and strings.’#10;

// Declaration of standard C function printf:
procedure printf (fm : pchar; args : array of const);cdecl; external ’c’;

begin
printf(Fmt,[P,123]);

end.

Remark that this is not true for Delphi, so code relying on this feature will not be portable.

8.4 Function overloading

Function overloading simply means that the same function is defined more than once, but each time
with a different formal parameter list. The parameter lists must differ at least in one of it’s elements
type. When the compiler encounters a function call, it will look at the function parameters to decide

80

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

which one of the defined functions it should call. This can be useful when the same function must be
defined for different types. For example, in the RTL, theDec procedure could be defined as:

...
Dec(Var I : Longint;decrement : Longint);
Dec(Var I : Longint);
Dec(Var I : Byte;decrement : Longint);
Dec(Var I : Byte);
...

When the compiler encounters a call to the dec function, it will first search which function it should
use. It therefore checks the parameters in a function call, and looks if there is a function definition
which matches the specified parameter list. If the compiler finds such a function, a call is inserted
to that function. If no such function is found, a compiler error is generated. functions that have a
cdecl modifier cannot be overloaded. (Technically, because this modifier prevents the mangling of
the function name by the compiler).

8.5 Forward defined functions

A function can be declared without having it followed by it’s implementation, by having it followed
by the forward procedure. The effective implementation of that function must follow later in
the module. The function can be used after aforward declaration as if it had been implemented
already. The following is an example of a forward declaration.

Program testforward;
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn (’In second. Calling first...’);
First (1);

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
begin

Second;
end.

A function can be defined as forward only once. Likewise, in units, it is not allowed to have a forward
declared function of a function that has been declared in the interface part. The interface declaration
counts as aforward declaration. The following unit will give an error when compiled:

Unit testforward;
interface
Procedure First (n : longint);
Procedure Second;
implementation
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn (’In second. Calling first...’);
First (1);

81

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
end.

8.6 External functions

Theexternal modifier can be used to declare a function that resides in an external object file. It
allows to use the function in some code, and at linking time, the object file containing the implement-
ation of the function or procedure must be linked in.

External directive

-- external directive external
string constant

name string constant
index integer constant

-�

It replaces, in effect, the function or procedure code block. As an example:

program CmodDemo;
{$Linklib c}
Const P : PChar = ’This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external;
begin

WriteLn (’Length of (’,p,’) : ’,strlen(p))
end.

Remark: The parameters in our declaration of theexternal function should match exactly the ones in the
declaration in the object file.

If the external modifier is followed by a string constant:

external ’lname’;

Then this tells the compiler that the function resides in library ’lname’. The compiler will then
automatically link this library to the program.

The name that the function has in the library can also be specified:

external ’lname’ name ’Fname’;

This tells the compiler that the function resides in library ’lname’, but with name ’Fname’.The com-
piler will then automatically link this library to the program, and use the correct name for the function.
Under WINDOWS andOS/2, the following form can also be used:

external ’lname’ Index Ind;

This tells the compiler that the function resides in library ’lname’, but with indexInd . The compiler
will then automatically link this library to the program, and use the correct index for the function.

Finally, the external directive can be used to specify the external name of the function :

82

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

{$L myfunc.o}
external name ’Fname’;

This tells the compiler that the function has the name ’Fname’. The correct library or object file (in
this case myfunc.o) must still be linked. so that the function ’Fname’ is included in the linking stage.

8.7 Assembler functions

Functions and procedures can be completely implemented in assembly language. To indicate this,
use theassembler keyword:

Assembler functions

-- asm block assembler ; declaration part asm statement -�

Contrary to Delphi, the assembler keyword must be present to indicate an assembler function. For
more information about assembler functions, see the chapter on using assembler in theProgrammers
guide.

8.8 Modifiers

A function or procedure declaration can contain modifiers. Here we list the various possibilities:

Modifiers

-- modifiers
6
; public

alias : string constant
interrupt

call modifiers

-�

-- call modifiers register
pascal
cdecl

stdcall
popstack

saveregisters
inline

safecall

-�

Free Pascal doesn’t support all Turbo Pascal modifiers, but does support a number of additional
modifiers. They are used mainly for assembler and reference to C object files.

alias
Thealias modifier allows the programmer to specify a different name for a procedure or function.
This is mostly useful for referring to this procedure from assembly language constructs or from
another object file. As an example, consider the following program:

83

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

Program Aliases;

Procedure Printit;alias : ’DOIT’;
begin

WriteLn (’In Printit (alias : "DOIT")’);
end;
begin

asm
call DOIT
end;

end.

Remark: the specified alias is inserted straight into the assembly code, thus it is case sensitive.

Thealias modifier does not make the symbol public to other modules, unless the routine is also
declared in the interface part of a unit, or thepublic modifier is used to force it as public. Consider
the following:

unit testalias;

interface

procedure testroutine;

implementation

procedure testroutine;alias:’ARoutine’;
begin

WriteLn(’Hello world’);
end;

end.

This will make the routinetestroutine available publicly to external object files uunder the label
nameARoutine .

cdecl
Thecdecl modifier can be used to declare a function that uses a C type calling convention. This
must be used when accessing functions residing in an object file generated by standard C compilers.
It allows to use the function in the code, and at linking time, the object file containing theC imple-
mentation of the function or procedure must be linked in. As an example:

program CmodDemo;
{$LINKLIB c}
Const P : PChar = ’This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external name ’strlen’;
begin

WriteLn (’Length of (’,p,’) : ’,strlen(p))
end.

When compiling this, and linking to the C-library, thestrlen function can be called throughout the
program. Theexternal directive tells the compiler that the function resides in an external object
filebrary with the ’strlen’ name (see8.6).

84

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

Remark: The parameters in our declaration of theC function should match exactly the ones in the declaration
in C.

export
The export modifier is used to export names when creating a shared library or an executable program.
This means that the symbol will be publicly available, and can be imported from other programs. For
more information on this modifier, consult the section on Programming dynamic libraries in the
Programmers guide.

inline
Procedures that are declared inline are copied to the places where they are called. This has the effect
that there is no actual procedure call, the code of the procedure is just copied to where the procedure
is needed, this results in faster execution speed if the function or procedure is used a lot.

By default,inline procedures are not allowed. Inline code must be enabled using the command-
line switch-Si or {$inline on} directive.

1. Inline code is NOT exported from a unit. This means that when calling an inline procedure
from another unit, a normal procedure call will be performed. Only inside units,Inline
procedures are really inlined.

2. Recursive inline functions are not allowed. i.e. an inline function that calls itself is not allowed.

interrupt
The interrupt keyword is used to declare a routine which will be used as an interrupt handler.
On entry to this routine, all the registers will be saved and on exit, all registers will be restored and
an interrupt or trap return will be executed (instead of the normal return from subroutine instruction).

On platforms where a return from interrupt does not exist, the normal exit code of routines will be
done instead. For more information on the generated code, consult theProgrammers guide.

pascal
The pascal modifier can be used to declare a function that uses the classic pascal type calling
convention (passing parameters from left to right). For more information on the pascal calling con-
vention, consult theProgrammers guide.

popstack
Popstack does the same ascdecl , namely it tells the Free Pascal compiler that a function uses the C
calling convention. In difference with thecdecl modifier, it still mangles the name of the function
as it would for a normal pascal function. Withpopstack , functions can be called by their pascal
names in a library.

public
ThePublic keyword is used to declare a function globally in a unit. This is useful if the function
should not be accessible from the unit file (i.e. another unit/program using the unit doesn’t see the
function), but must be accessible from the object file. as an example:

85

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

First := 0;
end;
Function Second : Real; [Public];
begin

Second := 1;
end;
end.

If another program or unit uses this unit, it will not be able to use the functionSecond , since it
isn’t declared in the interface part. However, it will be possible to access the functionSecond at the
assembly-language level, by using it’s mangled name (see theProgrammers guide).

register
Theregister keyword is used for compatibility with Delphi. In version 1.0.x of the compiler, this
directive has no effect on the generated code.

saveregisters
If this modifier is specified after a procedure or function, then the Free Pascal compiler will save all
registers on procedure entry, and restore them when the procedure exits (except for registers where
return values are stored).

This modifier is not used under normal circumstances, except maybe when calling assembler code.

safecall
This modifier ressembles closely thestdcall modifier. It sends parameters from right to left on
the stack.

More information about this modifier can be found in theProgrammers guide, in the section on the
calling mechanism and the chapter on linking.

stdcall
This modifier pushes the parameters from right to left on the stack, it also aligns all the parameters
to a default alignment.

More information about this modifier can be found in theProgrammers guide, in the section on the
calling mechanism and the chapter on linking.

8.9 Unsupported Turbo Pascal modifiers

The modifiers that exist in Turbo pascal, but aren’t supported by Free Pascal, are listed in table (8.1).

86

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

CHAPTER 8. USING FUNCTIONS AND PROCEDURES

Table 8.1: Unsupported modifiers

Modifier Why not supported ?
Near Free Pascal is a 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

87

Chapter 9

Operator overloading

9.1 Introduction

Free Pascal supports operator overloading. This means that it is possible to define the action of some
operators on self-defined types, and thus allow the use of these types in mathematical expressions.

Defining the action of an operator is much like the definition of a function or procedure, only there
are some restrictions on the possible definitions, as will be shown in the subsequent.

Operator overloading is, in essence, a powerful notational tool; but it is also not more than that, since
the same results can be obtained with regular function calls. When using operator overloading, It is
important to keep in mind that some implicit rules may produce some unexpected results. This will
be indicated.

9.2 Operator declarations

To define the action of an operator is much like defining a function:

Operator definitions

-- operator definition operator assignment operator definition
arithmetic operator definition

comparision operator definition

-

- result identifier : result type ; subroutine block -�

-- assignment operator definition := (value parameter) -�

-- arithmetic operator definition +
-
*
/
**

(parameter list) -�

-- comparision operator definition =
<

<=
>

>=

(parameter list) -�

88

CHAPTER 9. OPERATOR OVERLOADING

The parameter list for a comparision operator or an arithmetic operator must always contain 2 para-
meters. The result type of the comparision operator must beBoolean .

Remark: When compiling inDelphi mode orObjfpc mode, the result identifier may be dropped. The
result can then be accessed through the standardResult symbol.

If the result identifier is dropped and the compiler is not in one of these modes, a syntax error will
occur.

The statement block contains the necessary statements to determine the result of the operation. It
can contain arbitrary large pieces of code; it is executed whenever the operation is encountered in
some expression. The result of the statement block must always be defined; error conditions are not
checked by the compiler, and the code must take care of all possible cases, throwing a run-time error
if some error condition is encountered.

In the following, the three types of operator definitions will be examined. As an example, throughout
this chapter the following type will be used to define overloaded operators on :

type
complex = record

re : real;
im : real;

end;

this type will be used in all examples.

The sources of the Run-Time Library contain a unitucomplex, which contains a complete calculus
for complex numbers, based on operator overloading.

9.3 Assignment operators

The assignment operator defines the action of a assignent of one type of variable to another. The
result type must match the type of the variable at the left of the assignment statement, the single
parameter to the assignment operator must have the same type as the expression at the right of the
assignment operator.

This system can be used to declare a new type, and define an assignment for that type. For instance,
to be able to assign a newly defined type ’Complex’

Var
C,Z : Complex; // New type complex

begin
Z:=C; // assignments between complex types.

end;

The following assignment operator would have to be defined:

Operator := (C : Complex) z : complex;

To be able to assign a real type to a complex type as follows:

var
R : real;
C : complex;

89

CHAPTER 9. OPERATOR OVERLOADING

begin
C:=R;

end;

the following assignment operator must be defined:

Operator := (r : real) z : complex;

As can be seen from this statement, it defines the action of the operator:= with at the right a real
expression, and at the left a complex expression.

an example implementation of this could be as follows:

operator := (r : real) z : complex;

begin
z.re:=r;
z.im:=0.0;

end;

As can be seen in the example, the result identifier (z in this case) is used to store the result of
the assignment. When compiling in Delphi mode or objfpc mode, the use of the special identifier
Result is also allowed, and can be substituted for thez , so the above would be equivalent to

operator := (r : real) z : complex;

begin
Result.re:=r;
Result.im:=0.0;

end;

The assignment operator is also used to convert types from one type to another. The compiler will
consider all overloaded assignment operators till it finds one that matches the types of the left hand
and right hand expressions. If no such operator is found, a ’type mismatch’ error is given.

Remark: The assignment operator is not commutative; the compiler will never reverse the role of the two
arguments. in other words, given the above definition of the assignment operator, the following is
notpossible:

var
R : real;
C : complex;

begin
R:=C;

end;

if the reverse assignment should be possible (this is not so for reals and complex numbers) then the
assigment operator must be defined for that as well.

Remark: The assignment operator is also used in implicit type conversions. This can have unwanted effects.
Consider the following definitions:

operator := (r : real) z : complex;
function exp(c : complex) : complex;

90

CHAPTER 9. OPERATOR OVERLOADING

then the following assignment will give a type mismatch:

Var
r1,r2 : real;

begin
r1:=exp(r2);

end;

because the compiler will encounter the definition of theexp function with the complex argument. It
implicitly converts r2 to a complex, so it can use the aboveexp function. The result of this function
is a complex, which cannot be assigned to r1, so the compiler will give a ’type mismatch’ error. The
compiler will not look further for anotherexp which has the correct arguments.

It is possible to avoid this particular problem by specifying

r1:=system.exp(r2);

An experimental solution for this problem exists in the compiler, but is not enabled by default. Maybe
someday it will be.

9.4 Arithmetic operators

Arithmetic operators define the action of a binary operator. Possible operations are:

multiplication to multiply two types, the* multiplication operator must be overloaded.

division to divide two types, the/ division operator must be overloaded.

addition to add two types, the+ addition operator must be overloaded.

substraction to substract two types, the- substraction operator must be overloaded.

exponentiation to exponentiate two types, the** exponentiation operator must be overloaded.

The definition of an arithmetic operator takes two parameters. The first parameter must be of the
type that occurs at the left of the operator, the second parameter must be of the type that is at the
right of the arithmetic operator. The result type must match the type that results after the arithmetic
operation.

To compile an expression as

var
R : real;
C,Z : complex;

begin
C:=R*Z;

end;

one needs a definition of the multiplication operator as:

Operator * (r : real; z1 : complex) z : complex;

begin
z.re := z1.re * r;
z.im := z1.im * r;

end;

91

CHAPTER 9. OPERATOR OVERLOADING

As can be seen, the first operator is a real, and the second is a complex. The result type is complex.

Multiplication and addition of reals and complexes are commutative operations. The compiler, how-
ever, has no notion of this fact so even if a multiplication between a real and a complex is defined,
the compiler will not use that definition when it encounters a complex and a real (in that order). It is
necessary to define both operations.

So, given the above definition of the multiplication, the compiler will not accept the following state-
ment:

var
R : real;
C,Z : complex;

begin
C:=Z*R;

end;

since the types ofZ andRdon’t match the types in the operator definition.

The reason for this behaviour is that it is possible that a multiplication is not always commutative.
e.g. the multiplication of a(n,m) with a (m,n) matrix will result in a(n,n) matrix, while the
mutiplication of a(m,n) with a (n,m) matrix is a(m,m) matrix, which needn’t be the same in all
cases.

9.5 Comparision operator

The comparision operator can be overloaded to compare two different types or to compare two equal
types that are not basic types. The result type of a comparision operator is always a boolean.

The comparision operators that can be overloaded are:

equal to (=) to determine if two variables are equal.

less than (<) to determine if one variable is less than another.

greater than (>) to determine if one variable is greater than another.

greater than or equal to (>=) to determine if one variable is greater than or equal to another.

less than or equal to (<=) to determine if one variable is greater than or equal to another.

There is no separate operator forunequal to(<>). To evaluate a statement that contans theunequal
to operator, the compiler uses theequal tooperator (=), and negates the result.

As an example, the following opetrator allows to compare two complex numbers:

operator = (z1, z2 : complex) b : boolean;

the above definition allows comparisions of the following form:

Var
C1,C2 : Complex;

begin
If C1=C2 then

Writeln(’C1 and C2 are equal’);
end;

92

CHAPTER 9. OPERATOR OVERLOADING

The comparision operator definition needs 2 parameters, with the types that the operator is meant to
compare. Here also, the compiler doesn’t apply commutativity; if the two types are different, then it
necessary to define 2 comparision operators.

In the case of complex numbers, it is, for instance necessary to define 2 comparsions: one with the
complex type first, and one with the real type first.

Given the definitions

operator = (z1 : complex;r : real) b : boolean;
operator = (r : real; z1 : complex) b : boolean;

the following two comparisions are possible:

Var
R,S : Real;
C : Complex;

begin
If (C=R) or (S=C) then

Writeln (’Ok’);
end;

Note that the order of the real and complex type in the two comparisions is reversed.

93

Chapter 10

Programs, units, blocks

A Pascal program consists of modules calledunits . A unit can be used to group pieces of code
together, or to give someone code without giving the sources. Both programs and units consist of
code blocks, which are mixtures of statements, procedures, and variable or type declarations.

10.1 Programs

A pascal program consists of the program header, followed possibly by a ’uses’ clause, and a block.

Programs

-- program program header ;
uses clause

block . -�

-- program header program identifier
(program parameters)

-�

-- program parameters identifier list -�

-- uses clause uses
6
identifier

,
; -�

The program header is provided for backwards compatibility, and is ignored by the compiler. The
uses clause serves to identify all units that are needed by the program. The system unit doesn’t have
to be in this list, since it is always loaded by the compiler. The order in which the units appear is
significant, it determines in which order they are initialized. Units are initialized in the same order as
they appear in the uses clause. Identifiers are searched in the opposite order, i.e. when the compiler
searches for an identifier, then it looks first in the last unit in the uses clause, then the last but one,
and so on. This is important in case two units declare different types with the same identifier. When
the compiler looks for unit files, it adds the extension.ppu (.ppw for Win32 platforms) to the name
of the unit. OnLINUX and in operating systems where filenames are case sensitive, when looking
for a unit, the unit name is first looked for in the original case, and when not found, converted to all
lowercase and searched for.

If a unit name is longer than 8 characters, the compiler will first look for a unit name with this length,
and then it will truncate the name to 8 characters and look for it again. For compatibility reasons,
this is also true on platforms that suport long file names.

94

CHAPTER 10. PROGRAMS, UNITS, BLOCKS

10.2 Units

A unit contains a set of declarations, procedures and functions that can be used by a program or
another unit. The syntax for a unit is as follows:

Units

-- unit unit header interface part implementation part -
-

initialization part
finalization part

begin
6
statement

;

end . -�

-- unit header unit unit identifier ; -�

-- interface part interface
uses clause 6 constant declaration part

type declaration part
procedure headers part

-�

-- procedure headers part procedure header
function header

;
call modifiers ;

-�

-- implementation part implementation
uses clause

declaration part -�

-- initialization part initialization
6
statement

;
-�

-- finalization part finalization
6
statement

;
-�

The interface part declares all identifiers that must be exported from the unit. This can be constant,
type or variable identifiers, and also procedure or function identifier declarations. Declarations inside
the implementation part arenot accessible outside the unit. The implementation must contain a
function declaration for each function or procedure that is declared in the interface part. If a function
is declared in the interface part, but no declaration of that function is present in the implementation
part, then the compiler will give an error.

When a program uses a unit (sayunitA) and this units uses a second unit, sayunitB, then the program
depends indirectly also onunitB . This means that the compiler must have access tounitB when
trying to compile the program. If the unit is not present at compile time, an error occurs.

Note that the identifiers from a unit on which a program depends indirectly, are not accessible to the
program. To have access to the identifiers of a unit, the unit must be in the uses clause of the program
or unit where the identifiers are needed.

Units can be mutually dependent, that is, they can reference each other in their uses clauses. This is
allowed, on the condition that at least one of the references is in the implementation section of the
unit. This also holds for indirect mutually dependent units.

If it is possible to start from one interface uses clause of a unit, and to return there via uses clauses
of interfaces only, then there is circular unit dependence, and the compiler will generate an error. As
and example : the following is not allowed:

95

CHAPTER 10. PROGRAMS, UNITS, BLOCKS

Unit UnitA;
interface
Uses UnitB;
implementation
end.

Unit UnitB
interface
Uses UnitA;
implementation
end.

But this is allowed :

Unit UnitA;
interface
Uses UnitB;
implementation
end.
Unit UnitB
implementation
Uses UnitA;
end.

BecauseUnitB usesUnitA only in it’s implentation section. In general, it is a bad idea to have
circular unit dependencies, even if it is only in implementation sections.

10.3 Blocks

Units and programs are made of blocks. A block is made of declarations of labels, constants, types
variables and functions or procedures. Blocks can be nested in certain ways, i.e., a procedure or
function declaration can have blocks in themselves. A block looks like the following:

Blocks

-- block declaration part statement part -�

-- declaration part
6 label declaration part

constant declaration part
resourcestring declaration part

type declaration part
variable declaration part

procedure/function declaration part

-�

-- label declaration part label
6
label

,
; -�

-- constant declaration part const
6

constant declaration
typed constant declaration

-�

96

CHAPTER 10. PROGRAMS, UNITS, BLOCKS

-- resourcestring declaration part resourcestring
6
string constant declaration -

- -�

-- type declaration part type
6
type declaration -�

-- variable declaration part var
6
variable declaration -�

-- procedure/function declaration part
6

procedure declaration
function declaration

constructor declaration
destructor declaration

-�

-- statement part compound statement -�

Labels that can be used to identify statements in a block are declared in the label declaration part
of that block. Each label can only identify one statement. Constants that are to be used only in one
block should be declared in that block’s constant declaration part. Variables that are to be used only
in one block should be declared in that block’s constant declaration part. Types that are to be used
only in one block should be declared in that block’s constant declaration part. Lastly, functions and
procedures that will be used in that block can be declared in the procedure/function declaration part.
After the different declaration parts comes the statement part. This contains any actions that the block
should execute. All identifiers declared before the statement part can be used in that statement part.

10.4 Scope

Identifiers are valid from the point of their declaration until the end of the block in which the declara-
tion occurred. The range where the identifier is known is thescopeof the identifier. The exact scope
of an identifier depends on the way it was defined.

Block scope
Thescopeof a variable declared in the declaration part of a block, is valid from the point of declara-
tion until the end of the block. If a block contains a second block, in which the identfier is redeclared,
then inside this block, the second declaration will be valid. Upon leaving the inner block, the first
declaration is valid again. Consider the following example:

Program Demo;
Var X : Real;
{ X is real variable }
Procedure NewDeclaration
Var X : Integer; { Redeclare X as integer}
begin

// X := 1.234; {would give an error when trying to compile}
X := 10; { Correct assigment}

end;
{ From here on, X is Real again}
begin

97

CHAPTER 10. PROGRAMS, UNITS, BLOCKS

X := 2.468;
end.

In this example, inside the procedure, X denotes an integer variable. It has it’s own storage space,
independent of the variableX outside the procedure.

Record scope
The field identifiers inside a record definition are valid in the following places:

1. to the end of the record definition.

2. field designators of a variable of the given record type.

3. identifiers inside aWith statement that operates on a variable of the given record type.

Class scope
A component identifier is valid in the following places:

1. From the point of declaration to the end of the class definition.

2. In all descendent types of this class, unless it is in the private part of the class declaration.

3. In all method declaration blocks of this class and descendent classes.

4. In a with statement that operators on a variable of the given class’s definition.

Note that method designators are also considered identifiers.

Unit scope
All identifiers in the interface part of a unit are valid from the point of declaration, until the end
of the unit. Furthermore, the identifiers are known in programs or units that have the unit in their
uses clause. Identifiers from indirectly dependent units arenot available. Identifiers declared in the
implementation part of a unit are valid from the point of declaration to the end of the unit. The system
unit is automatically used in all units and programs. It’s identifiers are therefore always known, in
each pascal program, library or unit. The rules of unit scope imply that an identifier of a unit can
be redefined. To have access to an identifier of another unit that was redeclared in the current unit,
precede it with that other units name, as in the following example:

unit unitA;
interface
Type

MyType = Real;
implementation
end.
Program prog;
Uses UnitA;

{ Redeclaration of MyType}
Type MyType = Integer;
Var A : Mytype; { Will be Integer }

B : UnitA.MyType { Will be real }
begin
end.

98

CHAPTER 10. PROGRAMS, UNITS, BLOCKS

This is especially useful when redeclaring the system unit’s identifiers.

10.5 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Win32 andOS/2) trough the use of
theLibrary keyword.

A Library is just like a unit or a program:

Libraries

-- library library header ;
uses clause

block . -�

-- library header library identifier -�

By default, functions and procedures that are declared and implemented in library are not available
to a programmer that wishes to use this library.

In order to make functions or procedures available from the library, they must be exported in an
export clause:

Exports clause

-- exports clause exports exports list ; -�

-- exports list
6
exports entry

,
-�

-- exports entry identifier
index integer constant name string constant

-

- -�

Under Win32, an index clause can be added to an exports entry. an index entry must be a positive
number larger or equal than 1.

Optionally, an exports entry can have a name specifier. If present, the name specifier gives the exact
name (case sensitive) of the function in the library.

If neither of these constructs is present, the functions or procedures are exported with the exact names
as specified in the exports clause.

99

Chapter 11

Exceptions

Exceptions provide a convenient way to program error and error-recovery mechanisms, and are
closely related to classes. Exception support is based on 3 constructs:

Raise statements. To raise an exeption. This is usually done to signal an error condition.

Try ... Except blocks. These block serve to catch exceptions raised within the scope of the block,
and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective of an exception
occurrence or not. They generally serve to clean up memory or close files in case an exception
occurs. The compiler generates many implicitTry ... Finally blocks around proced-
ure, to force memory consistence.

11.1 The raise statement

Theraise statement is as follows:

Raise statement

-- raise statement
exception instance

at address expression

-�

This statement will raise an exception. If it is specified, the exception instance must be an initialized
instance of a class, which is the raise type. The address exception is optional. If itis not specified,
the compiler will provide the address by itself. If the exception instance is omitted, then the current
exception is re-raised. This construct can only be used in an exception handling block (see further).

Remark: Controlneverreturns after an exception block. The control is transferred to the firsttry...finally
or try...except statement that is encountered when unwinding the stack. If no such statement
is found, the Free Pascal Run-Time Library will generate a run-time error 217 (see also section11.5,
page103).

As an example: The following division checks whether the denominator is zero, and if so, raises an
exception of typeEDivException

100

CHAPTER 11. EXCEPTIONS

Type EDivException = Class(Exception);
Function DoDiv (X,Y : Longint) : Integer;
begin

If Y=0 then
Raise EDivException.Create (’Division by Zero would occur’);

Result := X Div Y;
end;

The classException is defined in theSysutils unit of the rtl. (section11.5, page103)

11.2 The try...except statement

A try...except exception handling block is of the following form :

Try..except statement

-- try statement try statement list except exceptionhandlers end -�

-- statement list
6
statement

;
-�

-- exceptionhandlers

6
exception handler

; else statement list
statement list

-�

-- exception handler on
identifier :

class type identifier do statement -�

If no exception is raised during the execution of thestatement list , then all statements in the
list will be executed sequentially, and the except block will be skipped, transferring program flow to
the statement after the finalend .

If an exception occurs during the execution of thestatement list , the program flow will be
transferred to the except block. Statements in the statement list between the place where the exception
was raised and the exception block are ignored.

In the exception handling block, the type of the exception is checked, and if there is an exception
handler where the class type matches the exception object type, or is a parent type of the exception
object type, then the statement following the correspondingDo will be executed. The first matching
type is used. After theDo block was executed, the program continues after theEnd statement.

The identifier in an exception handling statement is optional, and declares an exception object. It
can be used to manipulate the exception object in the exception handling code. The scope of this
declaration is the statement block foillowing theDo keyword.

If none of theOn handlers matches the exception object type, then the statement list afterelse is
executed. If no such list is found, then the exception is automatically re-raised. This process allows
to nesttry...except blocks.

If, on the other hand, the exception was caught, then the exception object is destroyed at the end of
the exception handling block, before program flow continues. The exception is destroyed through a
call to the object’sDestroy destructor.

As an example, given the previous declaration of theDoDiv function, consider the following

101

CHAPTER 11. EXCEPTIONS

Try
Z := DoDiv (X,Y);

Except
On EDivException do Z := 0;

end;

If Y happens to be zero, then the DoDiv function code will raise an exception. When this happens,
program flow is transferred to the except statement, where the Exception handler will set the value
of Z to zero. If no exception is raised, then program flow continues past the lastend statement. To
allow error recovery, theTry ... Finally block is supported. ATry...Finally block
ensures that the statements following theFinally keyword are guaranteed to be executed, even if
an exception occurs.

11.3 The try...finally statement

A Try..Finally statement has the following form:

Try...finally statement

-- trystatement try statement list finally finally statements end -�

-- finally statements statementlist -�

If no exception occurs inside thestatement List , then the program runs as if theTry , Finally
andEnd keywords were not present.

If, however, an exception occurs, the program flow is immediatly transferred from the point where
the excepion was raised to the first statement of theFinally statements .

All statements after the finally keyword will be executed, and then the exception will be automatically
re-raised. Any statements between the place where the exception was raised and the first statement
of theFinally Statements are skipped.

As an example consider the following routine:

Procedure Doit (Name : string);
Var F : Text;
begin

Try
Assign (F,Name);
Rewrite (name);
... File handling ...

Finally
Close(F);

end;

If during the execution of the file handling an execption occurs, then program flow will continue at
the close(F) statement, skipping any file operations that might follow between the place where
the exception was raised, and theClose statement. If no exception occurred, all file operations will
be executed, and the file will be closed at the end.

102

CHAPTER 11. EXCEPTIONS

11.4 Exception handling nesting

It is possible to nestTry...Except blocks withTry...Finally blocks. Program flow will be
done according to alifo (last in, first out) principle: The code of the last encounteredTry...Except
or Try...Finally block will be executed first. If the exception is not caught, or it was a finally
statement, program flow will be transferred to the last-but-one block,ad infinitum.

If an exception occurs, and there is no exception handler present, then a runerror 217 will be gen-
erated. When using thesysutils unit, a default handler is installed which will show the exception
object message, and the address where the exception occurred, after which the program will exit with
aHalt instruction.

11.5 Exception classes

The sysutils unit contains a great deal of exception handling. It defines the following exception
types:

Exception = class(TObject)
private

fmessage : string;
fhelpcontext : longint;

public
constructor create(const msg : string);
constructor createres(indent : longint);
property helpcontext : longint read fhelpcontext write fhelpcontext;
property message : string read fmessage write fmessage;

end;
ExceptClass = Class of Exception;
{ mathematical exceptions }
EIntError = class(Exception);
EDivByZero = class(EIntError);
ERangeError = class(EIntError);
EIntOverflow = class(EIntError);
EMathError = class(Exception);

The sysutils unit also installs an exception handler. If an exception is unhandled by any exception
handling block, this handler is called by the Run-Time library. Basically, it prints the exception
address, and it prints the message of the Exception object, and exits with a exit code of 217. If the
exception object is not a descendent object of theException object, then the class name is printed
instead of the exception message.

It is recommended to use theException object or a descendant class for allraise statements,
since then the message field of the exception object can be used.

103

Chapter 12

Using assembler

Free Pascal supports the use of assembler in code, but not inline assembler macros. To have more
information on the processor specific assembler syntax and its limitations, see theProgrammers
guide.

12.1 Assembler statements

The following is an example of assembler inclusion in pascal code.

...
Statements;
...
Asm

the asm code here
...

end;
...
Statements;

The assembler instructions between theAsmandend keywords will be inserted in the assembler
generated by the compiler. Conditionals can be used ib assembler, the compiler will recognise it, and
treat it as any other conditionals.

12.2 Assembler procedures and functions

Assembler procedures and functions are declared using theAssembler directive. This permits the
code generator to make a number of code generation optimizations.

The code generator does not generate any stack frame (entry and exit code for the routine) if it
contains no local variables and no parameters. In the case of functions, ordinal values must be
returned in the accumulator. In the case of floating point values, these depend on the target processor
and emulation options.

104

file:../prog/prog.html
file:../prog/prog.html

Part II

Reference : The System unit

105

Chapter 13

The system unit

The system unit contains the standard supported functions of Free Pascal. It is the same for all
platforms. Basically it is the same as the system unit provided with Borland or Turbo Pascal.

Functions are listed in alphabetical order. Arguments of functions or procedures that are optional are
put between square brackets.

The pre-defined constants and variables are listed in the first section. The second section contains
an overview of all functions, grouped by functionality, and the last section contains the supported
functions and procedures.

13.1 Types, Constants and Variables

Types
The following integer types are defined in the System unit:

Shortint = -128..127;
SmallInt = -32768..32767;
Longint = $80000000..$7fffffff;
byte = 0..255;
word = 0..65535;
dword = longword;
cardinal = longword;
Integer = smallint;

The following types are used for the functions that need compiler magic such asVal (180) or Str
(177):

StrLenInt = LongInt;
ValSInt = Longint;
ValUInt = Cardinal;
ValReal = Extended;

TheReal48 type is defined to emulate the old Turbo PascalReal type:

Real48 = Array[0..5] of byte;

The assignment operator has been overloaded so this type can be assigned to the Free Pascal native
Double andExtended types.Real2Double (165).

106

CHAPTER 13. THE SYSTEM UNIT

The following character types are defined for Delphi compatibility:

TAnsiChar = Char;
AnsiChar = TAnsiChar;

And the following pointer types as well:

PChar = ^char;
pPChar = ^PChar;
PAnsiChar = PChar;
PQWord = ^QWord;
PInt64 = ^Int64;
pshortstring = ^shortstring;
plongstring = ^longstring;
pansistring = ^ansistring;
pwidestring = ^widestring;
pextended = ^extended;
ppointer = ^pointer;

For theSetJmp (172) andLongJmp (154) calls, the following jump bufer type is defined (for the
I386 processor):

jmp_buf = record
ebx,esi,edi : Longint;
bp,sp,pc : Pointer;
end;

PJmp_buf = ^jmp_buf;

The following records and pointers can be used to scan the entries in the string message handler
tables:

tmsgstrtable = record
name : pshortstring;
method : pointer;

end;
pmsgstrtable = ^tmsgstrtable;

tstringmessagetable = record
count : dword;
msgstrtable : array[0..0] of tmsgstrtable;

end;
pstringmessagetable = ^tstringmessagetable;

The base class for all classes is defined as:

Type
TObject = Class
Public

constructor create;
destructor destroy;virtual;
class function newinstance : tobject;virtual;
procedure freeinstance;virtual;
function safecallexception(exceptobject : tobject;

exceptaddr : pointer) : longint;virtual;

107

CHAPTER 13. THE SYSTEM UNIT

procedure defaulthandler(var message);virtual;
procedure free;
class function initinstance(instance : pointer) : tobject;
procedure cleanupinstance;
function classtype : tclass;
class function classinfo : pointer;
class function classname : shortstring;
class function classnameis(const name : string) : boolean;
class function classparent : tclass;
class function instancesize : longint;
class function inheritsfrom(aclass : tclass) : boolean;
class function inheritsfrom(aclass : tclass) : boolean;
class function stringmessagetable : pstringmessagetable;
procedure dispatch(var message);
procedure dispatchstr(var message);
class function methodaddress(const name : shortstring) : pointer;
class function methodname(address : pointer) : shortstring;
function fieldaddress(const name : shortstring) : pointer;
procedure AfterConstruction;virtual;
procedure BeforeDestruction;virtual;
procedure DefaultHandlerStr(var message);virtual;

end;
TClass = Class Of TObject;
PClass = ^TClass;

Unhandled exceptions can be treated using a constant of theTExceptProc type:

TExceptProc = Procedure (Obj : TObject; Addr,Frame: Pointer);

Obj is the exception object that was used to raise the exception,Addr andFrame contain the exact
address and stack frame where the exception was raised.

The TVarRec type is used to access the elements passed in aArray of Const argument to a
function or procedure:

Type
PVarRec = ^TVarRec;
TVarRec = record

case VType : Longint of
vtInteger : (VInteger: Longint);
vtBoolean : (VBoolean: Boolean);
vtChar : (VChar: Char);
vtExtended : (VExtended: PExtended);
vtString : (VString: PShortString);
vtPointer : (VPointer: Pointer);
vtPChar : (VPChar: PChar);
vtObject : (VObject: TObject);
vtClass : (VClass: TClass);
vtAnsiString : (VAnsiString: Pointer);
vtWideString : (VWideString: Pointer);
vtInt64 : (VInt64: PInt64);

end;

The heap manager uses theTMemoryManager type:

108

CHAPTER 13. THE SYSTEM UNIT

PMemoryManager = ^TMemoryManager;
TMemoryManager = record

Getmem : Function(Size:Longint):Pointer;
Freemem : Function(var p:pointer):Longint;
FreememSize : Function(var p:pointer;Size:Longint):Longint;
AllocMem : Function(Size:longint):Pointer;
ReAllocMem : Function(var p:pointer;Size:longint):Pointer;
MemSize : function(p:pointer):Longint;
MemAvail : Function:Longint;
MaxAvail : Function:Longint;
HeapSize : Function:Longint;

end;

More information on using this record can be found inProgrammers guide.

Constants
The following constants define the maximum values that can be used with various types:

MaxSIntValue = High(ValSInt);
MaxUIntValue = High(ValUInt);
maxint = maxsmallint;
maxLongint = $7fffffff;
maxSmallint = 32767;

The following constants for file-handling are defined in the system unit:

Const
fmclosed = $D7B0;
fminput = $D7B1;
fmoutput = $D7B2;
fminout = $D7B3;
fmappend = $D7B4;
filemode : byte = 2;

The filemode variable is used when a non-text file is opened usingReset . It indicates how the
file will be opened.filemode can have one of the following values:

0 The file is opened for reading.

1 The file is opened for writing.

2 The file is opened for reading and writing.

The default value is 2. Other values are possible but are operating system specific.

Further, the following non processor specific general-purpose constants are also defined:

const
erroraddr : pointer = nil;
errorcode : word = 0;

{ max level in dumping on error }
max_frame_dump : word = 20;

109

file:../prog/prog.html

CHAPTER 13. THE SYSTEM UNIT

Remark: Processor specific global constants are named Testxxxx where xxxx represents the processor num-
ber (such as Test8086, Test68000), and are used to determine on what generation of processor the
program is running on.

The following constants are defined to access VMT entries:

vmtInstanceSize = 0;
vmtParent = 8;
vmtClassName = 12;
vmtDynamicTable = 16;
vmtMethodTable = 20;
vmtFieldTable = 24;
vmtTypeInfo = 28;
vmtInitTable = 32;
vmtAutoTable = 36;
vmtIntfTable = 40;
vmtMsgStrPtr = 44;
vmtMethodStart = 48;
vmtDestroy = vmtMethodStart;
vmtNewInstance = vmtMethodStart+4;
vmtFreeInstance = vmtMethodStart+8;
vmtSafeCallException = vmtMethodStart+12;
vmtDefaultHandler = vmtMethodStart+16;
vmtAfterConstruction = vmtMethodStart+20;
vmtBeforeDestruction = vmtMethodStart+24;
vmtDefaultHandlerStr = vmtMethodStart+28;

The constant names should be used, and never their values, because the VMT table can change,
breaking code that uses direct values.

The following constants will be used for the plannedvariant support:

varEmpty = $0000;
varNull = $0001;
varSmallint = $0002;
varInteger = $0003;
varSingle = $0004;
varDouble = $0005;
varCurrency = $0006;
varDate = $0007;
varOleStr = $0008;
varDispatch = $0009;
varError = $000A;
varBoolean = $000B;
varVariant = $000C;
varUnknown = $000D;
varByte = $0011;
varString = $0100;
varAny = $0101;
varTypeMask = $0FFF;
varArray = $2000;
varByRef = $4000;

The following constants are used in theTVarRec record:

vtInteger = 0;

110

CHAPTER 13. THE SYSTEM UNIT

vtBoolean = 1;
vtChar = 2;
vtExtended = 3;
vtString = 4;
vtPointer = 5;
vtPChar = 6;
vtObject = 7;
vtClass = 8;
vtWideChar = 9;
vtPWideChar = 10;
vtAnsiString = 11;
vtCurrency = 12;
vtVariant = 13;
vtInterface = 14;
vtWideString = 15;
vtInt64 = 16;
vtQWord = 17;

TheExceptProc is called when an unhandled exception occurs:

Const
ExceptProc : TExceptProc = Nil;

It is set in theobjpas unit, but it can be set by the programmer to change the default exception
handling.

The following constants are defined to describe the operating system’s file system:

LineEnding = #10;
LFNSupport = true;
DirectorySeparator = ’/’;
DriveSeparator = ’:’;
PathSeparator = ’:’;
FileNameCaseSensitive : Boolean = True;

(the shown values are forUNIX platforms, but will be different on other platforms) The meaning of
the constants is the following:

LineEnding End of line marker. This constant is used when writing end of lines to text files.

LFNSupport This isTrue if the system supports long file names, i.e. filenames that are not restric-
ted to 8.3 characters.

DirectorySeparator The character that is used as a directory separator, i.e. it appears between
various parts of a path to a file.

DriveSeparator On systems that support drive letters, this character separates the drive indication
from the rest of a filename.

PathSeparator This character can be found between elements in a series of paths (such as the con-
tents of thePATHenvironment variable.

FileNameCaseSensitiveIndicates whether filenames are case sensitive.

When programming cross-platform, use these constants instead of hard-coded characters. This will
enhance portability of an application.

111

CHAPTER 13. THE SYSTEM UNIT

Variables
The following variables are defined and initialized in the system unit:

var
output,input,stderr : text;
exitproc : pointer;
exitcode : word;
stackbottom : Cardinal;

The variablesExitProc , exitcode are used in the Free Pascal exit scheme. It works similarly to
the one in Turbo Pascal:

When a program halts (be it through the call of theHalt function orExit or through a run-time
error), the exit mechanism checks the value ofExitProc . If this one is non-Nil , it is set toNil ,
and the procedure is called. If the exit procedure exits, the value of ExitProc is checked again. If it
is non-Nil then the above steps are repeated. So when an exit procedure must be installed, the old
value ofExitProc should be saved (it may be non-Nil , since other units could have set it). In the
exit procedure the value ofExitProc should be restored to the previous value, such that if it was
non-Nil the exit-procedure can be called.

Listing: refex/ex98.pp

Program Example98 ;

{ Program to demonstrate the e x i t p r o c f u n c t i o n . }

Var
OldExi tProc : Po in te r ;

Procedure MyExit ;

begin
Wri te ln (’My Ex i tp roc was c a l l e d . Exi tcode = ’ , ExitCode) ;
{ r es to re o ld e x i t procedure }
Exi tProc := OldExi tProc ;

end ;

begin
OldExi tProc := Ex i tProc ;
Ex i tProc :=@MyExit ;
I f ParamCount >0 Then

Halt (6 6) ;
end .

The ErrorAddr andExitCode can be used to check for error-conditions. IfErrorAddr is
non-Nil , a run-time error has occurred. If so,ExitCode contains the error code. IfErrorAddr
is Nil , then ExitCode contains the argument toHalt or 0 if the program terminated normally.

ExitCode is always passed to the operating system as the exit-code of the current process.

Remark: The maximum error code underLINUX andUNIX like operating systems is 127.

UnderGO32, the following constants are also defined :

const
seg0040 = $0040;
segA000 = $A000;
segB000 = $B000;
segB800 = $B800;

112

CHAPTER 13. THE SYSTEM UNIT

These constants allow easy access to the bios/screen segment via mem/absolute.

The randomize function uses a seed stored in theRandSeed variable:

RandSeed : Cardinal;

This variable is initialized in the initialization code of the system unit.

Other variables indicate the state of the application.

IsLibrary : boolean;
IsMultiThread : boolean;

The IsLibrary variable is set to true if this module is a shared library instead of an application.
The IsMultiThread variable is set to True if the application has spawned other threads, other-
wise, and by default, it is set to False.

13.2 Function list by category

What follows is a listing of the available functions, grouped by category. For each function there is a
reference to the page where the function can be found:

File handling
Functions concerning input and output from and to file.

Name Description Page

Append Open a file in append mode 118

Assign Assign a name to a file 119

Blockread Read data from a file into memory 121

Blockwrite Write data from memory to a file 121

Close Close a file 123

Eof Check for end of file 133

Eoln Check for end of line 134

Erase Delete file from disk 134

Filepos Position in file 138

Filesize Size of file 138

Flush Write file buffers to disk 141

IOresult Return result of last file IO operation 151

Read Read from file into variable 164

Readln Read from file into variable and goto next line 165

Rename Rename file on disk 166

Reset Open file for reading 167

Rewrite Open file for writing 167

Seek Set file position 169

SeekEof Set file position to end of file 170

113

CHAPTER 13. THE SYSTEM UNIT

SeekEoln Set file position to end of line 171

SetTextBuf Set size of file buffer 173

Truncate Truncate the file at position 179

Write Write variable to file 181

WriteLn Write variable to file and append newline 181

Memory management
Functions concerning memory issues.

Name Description Page

Addr Return address of variable 117

Assigned Check if a pointer is valid 120

CompareByte Compare 2 memory buffers byte per byte 124

CompareChar Compare 2 memory buffers byte per byte 125

CompareDWord Compare 2 memory buffers byte per byte 126

CompareWord Compare 2 memory buffers byte per byte 127

CSeg Return code segment 130

Dispose Free dynamically allocated memory 132

DSeg Return data segment 133

FillByte Fill memory region with 8-bit pattern 139

Fillchar Fill memory region with certain character 140

FillDWord Fill memory region with 32-bit pattern 140

Fillword Fill memory region with 16-bit pattern 141

Freemem Release allocated memory 142

Getmem Allocate new memory 143

GetMemoryManager Return current memory manager 144

High Return highest index of open array or enumerated 145

IsMemoryManagerSet Is the memory manager set 151

Low Return lowest index of open array or enumerated 154

Mark Mark current memory position 155

Maxavail Return size of largest free memory block 156

Memavail Return total available memory 156

Move Move data from one location in memory to another 157

MoveChar0 Move data till first zero character 158

New Dynamically allocate memory for variable 158

Ofs Return offset of variable 159

Ptr Combine segment and offset to pointer 163

ReAllocMem Resize a memory block on the heap 188

Release Release memory above mark point 166

Seg Return segment 171

114

CHAPTER 13. THE SYSTEM UNIT

SetMemoryManager Set a memory manager 172

Sptr Return current stack pointer 175

SSeg Return stack segment register value 176

Mathematical routines
Functions connected to calculating and coverting numbers.

Name Description Page

Abs Calculate absolute value 117

Arctan Calculate inverse tangent 118

Cos Calculate cosine of angle 130

Dec Decrease value of variable 131

Exp Exponentiate 137

Frac Return fractional part of floating point value 142

Hi Return high byte/word of value 145

Inc Increase value of variable 146

Int Calculate integer part of floating point value 151

Ln Calculate logarithm 153

Lo Return low byte/word of value 154

Odd Is a value odd or even ? 158

Pi Return the value of pi 161

Power Raise float to integer power 162

Random Generate random number 163

Randomize Initialize random number generator 164

Round Round floating point value to nearest integer number 169

Sin Calculate sine of angle 174

Sqr Calculate the square of a value 175

Sqrt Calculate the square root of a value 176

Swap Swap high and low bytes/words of a variable 178

Trunc Truncate a floating point value 178

String handling
All things connected to string handling.

Name Description Page

BinStr Construct binary representation of integer 120

Chr Convert ASCII code to character 123

Concat Concatenate two strings 128

Copy Copy part of a string 129

Delete Delete part of a string 131

115

CHAPTER 13. THE SYSTEM UNIT

HexStr Construct hexadecimal representation of integer 144

Insert Insert one string in another 150

Length Return length of string 153

Lowercase Convert string to all-lowercase 155

OctStr Construct octal representation of integer 159

Pos Calculate position of one string in another 162

SetLength Set length of a string 172

SetString Set contents and length of a string 173

Str Convert number to string representation 177

StringOfChar Create string consisting of a number of characters 177

Upcase Convert string to all-uppercase 179

Val Convert string to number 180

Operating System functions
Functions that are connected to the operating system.

Name Description Page

Chdir Change working directory 122

Getdir Return current working directory 143

Halt Halt program execution 144

Paramcount Number of parameters with which program was called 160

Paramstr Retrieve parameters with which program was called 161

Mkdir Make a directory 157

Rmdir Remove a directory 168

Runerror Abort program execution with error condition 169

Miscellaneous functions
Functions that do not belong in one of the other categories.

Name Description Page

Assert Conditionally abort program with error 119

Break Abort current loop 122

Continue Next cycle in current loop 129

Exclude Exclude an element from a set 135

Exit Exit current function or procedure 136

Include Include an element into a set 147

LongJmp Jump to execution point 154

Ord Return ordinal value of enumerated type 160

Pred Return previous value of ordinal type 162

SetJmp Mark execution point for jump 172

116

CHAPTER 13. THE SYSTEM UNIT

SizeOf Return size of variable or type 175

Succ Return next value of ordinal type 178

13.3 Functions and Procedures

Abs
Declaration: Function Abs (X : Every numerical type) : Every numerical type;

Description: Abs returns the absolute value of a variable. The result of the function has the same type as its
argument, which can be any numerical type.

Errors: None.

See also: Round (169)

Listing: refex/ex1.pp

Program Example1 ;

{ Program to demonstrate the Abs f u n c t i o n . }

Var
r : r e a l ;
i : i n t e g e r ;

begin
r :=abs (−1 . 0) ; { r : = 1 . 0 }
i :=abs (−21) ; { i :=21 }

end .

Addr
Declaration: Function Addr (X : Any type) : Pointer;

Description: Addr returns a pointer to its argument, which can be any type, or a function or procedure name.
The returned pointer isn’t typed. The same result can be obtained by the@operator, which can return
a typed pointer (Programmers guide).

Errors: None

See also: SizeOf (175)

Listing: refex/ex2.pp

Program Example2 ;

{ Program to demonstrate the Addr f u n c t i o n . }

Const Zero : i n t e g e r = 0 ;

Var p : p o i n t e r ;
i : I n t ege r ;

begin
p :=Addr (p) ; { P po in t s to i t s e l f }

117

file:../prog/prog.html

CHAPTER 13. THE SYSTEM UNIT

p :=Addr (I) ; { P po in t s to I }
p :=Addr (Zero) ; { P po in t s to ’ Zero ’ }

end .

Append
Declaration: Procedure Append (Var F : Text);

Description: Append opens an existing file in append mode. Any data written toF will be appended to the file.
Only text files can be opened in append mode. After a call toAppend , the fileF becomes write-only.

File sharing is not taken into account when callingAppend .

Errors: If the file doesn’t exist when appending, a run-time error will be generated. This behaviour has
changed on Windows and Linux platforms, where in versions prior to 1.0.6, the file would be created
in append mode.

See also: Rewrite (167),Close (123), Reset (167)

Listing: refex/ex3.pp

Program Example3 ;

{ Program to demonstrate the Append f u n c t i o n . }

Var f : t e x t ;

begin
Assign (f , ’ t e s t . t x t ’) ;
Rewrite (f) ; { f i l e i s opened f o r wr i te , and emptied }
Writeln (F , ’ This i s the f i r s t l i n e o f t e x t . t x t ’) ;
c lose (f) ;
Append (f) ; { f i l e i s opened f o r wr i te , but NOT emptied .

any t e x t w r i t t e n to i t i s appended . }
Writeln (f , ’ This i s the second l i n e o f t e x t . t x t ’) ;
c lose (f) ;

end .

Arctan
Declaration: Function Arctan (X : Real) : Real;

Description: Arctan returns the Arctangent ofX, which can be any Real type. The resulting angle is in radial
units.

Errors: None

See also: Sin (174), Cos (130)

Listing: refex/ex4.pp

Program Example4 ;

{ Program to demonstrate the ArcTan f u n c t i o n . }

Var R : Real ;

118

CHAPTER 13. THE SYSTEM UNIT

begin
R:=ArcTan (0) ; { R: = 0 }
R:=ArcTan (1) / pi ; { R: = 0 . 2 5 }

end .

Assert
Declaration: Procedure Assert(expr : Boolean [; const msg: string]);

Description: With assertions on,Assert tests ifexpr is false, and if so, aborts the application with a Runtime
error 227 and an optional error message inmsg. If expr is true, program execution continues
normally.

If assertions are not enabled at compile time, this routine does nothing, and no code is generated for
theAssert call.

Enabling and disabling assertions at compile time is done via the$C or $ASSERTIONScompiler
switches. These are global switches.

The default behavior of the assert call can be changed by setting a new handler in theAssertErrorProc
variable. Sysutils overrides the default handler to raise aEAssertionFailed exception.

Errors: None.

See also: Halt (144), Runerror (169)

Assign
Declaration: Procedure Assign (Var F; Name : String);

Description: Assign assigns a name toF, which can be any file type. This call doesn’t open the file, it just
assigns a name to a file variable, and marks the file as closed.

Errors: None.

See also: Reset (167), Rewrite (167), Append (118)

Listing: refex/ex5.pp

Program Example5 ;

{ Program to demonstrate the Assign f u n c t i o n . }

Var F : t e x t ;

begin
Assign (F , ’ ’) ;
Rewrite (f) ;
{ The f o l l o w i n g can be put i n any f i l e by r e d i r e c t i n g i t

from the command l i n e . }
Writeln (f , ’ This goes to standard output ! ’) ;
Close (f) ;
Assign (F , ’ Test . t x t ’) ;
rewr i te (f) ;
wr i te ln (f , ’ This doesn ’ ’ t go to standard output ! ’) ;
c lose (f) ;

end .

119

CHAPTER 13. THE SYSTEM UNIT

Assigned
Declaration: Function Assigned (P : Pointer) : Boolean;

Description: Assigned returnsTrue if P is non-nil and retunsFalse of P is nil. The main use of As-
signed is that Procedural variables, method variables and class-type variables also can be passed to
Assigned .

Errors: None

See also: New (158)

Listing: refex/ex96.pp

Program Example96 ;

{ Program to demonstrate the Assigned f u n c t i o n . }

Var P : Po in te r ;

begin
I f Not Assigned (P) then

Wri te ln (’ Po in te r i s i n i t i a l l y NIL ’) ;
P:=@P;
I f Not Assigned (P) then

Wri te ln (’ I n t e r n a l i ncons is tency ’)
else

Wri te ln (’ A l l i s we l l i n FPC ’)
end .

BinStr
Declaration: Function BinStr (Value : longint; cnt : byte) : String;

Description: BinStr returns a string with the binary representation ofValue . The string has at mostcnt
characters. (i.e. only thecnt rightmost bits are taken into account) To have a complete representation
of any longint-type value, 32 bits are needed, i.e.cnt=32

Errors: None.

See also: Str (177),Val (180),HexStr (144), OctStr (159)

Listing: refex/ex82.pp

Program example82 ;

{ Program to demonstrate the B inSt r f u n c t i o n }

Const Value = 45678;

Var I : l o n g i n t ;

begin
For I : = 8 to 2 0 do

Wri te ln (B inSt r (Value , I) : 2 0) ;
end .

120

CHAPTER 13. THE SYSTEM UNIT

Blockread
Declaration: Procedure Blockread (Var F : File; Var Buffer; Var Count : Longint

[; var Result : Longint]);

Description: Blockread readscount or less records from fileF. A record is a block of bytes with size
specified by theRewrite (167) or Reset (167) statement.

The result is placed inBuffer , which must contain enough room forCount records. The function
cannot read partial records. IfResult is specified, it contains the number of records actually read.
If Result isn’t specified, and less thanCount records were read, a run-time error is generated.
This behavior can be controlled by the{$i} switch.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Blockwrite (121), Close (123), Reset (167), Assign (119)

Listing: refex/ex6.pp

Program Example6 ;

{ Program to demonstrate the BlockRead and BlockWri te f u n c t i o n s . }

Var Fin , f o u t : F i l e ;
NumRead, NumWritten : Word ;
Buf : Array [1 . . 2 0 4 8] of byte ;
To ta l : Long in t ;

begin
Assign (Fin , Paramstr (1)) ;
Assign (Fout , Paramstr (2)) ;
Reset (Fin , 1) ;
Rewrite (Fout , 1) ;
To ta l : = 0 ;
Repeat

BlockRead (Fin , buf , Sizeof (buf) ,NumRead) ;
BlockWrite (Fout , Buf ,NumRead, NumWritten) ;
inc (Tota l , NumWritten) ;

Unt i l (NumRead=0) or (NumWritten<>NumRead) ;
Write (’ Copied ’ , Tota l , ’ bytes from f i l e ’ , paramstr (1)) ;
Writeln (’ to f i l e ’ , paramstr (2)) ;
c lose (f i n) ;
c lose (f o u t) ;

end .

Blockwrite
Declaration: Procedure Blockwrite (Var F : File; Var Buffer; Var Count : Longint);

Description: BlockWrite writescount records frombuffer to the fileF.A record is a block of bytes with
size specified by theRewrite (167) or Reset (167) statement.

If the records couldn’t be written to disk, a run-time error is generated. This behavior can be con-
trolled by the{$i} switch.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

121

CHAPTER 13. THE SYSTEM UNIT

See also: Blockread (121),Close (123), Rewrite (167), Assign (119)

For the example, seeBlockread (121).

Break
Declaration: Procedure Break;

Description: Break jumps to the statement following the end of the current repetitive statement. The code
between theBreak call and the end of the repetitive statement is skipped. The condition of the
repetitive statement is NOT evaluated.

This can be used withFor , varrepeat andWhile statements.

Note that while this is a procedure,Break is a reserved word and hence cannot be redefined.

Errors: None.

See also: Continue (129), Exit (136)

Listing: refex/ex87.pp

Program Example87 ;

{ Program to demonstrate the Break f u n c t i o n . }

Var I : l o n g i n t ;

begin
I : = 0 ;
While I <10 Do

begin
Inc (I) ;
I f I >5 Then

Break ;
Writeln (i) ;
end ;

I : = 0 ;
Repeat

Inc (I) ;
I f I >5 Then

Break ;
Writeln (i) ;

Unt i l I >=10;
For I : = 1 to 1 0 do

begin
I f I >5 Then

Break ;
Writeln (i) ;
end ;

end .

Chdir
Declaration: Procedure Chdir (const S : string);

Description: Chdir changes the working directory of the process toS.

122

CHAPTER 13. THE SYSTEM UNIT

Errors:

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Mkdir (157), Rmdir (168)

Listing: refex/ex7.pp

Program Example7 ;

{ Program to demonstrate the ChDir f u n c t i o n . }

begin
{ $I−}
ChDir (ParamStr (1)) ;
i f IOresul t <>0 then

Wri te ln (’ Cannot change to d i r e c t o r y : ’ , paramstr (1)) ;
end .

Chr
Declaration: Function Chr (X : byte) : Char;

Description: Chr returns the character which has ASCII valueX.

Errors: None.

See also: Ord (160), Str (177)

Listing: refex/ex8.pp

Program Example8 ;

{ Program to demonstrate the Chr f u n c t i o n . }

begin
Write (chr (10) , chr (1 3)) ; { The same e f f e c t as Wr i t e l n ; }

end .

Close
Declaration: Procedure Close (Var F : Anyfiletype);

Description: Close flushes the buffer of the fileF and closesF. After a call toClose , data can no longer be
read from or written toF. To reopen a file closed withClose , it isn’t necessary to assign the file
again. A call toReset (167) or Rewrite (167) is sufficient.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Assign (119), Reset (167), Rewrite (167), Flush (141)

Listing: refex/ex9.pp

123

CHAPTER 13. THE SYSTEM UNIT

Program Example9 ;

{ Program to demonstrate the Close f u n c t i o n . }

Var F : t e x t ;

begin
Assign (f , ’ Test . t x t ’) ;
ReWrite (F) ;
Writeln (F , ’Some t e x t w r i t t e n to Test . t x t ’) ;
c lose (f) ; { Flushes contents o f b u f f e r to disk ,

c loses the f i l e . Omi t t ing t h i s may
cause data NOT to be w r i t t e n to d isk . }

end .

CompareByte
Declaration: function CompareByte(var buf1,buf2;len:longint):longint;

Description: CompareByte compares two memory regionsbuf1 ,buf2 on a byte-per-byte basis for a total of
len bytes.

The function returns one of the following values:

-1if buf1 andbuf2 contain different bytes in the firstlen bytes, and the first such byte is smaller
in buf1 than the byte at the same position inbuf2 .

0if the first len bytes inbuf1 andbuf2 are equal.

1if buf1 andbuf2 contain different bytes in the firstlen bytes, and the first such byte is larger in
buf1 than the byte at the same position inbuf2 .

Errors: None.

See also: CompareChar (125),CompareWord (127),CompareDWord (126)

Listing: refex/ex99.pp

Program Example99 ;

{ Program to demonstrate the CompareByte f u n c t i o n . }

Const
ArraySize = 100;
Ha l fAr rayS ize = ArraySize Div 2 ;

Var
Buf1 , Buf2 : Array [1 . . ArraySize] of byte ;
I : l o n g i n t ;

Procedure CheckPos (Len : Longin t) ;

Begin
Write (’ F i r s t ’ , Len , ’ p o s i t i o n s are ’) ;
i f CompareByte (Buf1 , Buf2 , Len) < >0 then

Write (’NOT ’) ;
Writeln (’ equal ’) ;

end ;

124

CHAPTER 13. THE SYSTEM UNIT

begin
For I : = 1 to ArraySize do

begin
Buf1 [i] : = I ;
I f I <=Hal fAr rayS ize Then

Buf2 [I] : = I
else

Buf2 [i] : = Hal fAr raySize−I ;
end ;

CheckPos (Ha l fAr rayS ize div 2) ;
CheckPos (Ha l fAr rayS ize) ;
CheckPos (Ha l fAr rayS ize +1) ;
CheckPos (Ha l fAr rayS ize + Hal fAr rayS ize Div 2) ;

end .

CompareChar
Declaration: function CompareChar(var buf1,buf2;len:longint):longint; function CompareChar0(var

buf1,buf2;len:longint):longint;

Description: CompareChar compares two memory regionsbuf1 ,buf2 on a character-per-character basis for
a total oflen characters.

TheCompareChar0 variant compareslen bytes, or until a zero character is found.

The function returns one of the following values:

-1if buf1 andbuf2 contain different characters in the firstlen positions, and the first such char-
acter is smaller inbuf1 than the character at the same position inbuf2 .

0if the first len characters inbuf1 andbuf2 are equal.

1if buf1 andbuf2 contain different characters in the firstlen positions, and the first such character
is larger inbuf1 than the character at the same position inbuf2 .

Errors: None.

See also: CompareByte (124),CompareWord (127),CompareDWord (126)

Listing: refex/ex100.pp

Program Example100 ;

{ Program to demonstrate the CompareChar f u n c t i o n . }

Const
ArraySize = 100;
Ha l fAr rayS ize = ArraySize Div 2 ;

Var
Buf1 , Buf2 : Array [1 . . ArraySize] of char ;
I : l o n g i n t ;

Procedure CheckPos (Len : Longin t) ;

Begin
Write (’ F i r s t ’ , Len , ’ charac te rs are ’) ;

125

CHAPTER 13. THE SYSTEM UNIT

i f CompareChar (Buf1 , Buf2 , Len) < >0 then
Write (’NOT ’) ;

Writeln (’ equal ’) ;
end ;

Procedure CheckNullPos (Len : Longin t) ;

Begin
Write (’ F i r s t ’ , Len , ’ non−n u l l charac te rs are ’) ;
i f CompareChar0 (Buf1 , Buf2 , Len) < >0 then

Write (’NOT ’) ;
Writeln (’ equal ’) ;

end ;

begin
For I : = 1 to ArraySize do

begin
Buf1 [i] : = chr (I) ;
I f I <=Hal fAr rayS ize Then

Buf2 [I] : = chr (I)
else

Buf2 [i] : = chr (Hal fArraySize−I) ;
end ;

CheckPos (Ha l fAr rayS ize div 2) ;
CheckPos (Ha l fAr rayS ize) ;
CheckPos (Ha l fAr rayS ize +1) ;
CheckPos (Ha l fAr rayS ize + Hal fAr rayS ize Div 2) ;
For I : = 1 to 4 do

begin
buf1 [Random (ArraySize) + 1] : = Chr (0) ;
buf2 [Random (ArraySize) + 1] : = Chr (0) ;
end ;

Randomize ;
CheckNullPos (Ha l fAr rayS ize div 2) ;
CheckNullPos (Ha l fAr rayS ize) ;
CheckNullPos (Ha l fAr rayS ize +1) ;
CheckNullPos (Ha l fAr rayS ize + Hal fAr rayS ize Div 2) ;

end .

CompareDWord
Declaration: function CompareDWord(var buf1,buf2;len:longint):longint;

Description: CompareDWord compares two memory regionsbuf1 ,buf2 on a DWord-per-DWord basis for a
total of len DWords. (A DWord is 4 bytes).

The function returns one of the following values:

-1if buf1 andbuf2 contain different DWords in the firstlen DWords, and the first such DWord is
smaller inbuf1 than the DWord at the same position inbuf2 .

0if the first len DWords inbuf1 andbuf2 are equal.

1if buf1 andbuf2 contain different DWords in the firstlen DWords, and the first such DWord is
larger inbuf1 than the DWord at the same position inbuf2 .

Errors: None.

See also: CompareChar (125),CompareByte (124),CompareWord (127),

126

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex101.pp

Program Example101 ;

{ Program to demonstrate the CompareDWord f u n c t i o n . }

Const
ArraySize = 100;
Ha l fAr rayS ize = ArraySize Div 2 ;

Var
Buf1 , Buf2 : Array [1 . . ArraySize] of Dword ;
I : l o n g i n t ;

Procedure CheckPos (Len : Longin t) ;

Begin
Write (’ F i r s t ’ , Len , ’ DWords are ’) ;
i f CompareDWord (Buf1 , Buf2 , Len) < >0 then

Write (’NOT ’) ;
Writeln (’ equal ’) ;

end ;

begin
For I : = 1 to ArraySize do

begin
Buf1 [i] : = I ;
I f I <=Hal fAr rayS ize Then

Buf2 [I] : = I
else

Buf2 [i] : = Hal fAr raySize−I ;
end ;

CheckPos (Ha l fAr rayS ize div 2) ;
CheckPos (Ha l fAr rayS ize) ;
CheckPos (Ha l fAr rayS ize +1) ;
CheckPos (Ha l fAr rayS ize + Hal fAr rayS ize Div 2) ;

end .

CompareWord
Declaration: function CompareWord(var buf1,buf2;len:longint):longint;

Description: CompareWord compares two memory regionsbuf1 ,buf2 on a Word-per-Word basis for a total
of len Words. (A Word is 2 bytes).

The function returns one of the following values:

-1if buf1 and buf2 contain different Words in the firstlen Words, and the first such Word is
smaller inbuf1 than the Word at the same position inbuf2 .

0if the first len Words inbuf1 andbuf2 are equal.

1if buf1 andbuf2 contain different Words in the firstlen Words, and the first such Word is larger
in buf1 than the Word at the same position inbuf2 .

Errors: None.

See also: CompareChar (125),CompareByte (124),CompareWord (127),

127

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex102.pp

Program Example102 ;

{ Program to demonstrate the CompareWord f u n c t i o n . }

Const
ArraySize = 100;
Ha l fAr rayS ize = ArraySize Div 2 ;

Var
Buf1 , Buf2 : Array [1 . . ArraySize] of Word ;
I : l o n g i n t ;

Procedure CheckPos (Len : Longin t) ;

Begin
Write (’ F i r s t ’ , Len , ’ words are ’) ;
i f CompareWord (Buf1 , Buf2 , Len) < >0 then

Write (’NOT ’) ;
Writeln (’ equal ’) ;

end ;

begin
For I : = 1 to ArraySize do

begin
Buf1 [i] : = I ;
I f I <=Hal fAr rayS ize Then

Buf2 [I] : = I
else

Buf2 [i] : = Hal fAr raySize−I ;
end ;

CheckPos (Ha l fAr rayS ize div 2) ;
CheckPos (Ha l fAr rayS ize) ;
CheckPos (Ha l fAr rayS ize +1) ;
CheckPos (Ha l fAr rayS ize + Hal fAr rayS ize Div 2) ;

end .

Concat
Declaration: Function Concat (S1,S2 [,S3, ... ,Sn]) : String;

Description: Concat concatenates the stringsS1,S2 etc. to one long string. The resulting string is truncated at
a length of 255 bytes. The same operation can be performed with the+ operation.

Errors: None.

See also: Copy (129), Delete (131), Insert (150), Pos (162), Length (153)

Listing: refex/ex10.pp

Program Example10 ;

{ Program to demonstrate the Concat f u n c t i o n . }
Var

S : Str ing ;

128

CHAPTER 13. THE SYSTEM UNIT

begin
S:= Concat (’ This can be done ’ , ’ Easier ’ , ’ w i th the + opera tor ! ’) ;

end .

Continue
Declaration: Procedure Continue;

Description: Continue jumps to the end of the current repetitive statement. The code between theContinue
call and the end of the repetitive statement is skipped. The condition of the repetitive statement is
then checked again.

This can be used withFor , varrepeat andWhile statements.

Note that while this is a procedure,Continue is a reserved word and hence cannot be redefined.

Errors: None.

See also: Break (122), Exit (136)

Listing: refex/ex86.pp

Program Example86 ;

{ Program to demonstrate the Continue f u n c t i o n . }

Var I : l o n g i n t ;

begin
I : = 0 ;
While I <10 Do

begin
Inc (I) ;
I f I <5 Then

Continue ;
Writeln (i) ;
end ;

I : = 0 ;
Repeat

Inc (I) ;
I f I <5 Then

Continue ;
Writeln (i) ;

Unt i l I >=10;
For I : = 1 to 1 0 do

begin
I f I <5 Then

Continue ;
Writeln (i) ;
end ;

end .

Copy
Declaration: Function Copy (Const S : String;Index : Integer;Count : Integer) :

String;

129

CHAPTER 13. THE SYSTEM UNIT

Description: Copy returns a string which is a copy if theCount characters inS, starting at positionIndex . If
Count is larger than the length of the stringS, the result is truncated. IfIndex is larger than the
length of the stringS, then an empty string is returned.

Errors: None.

See also: Delete (131), Insert (150), Pos (162)

Listing: refex/ex11.pp

Program Example11 ;

{ Program to demonstrate the Copy f u n c t i o n . }

Var S, T : Str ing ;

begin
T:= ’ 1234567 ’ ;
S:=Copy (T , 1 , 2) ; { S : = ’ 1 2 ’ }
S:=Copy (T , 4 , 2) ; { S : = ’ 4 5 ’ }
S:=Copy (T , 4 , 8) ; { S:= ’4567 ’ }

end .

Cos
Declaration: Function Cos (X : Real) : Real;

Description: Cos returns the cosine ofX, where X is an angle, in radians.

If the absolute value of the argument is larger than2ˆ63 , then the result is undefined.

Errors: None.

See also: Arctan (118), Sin (174)

Listing: refex/ex12.pp

Program Example12 ;

{ Program to demonstrate the Cos f u n c t i o n . }

Var R : Real ;

begin
R:=Cos (Pi) ; { R:=−1 }
R:=Cos (Pi / 2) ; { R: = 0 }
R:=Cos (0) ; { R: = 1 }

end .

CSeg
Declaration: Function CSeg : Word;

Description: CSeg returns the Code segment register. In Free Pascal, it returns always a zero, since Free Pascal
is a 32 bit compiler.

Errors: None.

130

CHAPTER 13. THE SYSTEM UNIT

See also: DSeg (133), Seg (171), Ofs (159), Ptr (163)

Listing: refex/ex13.pp

Program Example13 ;

{ Program to demonstrate the CSeg f u n c t i o n . }

var W : word ;

begin
W:=CSeg ; {W: = 0 , prov ided f o r c o m p a t i b i l i t y ,

FPC i s 3 2 b i t . }
end .

Dec
Declaration: Procedure Dec (Var X : Any ordinal type[; Decrement : Any ordinal type]);

Description: Dec decreases the value ofX with Decrement . If Decrement isn’t specified, then 1 is taken as
a default.

Errors: A range check can occur, or an underflow error, if an attempt it made to decreaseX below its
minimum value.

See also: Inc (146)

Listing: refex/ex14.pp

Program Example14 ;

{ Program to demonstrate the Dec f u n c t i o n . }

Var
I : I n t ege r ;
L : Long in t ;
W : Word ;
B : Byte ;
Si : S h o r t I n t ;

begin
I : = 1 ;
L : = 2 ;
W: = 3 ;
B: = 4 ;
Si : = 5 ;
Dec (i) ; { i : = 0 }
Dec (L , 2) ; { L : = 0 }
Dec (W, 2) ; { W: = 1 }
Dec (B, −2) ; { B: = 6 }
Dec (Si , 0) ; { Si : = 5 }

end .

Delete
Declaration: Procedure Delete (var S : string;Index : Integer;Count : Integer);

131

CHAPTER 13. THE SYSTEM UNIT

Description: Delete removesCount characters from stringS, starting at positionIndex . All characters after
the delected characters are shiftedCount positions to the left, and the length of the string is adjusted.

Errors: None.

See also: Copy (129),Pos (162),Insert (150)

Listing: refex/ex15.pp

Program Example15 ;

{ Program to demonstrate the Delete f u n c t i o n . }

Var
S : Str ing ;

begin
S:= ’ This i s not easy ! ’ ;
Delete (S , 9 , 4) ; { S: = ’ This i s easy ! ’ }

end .

Dispose
Declaration: Procedure Dispose (P : pointer);

Procedure Dispose (P : Typed Pointer; Des : Procedure);

Description: The first formDispose releases the memory allocated with a call toNew (158). The pointerP
must be typed. The released memory is returned to the heap.

The second form ofDispose accepts as a first parameter a pointer to an object type, and as a
second parameter the name of a destructor of this object. The destructor will be called, and the
memory allocated for the object will be freed.

Errors: An runtime error will occur if the pointer doesn’t point to a location in the heap.

See also: New (158), Getmem (143), Freemem (142)

Listing: refex/ex16.pp

Program Example16 ;

{ Program to demonstrate the Dispose and New f u n c t i o n s . }

Type SS = Str ing [2 0] ;

AnObj = Object
I : i n t e g e r ;
Constructor I n i t ;
Destructor Done ;
end ;

Var
P : ^ SS;
T : ^ AnObj ;

Constructor Anobj . I n i t ;

begin

132

CHAPTER 13. THE SYSTEM UNIT

Writeln (’ I n i t i a l i z i n g an ins tance of AnObj ! ’) ;
end ;

Destructor AnObj . Done ;

begin
Wri te ln (’ Dest roy ing an ins tance of AnObj ! ’) ;

end ;

begin
New (P) ;
P^ := ’ Hel lo , World ! ’ ;
Dispose (P) ;
{ P i s undef ined from here on ! }
New (T , I n i t) ;
T ^ . i : = 0 ;
Dispose (T , Done) ;

end .

DSeg
Declaration: Function DSeg : Word;

Description: DSeg returns the data segment register. In Free Pascal, it returns always a zero, since Free Pascal
is a 32 bit compiler.

Errors: None.

See also: CSeg (130), Seg (171), Ofs (159), Ptr (163)

Listing: refex/ex17.pp

Program Example17 ;

{ Program to demonstrate the DSeg f u n c t i o n . }

Var
W : Word ;

begin
W:=DSeg ; {W: = 0 , This f u n c t i o n i s provided f o r c o m p a t i b i l i t y ,

FPC i s a 3 2 b i t comi le r . }
end .

Eof
Declaration: Function Eof [(F : Any file type)] : Boolean;

Description: Eof returnsTrue if the file-pointer has reached the end of the file, or if the file is empty. In all
other casesEof returnsFalse . If no file F is specified, standard input is assumed.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Eoln (134), Assign (119), Reset (167), Rewrite (167)

133

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex18.pp

Program Example18 ;

{ Program to demonstrate the Eof f u n c t i o n . }

Var T1 , T2 : t e x t ;
C : Char ;

begin
{ Set f i l e to read from . Empty means from standard i n pu t . }
assign (t1 , paramstr (1)) ;
reset (t1) ;
{ Set f i l e to w r i t e to . Empty means to standard output . }
assign (t2 , paramstr (2)) ;
rewr i te (t2) ;
While not eof (t1) do

begin
read (t1 ,C) ;
wri te (t2 ,C) ;
end ;

Close (t1) ;
Close (t2) ;

end .

Eoln
Declaration: Function Eoln [(F : Text)] : Boolean;

Description: Eof returnsTrue if the file pointer has reached the end of a line, which is demarcated by a line-
feed character (ASCII value 10), or if the end of the file is reached. In all other casesEof returns
False . If no file F is specified, standard input is assumed. It can only be used on files of typeText .

Errors: None.

See also: Eof (133), Assign (119), Reset (167), Rewrite (167)

Listing: refex/ex19.pp

Program Example19 ;

{ Program to demonstrate the Eoln f u n c t i o n . }

begin
{ This program wai ts f o r keyboard i n p u t . }
{ I t w i l l p r i n t True when an empty l i n e i s put in ,

and f a l s e when you type a non−empty l i n e .
I t w i l l on ly stop when you press enter . }

While not Eoln do
Wri te ln (eoln) ;

end .

Erase
Declaration: Procedure Erase (Var F : Any file type);

134

CHAPTER 13. THE SYSTEM UNIT

Description: Erase removes an unopened file from disk. The file should be assigned withAssign , but not
opened withReset or Rewrite

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Assign (119)

Listing: refex/ex20.pp

Program Example20 ;

{ Program to demonstrate the Erase f u n c t i o n . }

Var F : Text ;

begin
{ Create a f i l e w i th a l i n e o f t e x t i n i t }
Assign (F , ’ t e s t . t x t ’) ;
Rewrite (F) ;
Writeln (F , ’ Try and f i n d t h i s when I ’ ’m f i n i s h e d ! ’) ;
c lose (f) ;
{ Now remove the f i l e }
Erase (f) ;

end .

Exclude
Declaration: Procedure Exclude (Var S : Any set type; E : Set element);

Description: Exclude removesE from the setS if it is included inthe set. E should be of the same type as the
base type of the setS.

Thus, the two following statements do the same thing:

S:=S-[E];
Exclude(S,E);

Errors: If the type of the elementE is not equal to the base type of the setS, the compiler will generate an
error.

See also: Include (147)

Listing: refex/ex111.pp

program Example111 ;

{ Program to demonstrate the Inc lude / Exclude f u n c t i o n s }

Type
TEnumA = (aOne , aTwo , aThree) ;
TEnumAs = Set of TEnumA;

Var
SA : TEnumAs ;

Procedure Pr i n tSe t (S : TEnumAs) ;

135

CHAPTER 13. THE SYSTEM UNIT

var
B : Boolean ;

procedure DoEl (A : TEnumA ; Desc : Str ing) ;

begin
I f A in S then

begin
I f B then

Write (’ , ’) ;
B:= True ;
Write (Desc) ;
end ;

end ;

begin
Write (’ [’) ;
B:= False ;
DoEl (aOne , ’aOne ’) ;
DoEl (aTwo , ’aTwo ’) ;
DoEl (aThree , ’ aThree ’) ;
Writeln (’] ’)

end ;

begin
SA : = [] ;
Include (SA, aOne) ;
P r i n tSe t (SA) ;
Include (SA, aThree) ;
P r i n tSe t (SA) ;
Exclude (SA, aOne) ;
P r i n tSe t (SA) ;
Exclude (SA, aTwo) ;
P r i n tSe t (SA) ;
Exclude (SA, aThree) ;
P r i n tSe t (SA) ;

end .

Exit
Declaration: Procedure Exit ([Var X : return type)];

Description: Exit exits the current subroutine, and returns control to the calling routine. If invoked in the main
program routine, exit stops the program. The optional argumentX allows to specify a return value,
in the caseExit is invoked in a function. The function result will then be equal toX.

Errors: None.

See also: Halt (144)

Listing: refex/ex21.pp

Program Example21 ;

{ Program to demonstrate the E x i t f u n c t i o n . }

136

CHAPTER 13. THE SYSTEM UNIT

Procedure DoAnExit (Yes : Boolean) ;

{ This procedure demonstrates the normal E x i t }

begin
Wri te ln (’ He l lo from DoAnExit ! ’) ;
I f Yes then

begin
Wri te ln (’ B a i l i n g out e a r l y . ’) ;
ex i t ;
end ;

Writeln (’ Cont inu ing to the end . ’) ;
end ;

Function P o s i t i v e (Which : I n tege r) : Boolean ;

{ This f u n c t i o n demonstrates the ex t ra FPC fea tu re o f E x i t :
You can spec i f y a r e t u r n value f o r the f u n c t i o n }

begin
i f Which >0 then

ex i t (True)
else

ex i t (False) ;
end ;

begin
{ This c a l l w i l l go to the end }
DoAnExit (False) ;
{ This c a l l w i l l b a i l out ea r l y }
DoAnExit (True) ;
i f P o s i t i v e (−1) then

Wri te ln (’ The compi ler i s nuts , −1 i s not p o s i t i v e . ’)
else

Wri te ln (’ The compi ler i s not so bad , −1 seems to be negat ive . ’) ;
end .

Exp
Declaration: Function Exp (Var X : Real) : Real;

Description: Exp returns the exponent ofX, i.e. the numbere to the powerX.

Errors: None.

See also: Ln (153), Power (162)

Listing: refex/ex22.pp

Program Example22 ;

{ Program to demonstrate the Exp f u n c t i o n . }

begin
Wri te ln (Exp (1) : 8 : 2) ; { Should p r i n t 2 . 7 2 }

end .

137

CHAPTER 13. THE SYSTEM UNIT

Filepos
Declaration: Function Filepos (Var F : Any file type) : Longint;

Description: Filepos returns the current record position of the file-pointer in fileF. It cannot be invoked with
a file of typeText . A compiler error will be generated if this is attempted.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Filesize (138)

Listing: refex/ex23.pp

Program Example23 ;

{ Program to demonstrate the Fi lePos f u n c t i o n . }

Var F : F i l e of Longin t ;
L ,FP : l o n g i n t ;

begin
{ F i l l a f i l e w i th data :

Each p o s i t i o n conta ins the p o s i t i o n ! }
Assign (F , ’ t e s t . tmp ’) ;
Rewrite (F) ;
For L : = 0 to 100 do

begin
FP:= FilePos (F) ;
Write (F ,FP) ;
end ;

Close (F) ;
Reset (F) ;
{ I f a l l goes wel l , noth ing i s d isp layed here . }
While not (Eof (F)) do

begin
FP:= FilePos (F) ;
Read (F , L) ;
i f L<>FP then

Wri te ln (’ Something wrong : Got ’ , l , ’ on pos ’ ,FP) ;
end ;

Close (F) ;
Erase (f) ;

end .

Filesize
Declaration: Function Filesize (Var F : Any file type) : Longint;

Description: Filesize returns the total number of records in fileF. It cannot be invoked with a file of type
Text . (underLINUX andUNIX , this also means that it cannot be invoked on pipes). IfF is empty, 0
is returned.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Filepos (138)

138

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex24.pp

Program Example24 ;

{ Program to demonstrate the F i l eS i ze f u n c t i o n . }

Var F : F i l e Of byte ;
L : F i l e Of Longin t ;

begin
Assign (F , paramstr (1)) ;
Reset (F) ;
Writeln (’ F i l e s ize i n bytes : ’ , Fi leS ize (F)) ;
Close (F) ;
Assign (L , paramstr (1)) ;
Reset (L) ;
Writeln (’ F i l e s ize i n Longin ts : ’ , Fi leS ize (L)) ;
Close (f) ;

end .

FillByte
Declaration: Procedure FillByte(var X;Count:longint;Value:byte);

Description: FillByte fills the memory starting atX with Count bytes with value equal toValue .

This is useful for quickly zeroing out a memory location. When the size of the memory location to
be filled out is a multiple of 2 bytes, it is better to useFillword (141), and if it is a multiple of 4 bytes
it is better to useFillDWord (140), these routines are optimized for their respective sizes.

Errors: No checking on the size ofX is done.

See also: Fillchar (140), FillDWord (140), Fillword (141), Move (157)

Listing: refex/ex102.pp

Program Example102 ;

{ Program to demonstrate the CompareWord f u n c t i o n . }

Const
ArraySize = 100;
Ha l fAr rayS ize = ArraySize Div 2 ;

Var
Buf1 , Buf2 : Array [1 . . ArraySize] of Word ;
I : l o n g i n t ;

Procedure CheckPos (Len : Longin t) ;

Begin
Write (’ F i r s t ’ , Len , ’ words are ’) ;
i f CompareWord (Buf1 , Buf2 , Len) < >0 then

Write (’NOT ’) ;
Writeln (’ equal ’) ;

end ;

139

CHAPTER 13. THE SYSTEM UNIT

begin
For I : = 1 to ArraySize do

begin
Buf1 [i] : = I ;
I f I <=Hal fAr rayS ize Then

Buf2 [I] : = I
else

Buf2 [i] : = Hal fAr raySize−I ;
end ;

CheckPos (Ha l fAr rayS ize div 2) ;
CheckPos (Ha l fAr rayS ize) ;
CheckPos (Ha l fAr rayS ize +1) ;
CheckPos (Ha l fAr rayS ize + Hal fAr rayS ize Div 2) ;

end .

Fillchar
Declaration: Procedure Fillchar (Var X;Count : Longint;Value : char or byte);;

Description: Fillchar fills the memory starting atX with Count bytes or characters with value equal to
Value .

Errors: No checking on the size ofX is done.

See also: Fillword (141), Move (157), FillByte (139), FillDWord (140)

Listing: refex/ex25.pp

Program Example25 ;

{ Program to demonstrate the F i l l C h a r f u n c t i o n . }

Var S : Str ing [1 0] ;
I : Byte ;

begin
For i :=10 downto 0 do

begin
{ F i l l S w i th i spaces }
Fi l lChar (S, SizeOf (S) , ’ ’) ;
{ Set Length }
SetLength (S, I) ;
Writeln (s , ’ ∗ ’) ;
end ;

end .

FillDWord
Declaration: Procedure FillDWord (Var X;Count : Longint;Value : DWord);;

Description: Fillword fills the memory starting atX with Count DWords with value equal toValue . A
DWord is 4 bytes in size.

Errors: No checking on the size ofX is done.

See also: FillByte (139), Fillchar (140), Fillword (141), Move (157)

140

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex103.pp

Program Example103 ;

{ Program to demonstrate the F i l l B y t e f u n c t i o n . }

Var S : Str ing [1 0] ;
I : Byte ;

begin
For i :=10 downto 0 do

begin
{ F i l l S w i th i bytes }
Fi l lChar (S, SizeOf (S) , 3 2) ;
{ Set Length }
SetLength (S, I) ;
Writeln (s , ’ ∗ ’) ;
end ;

end .

Fillword
Declaration: Procedure Fillword (Var X;Count : Longint;Value : Word);;

Description: Fillword fills the memory starting atX with Count words with value equal toValue . A word
is 2 bytes in size.

Errors: No checking on the size ofX is done.

See also: Fillchar (140), Move (157)

Listing: refex/ex76.pp

Program Example76 ;

{ Program to demonstrate the F i l lWord f u n c t i o n . }

Var W : Array [1 . . 1 0 0] of Word ;

begin
{ Quick i n i t i a l i z a t i o n o f ar ray W }
F i l lWord (W, 1 0 0 , 0) ;

end .

Flush
Declaration: Procedure Flush (Var F : Text);

Description: Flush empties the internal buffer of an opened fileF and writes the contents to disk. The file is
not closed as a result of this call.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Close (123)

141

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex26.pp

Program Example26 ;

{ Program to demonstrate the Flush f u n c t i o n . }

Var F : Text ;

begin
{ Assign F to standard output }
Assign (F , ’ ’) ;
Rewrite (F) ;
Writeln (F , ’ This l i n e i s w r i t t e n f i r s t , but appears l a t e r ! ’) ;
{ At t h i s p o i n t the t e x t i s i n the i n t e r n a l pascal bu f fe r ,

and not yet w r i t t e n to standard output }
Writeln (’ This l i n e appears f i r s t , but i s w r i t t e n l a t e r ! ’) ;
{ A w r i t e l n to ’ output ’ always causes a f l u s h − so t h i s t e x t i s

w r i t t e n to screen }
Flush (f) ;
{ At t h i s po in t , the t e x t w r i t t e n to F i s w r i t t e n to screen . }
Write (F , ’ F i n i s h i n g ’) ;
Close (f) ; { Clos ing a f i l e always causes a f l u s h f i r s t }
Writeln (’ o f f . ’) ;

end .

Frac
Declaration: Function Frac (X : Real) : Real;

Description: Frac returns the non-integer part ofX.

Errors: None.

See also: Round (169), Int (151)

Listing: refex/ex27.pp

Program Example27 ;

{ Program to demonstrate the Frac f u n c t i o n . }

Var R : Real ;

begin
Wri te ln (Frac (1 2 3 . 4 5 6) : 0 : 3) ; { P r i n t s O.456 }
Writeln (Frac (−1 2 3 . 4 5 6) : 0 : 3) ; { P r i n t s −O.456 }

end .

Freemem
Declaration: Procedure Freemem (Var P : pointer; Count : Longint);

Description: Freemem releases the memory occupied by the pointerP, of sizeCount (in bytes), and returns it
to the heap.P should point to the memory allocated to a dynamic variable.

Errors: An error will occur whenP doesn’t point to the heap.

142

CHAPTER 13. THE SYSTEM UNIT

See also: Getmem (143), New (158), Dispose (132)

Listing: refex/ex28.pp

Program Example28 ;

{ Program to demonstrate the FreeMem and GetMem f u n c t i o n s . }

Var P : Po in te r ;
MM : Longin t ;

begin
{ Get memory f o r P }

MM:=MemAvail ;
Writeln (’Memory a v a i l a b l e before GetMem : ’ ,MemAvail) ;
GetMem (P , 8 0) ;
MM:=MM−Memavail ;
Write (’Memory a v a i l a b l e a f t e r GetMem : ’ ,MemAvail) ;
Writeln (’ or ’ ,MM, ’ bytes less than before the c a l l . ’) ;
{ f i l l i t w i th spaces }
Fi l lChar (P^ ,80 , ’ ’) ;
{ Free the memory again }
FreeMem (P , 8 0) ;
Writeln (’Memory a v a i l a b l e a f t e r FreeMem : ’ ,MemAvail) ;

end .

Getdir
Declaration: Procedure Getdir (drivenr : byte;var dir : string);

Description: Getdir returns indir the current directory on the drivedrivenr , where drivenr is 1 for the
first floppy drive, 3 for the first hard disk etc. A value of 0 returns the directory on the current disk.
On LINUX andUNIX systems,drivenr is ignored, as there is only one directory tree.

Errors: An error is returned underDOS, if the drive requested isn’t ready.

See also: Chdir (122)

Listing: refex/ex29.pp

Program Example29 ;

{ Program to demonstrate the GetDir f u n c t i o n . }

Var S : Str ing ;

begin
GetDir (0 ,S) ;
Writeln (’ Current d i r e c t o r y i s : ’ ,S) ;

end .

Getmem
Declaration: Procedure Getmem (var p : pointer;size : Longint);

143

CHAPTER 13. THE SYSTEM UNIT

Description: GetmemreservesSize bytes memory on the heap, and returns a pointer to this memory inp. If
no more memory is available, nil is returned.

Errors: None.

See also: Freemem (142), Dispose (132), New (158)

For an example, seeFreemem (142).

GetMemoryManager
Declaration: procedure GetMemoryManager(var MemMgr: TMemoryManager);

Description: GetMemoryManager stores the current Memory Manager record inMemMgr.

Errors: None.

See also: SetMemoryManager (172), IsMemoryManagerSet (151).

For an example, seeProgrammers guide.

Halt
Declaration: Procedure Halt [(Errnum : byte)];

Description: Halt stops program execution and returns control to the calling program. The optional argument
Errnum specifies an exit value. If omitted, zero is returned.

Errors: None.

See also: Exit (136)

Listing: refex/ex30.pp

Program Example30 ;

{ Program to demonstrate the Ha l t f u n c t i o n . }

begin
Wri te ln (’ Before Ha l t . ’) ;
Halt (1) ; { Stop wi th e x i t code 1 }
Writeln (’ A f t e r Ha l t doesn ’ ’ t get executed . ’) ;

end .

HexStr
Declaration: Function HexStr (Value : longint; cnt : byte) : String; Function

HexStr (Value : int64; cnt : byte) : String;

Description: HexStr returns a string with the hexadecimal representation ofValue . The string has exactly
cnt charaters. (i.e. only thecnt rightmost nibbles are taken into account) To have a complete
representation of a Longint-type value, 8 nibbles are needed, i.e.cnt=8 .

Errors: None.

See also: Str (177), Val (180), BinStr (120)

144

file:../prog/prog.html

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex81.pp

Program example81 ;

{ Program to demonstrate the HexStr f u n c t i o n }

Const Value = 45678;

Var I : l o n g i n t ;

begin
For I : = 1 to 1 0 do

Wri te ln (HexStr (Value , I)) ;
end .

Hi
Declaration: Function Hi (X : Ordinal type) : Word or byte;

Description: Hi returns the high byte or word fromX, depending on the size of X. If the size of X is 4, then the
high word is returned. If the size is 2 then the high byte is returned.Hi cannot be invoked on types
of size 1, such as byte or char.

Errors: None

See also: Lo (154)

Listing: refex/ex31.pp

Program Example31 ;

{ Program to demonstrate the Hi f u n c t i o n . }

var
L : Longin t ;
W : Word ;

begin
L : = 1 Shl 1 6 ; { = $10000 }
W: = 1 Shl 8 ; { = $100 }
Writeln (Hi (L)) ; { P r i n t s 1 }
Writeln (Hi (W)) ; { P r i n t s 1 }

end .

High
Declaration: Function High (Type identifier or variable reference) : Ordinal;

Description: The return value ofHigh depends on it’s argument:

1.If the argument is an ordinal type,High returns the highest value in the range of the given
ordinal type.

2.If the argument is an array type or an array type variable thenHigh returns the highest possible
value of it’s index.

3.If the argument is an open array identifier in a function or procedure, thenHigh returns the
highest index of the array, as if the array has a zero-based index.

145

CHAPTER 13. THE SYSTEM UNIT

The return type is always the same type as the type of the argument (This can lead to some nasty
surprises !).

Errors: None.

See also: Low (154), Ord (160), Pred (162), Succ (178)

Listing: refex/ex80.pp

Program example80 ;

{ Example to demonstrate the High and Low f u n c t i o n s . }

Type TEnum = (North , East , South , West) ;
TRange = 1 4 . . 5 5 ;
TArray = Array [2 . . 1 0] of Longin t ;

Function Average (Row : Array of Longin t) : Real ;

Var I : l o n g i n t ;
Temp : Real ;

begin
Temp : = Row [0] ;
For I : = 1 to High (Row) do

Temp : = Temp + Row[i] ;
Average : = Temp / (High (Row) + 1) ;

end ;

Var A : TEnum;
B : TRange ;
C : TArray ;
I : l o n g i n t ;

begin
Wri te ln (’TEnum goes from : ’ ,Ord (Low (TEnum)) , ’ to ’ , Ord (high (TEnum)) , ’ . ’) ;
Writeln (’A goes from : ’ ,Ord (Low (A)) , ’ to ’ , Ord (high (A)) , ’ . ’) ;
Writeln (’TRange goes from : ’ ,Ord (Low (TRange)) , ’ to ’ , Ord (high (TRange)) , ’ . ’) ;
Writeln (’B goes from : ’ ,Ord (Low (B)) , ’ to ’ , Ord (high (B)) , ’ . ’) ;
Writeln (’ TArray index goes from : ’ ,Ord (Low (TArray)) , ’ to ’ , Ord (high (TArray)) , ’ . ’) ;
Writeln (’C index goes from : ’ ,Low (C) , ’ to ’ , high (C) , ’ . ’) ;
For I :=Low (C) to High (C) do

C[i] : = I ;
Writeln (’ Average : ’ , Average (c)) ;
Write (’ Type of r e t u r n value i s always same as type of argument : ’) ;
Writeln (high (high (word))) ;

end .

Inc
Declaration: Procedure Inc (Var X : Any ordinal type[; Increment : Any ordinal type]);

Description: Inc increases the value ofX with Increment . If Increment isn’t specified, then 1 is taken as
a default.

Errors: If range checking is on, then A range check can occur, or an overflow error, when an attempt is made
to increaseX over its maximum value.

146

CHAPTER 13. THE SYSTEM UNIT

See also: Dec (131)

Listing: refex/ex32.pp

Program Example32 ;

{ Program to demonstrate the Inc f u n c t i o n . }

Const
C : Card ina l = 1 ;
L : Longin t = 1 ;
I : I n tege r = 1 ;

W : Word = 1 ;
B : Byte = 1 ;
SI : S h o r t I n t = 1 ;
CH : Char = ’A ’ ;

begin
Inc (C) ; { C: = 2 }
Inc (L , 5) ; { L : = 6 }
Inc (I , −3) ; { I :=−2 }
Inc (W, 3) ; { W: = 4 }
Inc (B , 1 0 0) ; { B:=101 }
Inc (SI , −3) ; { Si :=−2 }
Inc (CH, 1) ; { ch : = ’B ’ }

end .

Include
Declaration: Procedure Include (Var S : Any set type; E : Set element);

Description: Include includesE in the setS if it is not yet part of the set. E should be of the same type as the
base type of the setS.

Thus, the two following statements do the same thing:

S:=S+[E];
Include(S,E);

Errors: If the type of the elementE is not equal to the base type of the setS, the compiler will generate an
error.

See also: Exclude (135)

For an example, seeExclude (135)

IndexByte
Declaration: function IndexByte(var buf;len:longint;b:byte):longint;

Description: IndexByte searches the memory atbuf for maximally len positions for the byteb and returns
it’s position if it found one. Ifb is not found then -1 is returned.

The position is zero-based.

Errors: Buf andLen are not checked to see if they are valid values.

147

CHAPTER 13. THE SYSTEM UNIT

See also: IndexChar (148), IndexDWord (149), IndexWord (150), CompareByte (124)

Listing: refex/ex105.pp

Program Example105 ;

{ Program to demonstrate the IndexByte f u n c t i o n . }

Const
ArraySize = 2 5 6 ;
MaxValue = 2 5 6 ;

Var
Buf fe r : Array [1 . . ArraySize] of Byte ;
I , J : l o n g i n t ;
K : Byte ;

begin
Randomize ;
For I : = 1 To ArraySize do

Buf fe r [I] : =Random (MaxValue) ;
For I : = 1 to 1 0 do

begin
K:=Random (MaxValue) ;
J := IndexByte (Buf fer , ArraySize ,K) ;
i f J=−1 then

Wri te ln (’ Value ’ ,K , ’ was not found i n b u f f e r . ’)
else

Wri te ln (’ Found ’ ,K , ’ a t p o s i t i o n ’ , J , ’ i n b u f f e r ’) ;
end ;

end .

IndexChar
Declaration: function IndexChar(var buf;len:longint;b:char):longint;

Declaration: function IndexChar0(var buf;len:longint;b:char):longint;

Description: IndexChar searches the memory atbuf for maximally len positions for the characterb and
returns it’s position if it found one. Ifb is not found then -1 is returned.

The position is zero-based. TheIndexChar0 variant stops looking if a null character is found, and
returns -1 in that case.

Errors: Buf andLen are not checked to see if they are valid values.

See also: IndexByte (147), IndexDWord (149), IndexWord (150), CompareChar (125)

Listing: refex/ex108.pp

Program Example108 ;

{ Program to demonstrate the IndexChar f u n c t i o n . }

Const
ArraySize = 1000 ;
MaxValue = 2 6 ;

148

CHAPTER 13. THE SYSTEM UNIT

Var
Buf fe r : Array [1 . . ArraySize] of Char ;
I , J : l o n g i n t ;
K : Char ;

begin
Randomize ;
For I : = 1 To ArraySize do

Buf fe r [I] : = chr (Ord (’A ’)+Random (MaxValue)) ;
For I : = 1 to 1 0 do

begin
K:= chr (Ord (’A ’)+Random (MaxValue)) ;
J := IndexChar (Buf fer , ArraySize ,K) ;
i f J=−1 then

Wri te ln (’ Value ’ ,K , ’ was not found i n b u f f e r . ’)
else

Wri te ln (’ Found ’ ,K , ’ a t p o s i t i o n ’ , J , ’ i n b u f f e r ’) ;
end ;

end .

IndexDWord
Declaration: function IndexDWord(var buf;len:longint;DW:DWord):longint;

Description: IndexChar searches the memory atbuf for maximally len positions for the DWordDWand
returns it’s position if it found one. IfDWis not found then -1 is returned.

The position is zero-based.

Errors: Buf andLen are not checked to see if they are valid values.

See also: IndexByte (147), IndexChar (148), IndexWord (150), CompareDWord (126)

Listing: refex/ex106.pp

Program Example106 ;

{ Program to demonstrate the IndexDWord f u n c t i o n . }

Const
ArraySize = 1000 ;
MaxValue = 1000 ;

Var
Buf fe r : Array [1 . . ArraySize] of DWord ;
I , J : l o n g i n t ;
K : DWord ;

begin
Randomize ;
For I : = 1 To ArraySize do

Buf fe r [I] : =Random (MaxValue) ;
For I : = 1 to 1 0 do

begin
K:=Random (MaxValue) ;
J := IndexDWord (Buf fer , ArraySize ,K) ;
i f J=−1 then

Wri te ln (’ Value ’ ,K , ’ was not found i n b u f f e r . ’)

149

CHAPTER 13. THE SYSTEM UNIT

else
Wri te ln (’ Found ’ ,K , ’ a t p o s i t i o n ’ , J , ’ i n b u f f e r ’) ;

end ;
end .

IndexWord
Declaration: function IndexWord(var buf;len:longint;W:word):longint;

Description: IndexChar searches the memory atbuf for maximallylen positions for the WordWand returns
it’s position if it found one. IfWis not found then -1 is returned.

Errors: Buf andLen are not checked to see if they are valid values.

See also: IndexByte (147), IndexDWord (149), IndexChar (148), CompareWord (127)

Listing: refex/ex107.pp

Program Example107 ;

{ Program to demonstrate the IndexWord f u n c t i o n . }

Const
ArraySize = 1000 ;
MaxValue = 1000 ;

Var
Buf fe r : Array [1 . . ArraySize] of Word ;
I , J : l o n g i n t ;
K : Word ;

begin
Randomize ;
For I : = 1 To ArraySize do

Buf fe r [I] : =Random (MaxValue) ;
For I : = 1 to 1 0 do

begin
K:=Random (MaxValue) ;
J := IndexWord (Buf fer , ArraySize ,K) ;
i f J=−1 then

Wri te ln (’ Value ’ ,K , ’ was not found i n b u f f e r . ’)
else

Wri te ln (’ Found ’ ,K , ’ a t p o s i t i o n ’ , J , ’ i n b u f f e r ’) ;
end ;

end .

Insert
Declaration: Procedure Insert (Const Source : String;var S : String;Index : Integer);

Description: Insert inserts stringSource in stringS, at positionIndex , shifting all characters afterIndex
to the right. The resulting string is truncated at 255 characters, if needed. (i.e. for shortstrings)

Errors: None.

See also: Delete (131), Copy (129), Pos (162)

150

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex33.pp

Program Example33 ;

{ Program to demonstrate the I n s e r t f u n c t i o n . }

Var S : Str ing ;

begin
S:= ’ Free Pascal i s d i f f i c u l t to use ! ’ ;
Inser t (’NOT ’ ,S, pos (’ d i f f i c u l t ’ ,S)) ;
wr i te ln (s) ;

end .

IsMemoryManagerSet
Declaration: function IsMemoryManagerSet: Boolean;

Description: IsMemoryManagerSet will return True if the memory manager has been set to another value
than the system heap manager, it will returnFalse otherwise.

Errors: None.

See also: SetMemoryManager (172), GetMemoryManager (144)

Int
Declaration: Function Int (X : Real) : Real;

Description: Int returns the integer part of any RealX, as a Real.

Errors: None.

See also: Frac (142), Round (169)

Listing: refex/ex34.pp

Program Example34 ;

{ Program to demonstrate the I n t f u n c t i o n . }

begin
Wri te ln (I n t (1 2 3 . 4 5 6) : 0 : 1) ; { P r i n t s 123.0 }
Writeln (I n t (−123 .456) :0 :1) ; { P r i n t s −123.0 }

end .

IOresult
Declaration: Function IOresult : Word;

Description: IOresult contains the result of any input/output call, when the{$i-} compiler directive is active,
disabling IO checking. When the flag is read, it is reset to zero. IfIOresult is zero, the operation
completed successfully. If non-zero, an error occurred. The following errors can occur:

DOS errors :

2 File not found.

151

CHAPTER 13. THE SYSTEM UNIT

3 Path not found.

4 Too many open files.

5 Access denied.

6 Invalid file handle.

12 Invalid file-access mode.

15 Invalid disk number.

16Cannot remove current directory.

17Cannot rename across volumes.

I/O errors :

100Error when reading from disk.

101Error when writing to disk.

102File not assigned.

103File not open.

104File not opened for input.

105File not opened for output.

106Invalid number.

Fatal errors :

150Disk is write protected.

151Unknown device.

152Drive not ready.

153Unknown command.

154CRC check failed.

155Invalid drive specified..

156Seek error on disk.

157Invalid media type.

158Sector not found.

159Printer out of paper.

160Error when writing to device.

161Error when reading from device.

162Hardware failure.

Errors: None.

See also: All I/O functions.

Listing: refex/ex35.pp

Program Example35 ;

{ Program to demonstrate the IOResul t f u n c t i o n . }

Var F : t e x t ;

begin
Assign (f , paramstr (1)) ;

152

CHAPTER 13. THE SYSTEM UNIT

{ $ i−}
Reset (f) ;
{ $ i + }
I f IOresul t <>0 then

wr i te ln (’ F i l e ’ , paramstr (1) , ’ doesn ’ ’ t e x i s t ’)
else

wr i te ln (’ F i l e ’ , paramstr (1) , ’ e x i s t s ’) ;
end .

Length
Declaration: Function Length (S : String) : Integer;

Description: Length returns the length of the stringS, which is limited to 255 for shortstrings. If the stringsS
is empty, 0 is returned.

Note:The length of the stringS is stored inS[0] for shortstrings only. TheLength fuction should
always be used on ansistrings and widestrings.

Errors: None.

See also: Pos (162)

Listing: refex/ex36.pp

Program Example36 ;

{ Program to demonstrate the Length f u n c t i o n . }

Var S : Str ing ;
I : I n t ege r ;

begin
S:= ’ ’ ;
fo r i : = 1 to 1 0 do

begin
S:=S+ ’ ∗ ’ ;
Writeln (Length (S) : 2 , ’ : ’ , s) ;
end ;

end .

Ln
Declaration: Function Ln (X : Real) : Real;

Description: Ln returns the natural logarithm of the Real parameterX. X must be positive.

Errors: An run-time error will occur whenX is negative.

See also: Exp (137), Power (162)

Listing: refex/ex37.pp

Program Example37 ;

{ Program to demonstrate the Ln f u n c t i o n . }

153

CHAPTER 13. THE SYSTEM UNIT

begin
Wri te ln (Ln (1)) ; { P r i n t s 0 }
Writeln (Ln (Exp (1))) ; { P r i n t s 1 }

end .

Lo
Declaration: Function Lo (O : Word or Longint) : Byte or Word;

Description: Lo returns the low byte of its argument if this is of typeInteger or Word. It returns the low
word of its argument if this is of typeLongint or Cardinal .

Errors: None.

See also: Ord (160), Chr (123), Hi (145)

Listing: refex/ex38.pp

Program Example38 ;

{ Program to demonstrate the Lo f u n c t i o n . }

Var L : Longin t ;
W : Word ;

begin
L : = (1 Shl 1 6) + (1 Shl 4) ; { $10010 }
Writeln (Lo (L)) ; { P r i n t s 1 6 }
W: = (1 Shl 8) + (1 Shl 4) ; { $110 }
Writeln (Lo (W)) ; { P r i n t s 1 6 }

end .

LongJmp
Declaration: Procedure LongJmp (Var env : Jmp_Buf; Value : Longint);

Description: LongJmp jumps to the adress in theenv jmp_buf , and restores the registers that were stored in
it at the correspondingSetJmp (172) call. In effect, program flow will continue at theSetJmp call,
which will returnvalue instead of 0. If avalue equal to zero is passed, it will be converted to 1
before passing it on. The call will not return, so it must be used with extreme care. This can be used
for error recovery, for instance when a segmentation fault occurred.

Errors: None.

See also: SetJmp (172)

For an example, seeSetJmp (172)

Low
Declaration: Function Low (Type identifier or variable reference) : Longint;

Description: The return value ofLow depends on it’s argument:

154

CHAPTER 13. THE SYSTEM UNIT

1.If the argument is an ordinal type,Low returns the lowest value in the range of the given ordinal
type.

2.If the argument is an array type or an array type variable thenLow returns the lowest possible
value of it’s index.

The return type is always the same type as the type of the argument

Errors: None.

See also: High (145), Ord (160), Pred (162), Succ (178)

for an example, seeHigh (145).

Lowercase
Declaration: Function Lowercase (C : Char or String) : Char or String;

Description: Lowercase returns the lowercase version of its argumentC. If its argument is a string, then the
complete string is converted to lowercase. The type of the returned value is the same as the type of
the argument.

Errors: None.

See also: Upcase (179)

Listing: refex/ex73.pp

Program Example73 ;

{ Program to demonstrate the Lowercase f u n c t i o n . }

Var I : Long in t ;

begin
For i := ord (’A ’) to ord (’Z ’) do

wr i te (lowercase (chr (i))) ;
Writeln ;
Writeln (Lowercase (’ABCDEFGHIJKLMNOPQRSTUVWXYZ ’)) ;

end .

Mark
Declaration: Procedure Mark (Var P : Pointer);

Description: This routine is here for compatibility with Turbo Pascal, but it is not implemented and currently
does nothing.

Errors: None.

See also: Getmem (143), Freemem (142), New (158), Dispose (132), Maxavail (156)

155

CHAPTER 13. THE SYSTEM UNIT

Maxavail
Declaration: Function Maxavail : Longint;

Description: Maxavail returns the size, in bytes, of the biggest free memory block in the heap.

Remark: The heap grows dynamically if more memory is needed than is available.

Errors: None.

See also: Release (166), Memavail (156),Freemem (142), Getmem (143)

Listing: refex/ex40.pp

Program Example40 ;

{ Program to demonstrate the MaxAvail f u n c t i o n . }

Var
P : Po in te r ;
I : l o n g i n t ;

begin
{ This w i l l a l l o c a t e memory u n t i l there i s no more memory }
I : = 0 ;
While MaxAvail >=1000 do

begin
Inc (I) ;
GetMem (P,1000) ;
end ;

{ De fau l t 4MB heap i s a l loca ted , so 4000 blocks
should be a l l o c a t e d .
When compiled w i th the −Ch10000 switch , the program
w i l l be able to a l l o c a t e 1 0 block }

Writeln (’ A l l oca ted ’ , i , ’ b locks o f 1000 bytes ’) ;
end .

Memavail
Declaration: Function Memavail : Longint;

Description: Memavail returns the size, in bytes, of the free heap memory.

Remark: The heap grows dynamically if more memory is needed than is available. The heap size is not equal
to the size of the memory available to the operating system, it is internal to the programs created by
Free Pascal.

Errors: None.

See also: Maxavail (156),Freemem (142), Getmem (143)

Listing: refex/ex41.pp

Program Example41 ;

{ Program to demonstrate the MemAvail f u n c t i o n . }

Var
P , PP : Po in te r ;

156

CHAPTER 13. THE SYSTEM UNIT

begin
GetMem (P, 1 0 0) ;
GetMem (PP,10000) ;
FreeMem (P, 1 0 0) ;
{ Due to the heap f ragmenta t ion in t roduced

By the prev ious c a l l s , the maximum amount o f memory
isn ’ t equal to the maximum block s ize a v a i l a b l e . }

Writeln (’ To ta l heap a v a i l a b l e (Bytes) : ’ ,MemAvail) ;
Writeln (’ Largest b lock a v a i l a b l e (Bytes) : ’ , MaxAvail) ;

end .

Mkdir
Declaration: Procedure Mkdir (const S : string);

Description: Mkdir creates a new directoryS.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Chdir (122), Rmdir (168)

For an example, seeRmdir (168).

Move
Declaration: Procedure Move (var Source,Dest;Count : Longint);

Description: Move movesCount bytes fromSource to Dest .

Errors: If either Dest or Source is outside the accessible memory for the process, then a run-time error
will be generated.

See also: Fillword (141), Fillchar (140)

Listing: refex/ex42.pp

Program Example42 ;

{ Program to demonstrate the Move f u n c t i o n . }

Var S1 , S2 : Str ing [3 0] ;

begin
S1:= ’ He l lo World ! ’ ;
S2:= ’ Bye , bye ! ’ ;
Move (S1 , S2 , Sizeof (S1)) ;
Writeln (S2) ;

end .

157

CHAPTER 13. THE SYSTEM UNIT

MoveChar0
Declaration: procedure MoveChar0(var Src,Dest;Count:longint);

Description: MoveChar0 movesCount bytes fromSrc to Dest , and stops moving if a zero character is
found.

Errors: No checking is done to see ifCount stays within the memory allocated to the process.

See also: Move (157)

Listing: refex/ex109.pp

Program Example109 ;

{ Program to demonstrate the MoveChar0 f u n c t i o n . }

Var
Buf1 , Buf2 : Array [1 . . 8 0] of char ;
I : l o n g i n t ;

begin
Randomize ;
For I : = 1 to 8 0 do

Buf1 [i] : = chr (Random (16)+Ord (’A ’)) ;
Writeln (’ O r i g i n a l b u f f e r ’) ;
wr i te ln (Buf1) ;
Buf1 [Random (80)+1] :=#0 ;
MoveChar0 (Buf1 , Buf2 , 8 0) ;
Writeln (’ Randomly zero−te rminated Bu f fe r ’) ;
Writeln (Buf2) ;

end .

New
Declaration: Procedure New (Var P : Pointer[, Constructor]);

Description: Newallocates a new instance of the type pointed to byP, and puts the address inP. If P is an object,
then it is possible to specify the name of the constructor with which the instance will be created.

Errors: If not enough memory is available,Nil will be returned.

See also: Dispose (132), Freemem (142), Getmem (143), Memavail (156), Maxavail (156)

For an example, seeDispose (132).

Odd
Declaration: Function Odd (X : Longint) : Boolean;

Description: Odd returnsTrue if X is odd, orFalse otherwise.

Errors: None.

See also: Abs (117), Ord (160)

Listing: refex/ex43.pp

158

CHAPTER 13. THE SYSTEM UNIT

Program Example43 ;

{ Program to demonstrate the Odd f u n c t i o n . }

begin
I f Odd (1) Then

Wri te ln (’ Every th ing OK wi th 1 ! ’) ;
I f Not Odd (2) Then

Wri te ln (’ Every th ing OK wi th 2 ! ’) ;
end .

OctStr
Declaration: Function OctStr (Value : longint; cnt : byte) : String; Function

OctStr (Value : int64; cnt : byte) : String;

Description: OctStr returns a string with the octal representation ofValue . The string has exactlycnt
charaters.

Errors: None.

See also: Str (177), Val (180), BinStr (120), HexStr (144)

Listing: refex/ex112.pp

Program example112 ;

{ Program to demonstrate the OctStr f u n c t i o n }

Const Value = 45678;

Var I : l o n g i n t ;

begin
For I : = 1 to 1 0 do

Wri te ln (OctStr (Value , I)) ;
For I : = 1 to 1 6 do

Wri te ln (OctStr (I , 3)) ;
end .

Ofs
Declaration: Function Ofs (Var X) : Longint;

Description: Ofs returns the offset of the address of a variable. This function is only supported for compatibility.
In Free Pascal, it returns always the complete address of the variable, since Free Pascal is a 32 bit
compiler.

Errors: None.

See also: DSeg (133), CSeg (130), Seg (171), Ptr (163)

Listing: refex/ex44.pp

159

CHAPTER 13. THE SYSTEM UNIT

Program Example44 ;

{ Program to demonstrate the Ofs f u n c t i o n . }

Var W : Po in te r ;

begin
W:= Po in te r (Ofs (W)) ; { W conta ins i t s own o f f s e t . }

end .

Ord
Declaration: Function Ord (X : Any ordinal type) : Longint;

Description: Ord returns the Ordinal value of a ordinal-type variableX.

Errors: None.

See also: Chr (123), Succ (178), Pred (162), High (145), Low (154)

Listing: refex/ex45.pp

Program Example45 ;

{ Program to demonstrate the Ord , Pred , Succ f u n c t i o n s . }

Type
TEnum = (Zero , One , Two , Three , Four) ;

Var
X : Longin t ;
Y : TEnum;

begin
X:=125;
Writeln (Ord (X)) ; { P r i n t s 125 }
X:= Pred (X) ;
Writeln (Ord (X)) ; { p r i n t s 124 }
Y: = One ;
Writeln (Ord (y)) ; { P r i n t s 1 }
Y:=Succ (Y) ;
Writeln (Ord (Y)) ; { P r i n t s 2 }

end .

Paramcount
Declaration: Function Paramcount : Longint;

Description: Paramcount returns the number of command-line arguments. If no arguments were given to the
running program,0 is returned.

Errors: None.

See also: Paramstr (161)

160

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex46.pp

Program Example46 ;

{ Program to demonstrate the ParamCount and ParamStr f u n c t i o n s . }
Var

I : Long in t ;

begin
Wri te ln (paramstr (0) , ’ : Got ’ ,ParamCount , ’ command− l i n e parameters : ’) ;
For i : = 1 to ParamCount do

Wri te ln (ParamStr (i)) ;
end .

Paramstr
Declaration: Function Paramstr (L : Longint) : String;

Description: Paramstr returns theL-th command-line argument.L must be between0 andParamcount ,
these values included. The zeroth argument is the path and file name with which the program was
started.

The command-line parameters will be truncated to a length of 255, even though the operating system
may support bigger command-lines. TheObjpas unit (used inobjfpc or delphi mode) define
versions ofParamstr which return the full-length command-line arguments.

When the complete command-line must be accessed, theargv pointer should be used to retrieve the
real values of the command-line parameters.

Errors: None.

See also: Paramcount (160)

For an example, seeParamcount (160).

Pi
Declaration: Function Pi : Real;

Description: Pi returns the value of Pi (3.1415926535897932385).

Errors: None.

See also: Cos (130), Sin (174)

Listing: refex/ex47.pp

Program Example47 ;

{ Program to demonstrate the Pi f u n c t i o n . }

begin
Wri te ln (Pi) ; { 3.1415926 }
Writeln (Sin (Pi)) ;

end .

161

CHAPTER 13. THE SYSTEM UNIT

Pos
Declaration: Function Pos (Const Substr : String;Const S : String) : Integer;

Description: Pos returns the index ofSubstr in S, if S containsSubstr . In caseSubstr isn’t found,0 is
returned. The search is case-sensitive.

Errors: None

See also: Length (153), Copy (129), Delete (131), Insert (150)

Listing: refex/ex48.pp

Program Example48 ;

{ Program to demonstrate the Pos f u n c t i o n . }

Var
S : Str ing ;

begin
S:= ’ The f i r s t space i n t h i s sentence i s a t p o s i t i o n : ’ ;
Writeln (S, pos (’ ’ ,S)) ;
S:= ’ The l a s t l e t t e r o f the alphabet doesn ’ ’ t appear i n t h i s sentence ’ ;
I f (Pos (’Z ’ ,S) = 0) and (Pos (’ z ’ ,S) = 0) then

Wri te ln (S) ;
end .

Power
Declaration: Function Power (base,expon : Real) : Real;

Description: Power returns the value ofbase to the powerexpon . Base andexpon can be of type Longint,
in which case the result will also be a Longint.

The function actually returnsExp(expon*Ln(base))

Errors: None.

See also: Exp (137), Ln (153)

Listing: refex/ex78.pp

Program Example78 ;

{ Program to demonstrate the Power f u n c t i o n . }

begin
Wri te ln (Power (exp (1 . 0) , 1 . 0) : 8 : 2) ; { Should p r i n t 2 . 7 2 }

end .

Pred
Declaration: Function Pred (X : Any ordinal type) : Same type;

Description: Pred returns the element that precedes the element that was passed to it. If it is applied to the first
value of the ordinal type, and the program was compiled with range checking on ({$R+} , then a
run-time error will be generated.

162

CHAPTER 13. THE SYSTEM UNIT

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (160), Pred (162), High (145), Low (154)

for an example, seeOrd (160)

Ptr
Declaration: Function Ptr (Sel,Off : Longint) : Pointer;

Description: Ptr returns a pointer, pointing to the address specified by segmentSel and offsetOff .

Remark:

1.In the 32-bit flat-memory model supported by Free Pascal, this function is obsolete.

2.The returned address is simply the offset.

Errors: None.

See also: Addr (117)

Listing: refex/ex59.pp

Program Example59 ;

{ Program to demonstrate the P t r f u n c t i o n . }

Var P : ^ Str ing ;
S : Str ing ;

begin
S:= ’ Hel lo , World ! ’ ;
P:= Ptr (Seg (S) , Long in t (Ofs (S))) ;
{P now po in t s to S ! }
Writeln (P ^) ;

end .

Random
Declaration: Function Random [(L : Longint)] : Longint or Real;

Description: Randomreturns a random number larger or equal to0 and strictly less thanL. If the argumentL is
omitted, a Real number between 0 and 1 is returned. (0 included, 1 excluded)

Errors: None.

See also: Randomize (164)

Listing: refex/ex49.pp

Program Example49 ;

{ Program to demonstrate the Random and Randomize f u n c t i o n s . }

Var I , Count , guess : Longin t ;
R : Real ;

163

CHAPTER 13. THE SYSTEM UNIT

begin
Randomize ; { This way we generate a new sequence every t ime

the program i s run }
Count : = 0 ;
For i : = 1 to 1000 do

I f Random >0.5 then inc (Count) ;
Writeln (’ Generated ’ , Count , ’ numbers > 0 .5 ’) ;
Writeln (’ out o f 1000 generated numbers . ’) ;
count : = 0 ;
For i : = 1 to 5 do

begin
wr i te (’ Guess a number between 1 and 5 : ’) ;
readln (Guess) ;
I f Guess=Random (5)+1 then inc (count) ;
end ;

Writeln (’You guessed ’ , Count , ’ out o f 5 c o r r e c t . ’) ;
end .

Randomize
Declaration: Procedure Randomize ;

Description: Randomize initializes the random number generator of Free Pascal, by giving a value toRandseed ,
calculated with the system clock.

Errors: None.

See also: Random (163)

For an example, seeRandom (163).

Read
Declaration: Procedure Read ([Var F : Any file type], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a fileF, and stores the result inV1, V2, etc.; If no fileF is
specified, then standard input is read. IfF is of typeText , then the variablesV1, V2 etc. must be
of typeChar , Integer , Real , String or PChar . If F is a typed file, then each of the variables
must be of the type specified in the declaration ofF. Untyped files are not allowed as an argument.

Errors: If no data is available, a run-time error is generated. This behavior can be controlled with the{$i}
compiler switch.

See also: Readln (165), Blockread (121), Write (181), Blockwrite (121)

Listing: refex/ex50.pp

Program Example50 ;

{ Program to demonstrate the Read (Ln) f u n c t i o n . }

Var S : Str ing ;
C : Char ;
F : F i l e of char ;

begin

164

CHAPTER 13. THE SYSTEM UNIT

Assign (F , ’ ex50 . pp ’) ;
Reset (F) ;
C:= ’A ’ ;
Writeln (’ The charac te rs before the f i r s t space i n ex50 . pp are : ’) ;
While not Eof (f) and (C<> ’ ’) do

Begin
Read (F ,C) ;
Write (C) ;
end ;

Writeln ;
Close (F) ;
Writeln (’ Type some words . An empty l i n e ends the program . ’) ;
repeat

Readln (S) ;
u n t i l S= ’ ’ ;

end .

Readln
Declaration: Procedure Readln [Var F : Text], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a fileF, and stores the result inV1, V2, etc. After that it goes
to the next line in the file (defined by theLineFeed (#10) character). If no fileF is specified,
then standard input is read. The variablesV1, V2 etc. must be of typeChar , Integer , Real ,
String or PChar .

Errors: If no data is available, a run-time error is generated. This behavior can be controlled with the{$i}
compiler switch.

See also: Read (164), Blockread (121), Write (181), Blockwrite (121)

For an example, seeRead (164).

Real2Double
Declaration: Function Real2Double(r : real48) : double;

Description: The Real2Double function converts a Turbo Pascal style real (6 bytes long) to a native Free
Pascal double type. It can be used e.g. to read old binary TP files with FPC and convert them to Free
Pacal binary files.

Note that the assignment operator has been overloaded so aReal48 type can be assigned directly
to a double or extended.

Errors: None.

See also:

Listing: refex/ex110.pp

program Example110 ;

{ Program to demonstrate the Real2Double f u n c t i o n . }

Var
i : i n t e g e r ;
R : Real48 ;

165

CHAPTER 13. THE SYSTEM UNIT

D : Double ;
E : Extended ;
F : F i l e of Real48 ;

begin
Assign (F , ’ r e a l s . dat ’) ;
Reset (f) ;
For I : = 1 to 1 0 do

begin
Read (F ,R) ;
D:= Real2Double (R) ;
Writeln (’ Real ’ , i , ’ : ’ ,D) ;
D:=R;
Writeln (’ Real (d i r e c t to double) ’ , i , ’ : ’ ,D) ;
E:=R;
Writeln (’ Real (d i r e c t to Extended) ’ , i , ’ : ’ ,E) ;
end ;

Close (f) ;
end .

Release
Declaration: Procedure Release (Var P : pointer);

Description: This routine is here for compatibility with Turbo Pascal, but it is not implemented and currently
does nothing.

Errors: None.

See also: Mark (155), Memavail (156), Maxavail (156), Getmem (143), Freemem (142) New (158), Dis-
pose (132)

Rename
Declaration: Procedure Rename (Var F : Any Filetype; Const S : String);

Description: Renamechanges the name of the assigned fileF to S. F must be assigned, but not opened.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Erase (134)

Listing: refex/ex77.pp

Program Example77 ;

{ Program to demonstrate the Rename f u n c t i o n . }
Var F : Text ;

begin
Assign (F , paramstr (1)) ;
Rename (F , paramstr (2)) ;

end .

166

CHAPTER 13. THE SYSTEM UNIT

Reset
Declaration: Procedure Reset (Var F : Any File Type[; L : Longint]);

Description: Reset opens a fileF for reading.F can be any file type. IfF is a text file, or refers to standard I/O
(e.g : ”) then it is opened read-only, otherwise it is opened using the mode specified infilemode .

If F is an untyped file, the record size can be specified in the optional parameterL. A default value
of 128 is used.

File sharing is not taken into account when callingReset .

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Rewrite (167), Assign (119), Close (123), Append (118)

Listing: refex/ex51.pp

Program Example51 ;

{ Program to demonstrate the Reset f u n c t i o n . }

Function F i leEx is ts (Name : Str ing) : boolean ;

Var F : F i l e ;

begin
{ $ i−}
Assign (F ,Name) ;
Reset (F) ;
{ $ I+ }
Fi leEx is ts : = (IoResult =0) and (Name<> ’ ’) ;
Close (f) ;

end ;

begin
I f F i leEx is ts (Paramstr (1)) then

Wri te ln (’ F i l e found ’)
else

Wri te ln (’ F i l e NOT found ’) ;
end .

Rewrite
Declaration: Procedure Rewrite (Var F : Any File Type[; L : Longint]);

Description: Rewrite opens a fileF for writing. F can be any file type. IfF is an untyped or typed file, then
it is opened for reading and writing. IfF is an untyped file, the record size can be specified in the
optional parameterL. Default a value of 128 is used. ifRewrite finds a file with the same name as
F, this file is truncated to length0. If it doesn’t find such a file, a new file is created.

Contrary to Turbo Pascal, Free Pascal opens the file with modefmoutput . If it should be opened
in fminout mode, an extra call toReset (167) is needed.

File sharing is not taken into account when callingRewrite .

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

167

CHAPTER 13. THE SYSTEM UNIT

See also: Reset (167), Assign (119), Close (123), Flush (141), Append (118)

Listing: refex/ex52.pp

Program Example52 ;

{ Program to demonstrate the Rewri te f u n c t i o n . }

Var F : F i l e ;
I : l o n g i n t ;

begin
Assign (F , ’ Test . tmp ’) ;
{ Create the f i l e . Recordsize i s 4 }
Rewrite (F , Sizeof (I)) ;
For I : = 1 to 1 0 do

BlockWrite (F , I , 1) ;
c lose (f) ;
{ F conta ins now a b inary rep resen ta t i on o f

10 l o n g i n t s going from 1 to 1 0 }
end .

Rmdir
Declaration: Procedure Rmdir (const S : string);

Description: Rmdir removes the directoryS.

Errors:

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Chdir (122), Mkdir (157)

Listing: refex/ex53.pp

Program Example53 ;

{ Program to demonstrate the MkDir and RmDir f u n c t i o n s . }

Const D : Str ing [8] = ’TEST. DIR ’ ;

Var S : Str ing ;

begin
Wri te ln (’ Making d i r e c t o r y ’ ,D) ;
Mkdir (D) ;
Writeln (’ Changing d i r e c t o r y to ’ ,D) ;
ChDir (D) ;
GetDir (0 ,S) ;
Writeln (’ Current D i r e c t o r y i s : ’ ,S) ;
WRiteln (’ Going back ’) ;
ChDir (’ . . ’) ;
Writeln (’ Removing d i r e c t o r y ’ ,D) ;
RmDir (D) ;

end .

168

CHAPTER 13. THE SYSTEM UNIT

Round
Declaration: Function Round (X : Real) : Longint;

Description: Round roundsX to the closest integer, which may be bigger or smaller thanX.

Errors: None.

See also: Frac (142), Int (151), Trunc (178)

Listing: refex/ex54.pp

Program Example54 ;

{ Program to demonstrate the Round f u n c t i o n . }

begin
Wri te ln (Round (1 2 3 4 . 5 6)) ; { P r i n t s 1235 }
Writeln (Round (−1234.56)) ; { P r i n t s −1235 }
Writeln (Round (1 2 . 3 4 5 6)) ; { P r i n t s 1 2 }
Writeln (Round (−12.3456)) ; { P r i n t s −12 }

end .

Runerror
Declaration: Procedure Runerror (ErrorCode : Word);

Description: Runerror stops the execution of the program, and generates a run-time errorErrorCode .

Errors: None.

See also: Exit (136), Halt (144)

Listing: refex/ex55.pp

Program Example55 ;

{ Program to demonstrate the RunError f u n c t i o n . }

begin
{ The program w i l l s top end emit a run−e r r o r 106 }
RunError (1 0 6) ;

end .

Seek
Declaration: Procedure Seek (Var F; Count : Longint);

Description: Seek sets the file-pointer for fileF to record Nr.Count . The first record in a file hasCount=0 .
F can be any file type, exceptText . If F is an untyped file, with no record size specified inReset
(167) or Rewrite (167), 128 is assumed.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Eof (133), SeekEof (170), SeekEoln (171)

169

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex56.pp

Program Example56 ;

{ Program to demonstrate the Seek f u n c t i o n . }

Var
F : F i l e ;
I , j : l o n g i n t ;

begin
{ Create a f i l e and f i l l i t w i th data }
Assign (F , ’ t e s t . tmp ’) ;
Rewrite (F) ; { Create f i l e }
Close (f) ;
FileMode : = 2 ;
ReSet (F , Sizeof (i)) ; { Opened read / w r i t e }
For I : = 0 to 1 0 do

BlockWrite (F , I , 1) ;
{ Go Back to the begin ing o f the f i l e }
Seek (F , 0) ;
For I : = 0 to 1 0 do

begin
BlockRead (F , J , 1) ;
I f J<> I then

Wri te ln (’ E r ro r : expected ’ , i , ’ , got ’ , j) ;
end ;

Close (f) ;
end .

SeekEof
Declaration: Function SeekEof [(Var F : text)] : Boolean;

Description: SeekEof returnsTrue is the file-pointer is at the end of the file. It ignores all whitespace. Calling
this function has the effect that the file-position is advanced until the first non-whitespace character or
the end-of-file marker is reached. If the end-of-file marker is reached,True is returned. Otherwise,
False is returned. If the parameterF is omitted, standardInput is assumed.

Errors: A run-time error is generated if the fileF isn’t opened.

See also: Eof (133), SeekEoln (171), Seek (169)

Listing: refex/ex57.pp

Program Example57 ;

{ Program to demonstrate the SeekEof f u n c t i o n . }
Var C : Char ;

begin
{ t h i s w i l l p r i n t a l l charac te rs from standard i np u t except

Whitespace charac te rs . }
While Not SeekEof do

begin
Read (C) ;
Write (C) ;
end ;

170

CHAPTER 13. THE SYSTEM UNIT

end .

SeekEoln
Declaration: Function SeekEoln [(Var F : text)] : Boolean;

Description: SeekEoln returnsTrue is the file-pointer is at the end of the current line. It ignores all whitespace.
Calling this function has the effect that the file-position is advanced until the first non-whitespace
character or the end-of-line marker is reached. If the end-of-line marker is reached,True is returned.
Otherwise, False is returned. The end-of-line marker is defined as#10 , the LineFeed character. If
the parameterF is omitted, standardInput is assumed.

Errors: A run-time error is generated if the fileF isn’t opened.

See also: Eof (133), SeekEof (170), Seek (169)

Listing: refex/ex58.pp

Program Example58 ;

{ Program to demonstrate the SeekEoln f u n c t i o n . }
Var

C : Char ;

begin
{ This w i l l read the f i r s t l i n e o f standard output and p r i n t

a l l charac te rs except whitespace . }
While not SeekEoln do

Begin
Read (c) ;
Write (c) ;
end ;

end .

Seg
Declaration: Function Seg (Var X) : Longint;

Description: Seg returns the segment of the address of a variable. This function is only supported for compat-
ibility. In Free Pascal, it returns always 0, since Free Pascal is a 32 bit compiler, segments have no
meaning.

Errors: None.

See also: DSeg (133), CSeg (130), Ofs (159), Ptr (163)

Listing: refex/ex60.pp

Program Example60 ;

{ Program to demonstrate the Seg f u n c t i o n . }
Var

W : Word ;

begin
W:=Seg (W) ; { W conta ins i t s own Segment }

end .

171

CHAPTER 13. THE SYSTEM UNIT

SetMemoryManager
Declaration: procedure SetMemoryManager(const MemMgr: TMemoryManager);

Description: SetMemoryManager sets the current memory manager record toMemMgr.

Errors: None.

See also: GetMemoryManager (144), IsMemoryManagerSet (151)

For an example, seeProgrammers guide.

SetJmp
Declaration: Function SetJmp (Var Env : Jmp_Buf) : Longint;

Description: SetJmp fills env with the necessary data for a jump back to the point where it was called. It returns
zero if called in this way. If the function returns nonzero, then it means that a call toLongJmp (154)
with env as an argument was made somewhere in the program.

Errors: None.

See also: LongJmp (154)

Listing: refex/ex79.pp

program example79 ;

{ Program to demonstrate the setjmp , longjmp f u n c t i o n s }

procedure dojmp (var env : jmp_buf ; value : l o n g i n t) ;

begin
value : = 2 ;
Writeln (’ Going to jump ! ’) ;
{ This w i l l r e t u r n to the setjmp c a l l ,

and r e t u r n value ins tead of 0 }
longjmp (env , value) ;

end ;

var env : jmp_buf ;

begin
i f set jmp (env)=0 then

begin
wr i te ln (’ Passed f i r s t t ime . ’) ;
dojmp (env , 2) ;
end

else
wr i te ln (’ Passed second t ime . ’) ;

end .

SetLength
Declaration: Procedure SetLength(var S : String; Len : Longint);

172

file:../prog/prog.html

CHAPTER 13. THE SYSTEM UNIT

Description: SetLength sets the length of the stringS to Len . S can be an ansistring, a short string or a
widestring. ForShortStrings , Len can maximally be 255. ForAnsiStrings it can have any
value. ForAnsiString strings,SetLength mustbe used to set the length of the string.

Errors: None.

See also: Length (153)

Listing: refex/ex85.pp

Program Example85 ;

{ Program to demonstrate the SetLength f u n c t i o n . }

Var S : Str ing ;

begin
F i l lChar (S[1] , 100 ,#32) ;
Set length (S, 1 0 0) ;
Writeln (’ " ’ ,S , ’ " ’) ;

end .

SetString
Declaration: Procedure SetString(var S : String; Buf : PChar; Len : Longint);

Description: SetString sets the length of the stringS to Len and if Buf is non-nil, copiesLen characters
from Buf into S. S can be an ansistring, a short string or a widestring. ForShortStrings , Len
can maximally be 255.

Errors: None.

See also: SetLength (172)

SetTextBuf
Declaration: Procedure SetTextBuf (Var f : Text; Var Buf[; Size : Word]);

Description: SetTextBuf assigns an I/O buffer to a text file. The new buffer is located atBuf and isSize
bytes long. IfSize is omitted, thenSizeOf(Buf) is assumed. The standard buffer of any text file
is 128 bytes long. For heavy I/O operations this may prove too slow. TheSetTextBuf procedure
allows to set a bigger buffer for the IO of the application, thus reducing the number of system calls,
and thus reducing the load on the system resources. The maximum size of the newly assigned buffer
is 65355 bytes.

Remark:

•Never assign a new buffer to an opened file. A new buffer can be assigned immediately after
a call toRewrite (167), Reset (167) or Append , but not after the file was read from/written
to. This may cause loss of data. If a new buffer must be assigned after read/write operations
have been performed, the file should be flushed first. This will ensure that the current buffer is
emptied.

•Take care that the assigned buffer is always valid. If a local variable is assigned as a buffer, then
after the program exits the local program block, the buffer will no longer be valid, and stack
problems may occur.

173

CHAPTER 13. THE SYSTEM UNIT

Errors: No checking onSize is done.

See also: Assign (119), Reset (167), Rewrite (167), Append (118)

Listing: refex/ex61.pp

Program Example61 ;

{ Program to demonstrate the SetTextBuf f u n c t i o n . }

Var
Fin , Fout : Text ;
Ch : Char ;
Buf in , Bufout : Array [1 . . 1 0 0 0 0] of byte ;

begin
Assign (Fin , paramstr (1)) ;
Reset (Fin) ;
Assign (Fout , paramstr (2)) ;
Rewrite (Fout) ;
{ This i s harmless before IO has begun }
{ Try t h i s program again on a b ig f i l e ,

a f t e r commenting out the f o l l o w i n g 2
l i n e s and recompi l ing i t . }

SetTextBuf (Fin , Buf in) ;
SetTextBuf (Fout , Bufout) ;
While not eof (Fin) do

begin
Read (Fin , ch) ;
wri te (Fout , ch) ;
end ;

Close (Fin) ;
Close (Fout) ;

end .

Sin
Declaration: Function Sin (X : Real) : Real;

Description: Sin returns the sine of its argumentX, whereX is an angle in radians.

If the absolute value of the argument is larger than2ˆ63 , then the result is undefined.

Errors: None.

See also: Cos (130), Pi (161), Exp (137), Ln (153)

Listing: refex/ex62.pp

Program Example62 ;

{ Program to demonstrate the Sin f u n c t i o n . }

begin
Wri te ln (Sin (Pi) : 0 : 1) ; { P r i n t s 0 . 0 }
Writeln (Sin (Pi / 2) : 0 : 1) ; { P r i n t s 1 . 0 }

end .

174

CHAPTER 13. THE SYSTEM UNIT

SizeOf
Declaration: Function SizeOf (X : Any Type) : Longint;

Description: SizeOf returns the size, in bytes, of any variable or type-identifier.

Remark: This isn’t really a RTL function. Its result is calculated at compile-time, and hard-coded in the
executable.

Errors: None.

See also: Addr (117)

Listing: refex/ex63.pp

Program Example63 ;

{ Program to demonstrate the SizeOf f u n c t i o n . }
Var

I : Long in t ;
S : Str ing [1 0] ;

begin
Wri te ln (SizeOf (I)) ; { P r i n t s 4 }
Writeln (SizeOf (S)) ; { P r i n t s 1 1 }

end .

Sptr
Declaration: Function Sptr : Pointer;

Description: Sptr returns the current stack pointer.

Errors: None.

See also: SSeg (176)

Listing: refex/ex64.pp

Program Example64 ;

{ Program to demonstrate the SPtr f u n c t i o n . }
Var

P : Longin t ;

begin
P:= Sptr ; { P Contains now the cu r ren t s tack p o s i t i o n . }

end .

Sqr
Declaration: Function Sqr (X : Real) : Real;

Description: Sqr returns the square of its argumentX.

Errors: None.

See also: Sqrt (176), Ln (153), Exp (137)

175

CHAPTER 13. THE SYSTEM UNIT

Listing: refex/ex65.pp

Program Example65 ;

{ Program to demonstrate the Sqr f u n c t i o n . }
Var i : I n t ege r ;

begin
For i : = 1 to 1 0 do

wr i te ln (Sqr (i) : 3) ;
end .

Sqrt
Declaration: Function Sqrt (X : Real) : Real;

Description: Sqrt returns the square root of its argumentX, which must be positive.

Errors: If X is negative, then a run-time error is generated.

See also: Sqr (175), Ln (153), Exp (137)

Listing: refex/ex66.pp

Program Example66 ;

{ Program to demonstrate the Sqr t f u n c t i o n . }

begin
Wri te ln (Sqrt (4) : 0 : 3) ; { P r i n t s 2 . 0 0 0 }
Writeln (Sqrt (2) : 0 : 3) ; { P r i n t s 1 . 4 1 4 }

end .

SSeg
Declaration: Function SSeg : Longint;

Description: SSeg returns the Stack Segment. This function is only supported for compatibility reasons, as
Sptr returns the correct contents of the stackpointer.

Errors: None.

See also: Sptr (175)

Listing: refex/ex67.pp

Program Example67 ;

{ Program to demonstrate the SSeg f u n c t i o n . }
Var W : Longin t ;

begin
W:=SSeg ;

end .

176

CHAPTER 13. THE SYSTEM UNIT

Str
Declaration: Procedure Str (Var X[:NumPlaces[:Decimals]]; Var S : String);

Description: Str returns a string which represents the value of X. X can be any numerical type. The optional
NumPLaces andDecimals specifiers control the formatting of the string.

Errors: None.

See also: Val (180)

Listing: refex/ex68.pp

Program Example68 ;

{ Program to demonstrate the S t r f u n c t i o n . }
Var S : Str ing ;

Function IntToStr (I : Long in t) : Str ing ;

Var S : Str ing ;

begin
Str (I ,S) ;
In tToStr :=S ;

end ;

begin
S:= ’ ∗ ’ + In tToStr (−233)+ ’ ∗ ’ ;
Writeln (S) ;

end .

StringOfChar
Declaration: Function StringOfChar(c : char;l : Integer) : String;

Description: StringOfChar creates a new String of lengthl and fills it with the characterc .

It is equivalent to the following calls:

SetLength(StringOfChar,l);
FillChar(Pointer(StringOfChar)^,Length(StringOfChar),c);

Errors: None.

See also: SetLength (172)

Listing: refex/ex97.pp

Program Example97 ;

{$H+ }

{ Program to demonstrate the Str ingOfChar f u n c t i o n . }

Var S : Str ing ;

begin

177

CHAPTER 13. THE SYSTEM UNIT

S:= Str ingOfChar (’ ’ ,40)+ ’ Al igned at column 4 1 . ’ ;
Writeln (s) ;

end .

Succ
Declaration: Function Succ (X : Any ordinal type) : Same type;

Description: Succ returns the element that succeeds the element that was passed to it. If it is applied to the last
value of the ordinal type, and the program was compiled with range checking on ({$R+}), then a
run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (160), Pred (162), High (145), Low (154)

for an example, seeOrd (160).

Swap
Declaration: Function Swap (X) : Type of X;

Description: Swapswaps the high and low order bytes ofX if X is of typeWord or Integer , or swaps the high
and low order words ofX if X is of typeLongint or Cardinal . The return type is the type ofX

Errors: None.

See also: Lo (154), Hi (145)

Listing: refex/ex69.pp

Program Example69 ;

{ Program to demonstrate the Swap f u n c t i o n . }
Var W : Word ;

L : Longin t ;

begin
W:= $1234 ;
W:=Swap (W) ;
i f W<>$3412 then

wr i te ln (’ E r ro r when swapping word ! ’) ;
L := $12345678 ;
L :=Swap (L) ;
i f L<>$56781234 then

wr i te ln (’ E r ro r when swapping Longin t ! ’) ;
end .

Trunc
Declaration: Function Trunc (X : Real) : Longint;

Description: Trunc returns the integer part ofX, which is always smaller than (or equal to)X in absolute value.

Errors: None.

178

CHAPTER 13. THE SYSTEM UNIT

See also: Frac (142), Int (151), Round (169)

Listing: refex/ex70.pp

Program Example70 ;

{ Program to demonstrate the Trunc f u n c t i o n . }

begin
Wri te ln (Trunc (1 2 3 . 4 5 6)) ; { P r i n t s 123 }
Writeln (Trunc (−123.456)) ; { P r i n t s −123 }
Writeln (Trunc (1 2 . 3 4 5 6)) ; { P r i n t s 1 2 }
Writeln (Trunc (−12.3456)) ; { P r i n t s −12 }

end .

Truncate
Declaration: Procedure Truncate (Var F : file);

Description: Truncate truncates the (opened) fileF at the current file position.

Errors: Depending on the state of the{$I} switch, a runtime error can be generated if there is an error. In
the{$I-} state, useIOResult to check for errors.

See also: Append (118), Filepos (138), Seek (169)

Listing: refex/ex71.pp

Program Example71 ;

{ Program to demonstrate the Truncate f u n c t i o n . }

Var F : F i l e of l o n g i n t ;
I , L : Long in t ;

begin
Assign (F , ’ t e s t . tmp ’) ;
Rewrite (F) ;
For I : = 1 to 1 0 Do

Write (F , I) ;
Writeln (’ F i l e s i z e before Truncate : ’ , Fi leS ize (F)) ;
Close (f) ;
Reset (F) ;
Repeat

Read (F , I) ;
Unt i l i =5;
Truncate (F) ;
Writeln (’ F i l e s i z e a f t e r Truncate : ’ , F i l es i ze (F)) ;
Close (f) ;

end .

Upcase
Declaration: Function Upcase (C : Char or string) : Char or String;

179

CHAPTER 13. THE SYSTEM UNIT

Description: Upcase returns the uppercase version of its argumentC. If its argument is a string, then the com-
plete string is converted to uppercase. The type of the returned value is the same as the type of the
argument.

Errors: None.

See also: Lowercase (155)

Listing: refex/ex72.pp

Program Example72 ;

{ Program to demonstrate the Upcase f u n c t i o n . }

Var I : Long in t ;

begin
For i := ord (’ a ’) to ord (’ z ’) do

wr i te (upcase (chr (i))) ;
Writeln ;
{ This doesn ’ t work i n TP , but i t does i n Free Pascal }
Writeln (Upcase (’ abcdefghi jk lmnopqrstuvwxyz ’)) ;

end .

Val
Declaration: Procedure Val (const S : string;var V;var Code : word);

Description: Val converts the value represented in the stringS to a numerical value, and stores this value in the
variableV, which can be of typeLongint , Real andByte . If the conversion isn’t succesfull, then
the parameterCode contains the index of the character inS which prevented the conversion. The
stringS is allowed to contain spaces in the beginning.

The stringS can contain a number in decimal, hexadecimal, binary or octal format, as described in
the language reference.

Errors: If the conversion doesn’t succeed, the value ofCode indicates the position where the conversion
went wrong.

See also: Str (177)

Listing: refex/ex74.pp

Program Example74 ;

{ Program to demonstrate the Val f u n c t i o n . }
Var I , Code : I n tege r ;

begin
Val (ParamStr (1) , I , Code) ;
I f Code<>0 then

Wri te ln (’ E r ro r a t p o s i t i o n ’ , code , ’ : ’ , Paramstr (1) [Code])
else

Wri te ln (’ Value : ’ , I) ;
end .

180

CHAPTER 13. THE SYSTEM UNIT

Write
Declaration: Procedure Write ([Var F : Any filetype;] V1 [; V2; ... , Vn)];

Description: Write writes the contents of the variablesV1, V2 etc. to the fileF. F can be a typed file, or aText
file. If F is a typed file, then the variablesV1, V2 etc. must be of the same type as the type in the
declaration ofF. Untyped files are not allowed. If the parameterF is omitted, standard output is as-
sumed. IfF is of typeText , then the necessary conversions are done such that the output of the vari-
ables is in human-readable format. This conversion is done for all numerical types. Strings are prin-
ted exactly as they are in memory, as well asPChar types. The format of the numerical conversions
can be influenced through the following modifiers: OutputVariable : NumChars [:
Decimals] This will print the value ofOutputVariable with a minimum ofNumChars
characters, from whichDecimals are reserved for the decimals. If the number cannot be repres-
ented withNumChars characters,NumChars will be increased, until the representation fits. If the
representation requires less thanNumChars characters then the output is filled up with spaces, to
the left of the generated string, thus resulting in a right-aligned representation. If no formatting is
specified, then the number is written using its natural length, with nothing in front of it if it’s positive,
and a minus sign if it’s negative. Real numbers are, by default, written in scientific notation.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled with the{$i}
switch.

See also: WriteLn (181), Read (164), Readln (165), Blockwrite (121)

WriteLn
Declaration: Procedure WriteLn [([Var F : Text;] [V1 [; V2; ... , Vn)]];

Description: WriteLn does the same asWrite (181) for text files, and emits a Carriage Return - LineFeed
character pair after that. If the parameterF is omitted, standard output is assumed. If no variables are
specified, a Carriage Return - LineFeed character pair is emitted, resulting in a new line in the fileF.

Remark: UnderLINUX andUNIX , the Carriage Return character is omitted, as customary in Unix environ-
ments.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled with the{$i}
switch.

See also: Write (181), Read (164), Readln (165), Blockwrite (121)

Listing: refex/ex75.pp

Program Example75 ;

{ Program to demonstrate the Wri te (l n) f u n c t i o n . }

Var
F : F i l e of Longin t ;
L : Long in t ;

begin
Write (’ This i s on the f i r s t l i n e ! ’) ; { No CR/ LF p a i r ! }
Writeln (’And t h i s too . . . ’) ;
Writeln (’ But t h i s i s a l ready on the second l i n e . . . ’) ;
Assign (f , ’ t e s t . tmp ’) ;
Rewrite (f) ;
For L : = 1 to 1 0 do

wr i te (F , L) ; { No w r i t e l n al lowed here ! }

181

CHAPTER 13. THE SYSTEM UNIT

Close (f) ;
end .

182

Chapter 14

The OBJPAS unit

Theobjpas unit is meant for compatibility with Object Pascal as implemented by Delphi. The unit is
loaded automatically by the Free Pascal compiler whenever theDelphi or objfpc more is entered,
either through the command line switches-Sd or -Sh or with the{$MODE DELPHI} or {$MODE
OBJFPC} directives.

It redefines some basic pascal types, introduces some functions for compatibility with Delphi’s sys-
tem unit, and introduces some methods for the management of the resource string tables.

14.1 Types

Theobjpas unit redefines two integer types, for compatibity with Delphi:

type
smallint = system.integer;
integer = system.longint;

The resource string tables can be managed with a callback function which the user must provide:
TResourceIterator .

Type
TResourceIterator =

Function (Name,Value : AnsiString;Hash : Longint):AnsiString;

14.2 Functions and Procedures

AssignFile
Declaration: Procedure AssignFile(Var f: FileType;Name: Character type);

Description: AssignFile is completely equivalent to the system unit’sAssign (119) function: It assigns
Nameto a function of any type (FileType can beText or a typed or untypedFile variable).
Namecan be a string, a single character or aPChar .

It is most likely introduced to avoid confusion between the regularAssign (119) function and the
Assign method ofTPersistent in the Delphi VCL.

Errors: None.

183

CHAPTER 14. THE OBJPAS UNIT

See also: CloseFile (184), Assign (119), Reset (167), Rewrite (167), Append (118)

Listing: refex/ex88.pp

Program Example88 ;

{ Program to demonstrate the Ass ignF i le and CloseF i le f u n c t i o n s . }

{$MODE Delphi }

Var F : t e x t ;

begin
AssignFile (F , ’ t e x t f i l e . tmp ’) ;
Rewrite (F) ;
Writeln (F , ’ This i s a s i l l y example o f Ass ignF i le and CloseF i le . ’) ;
CloseFi le (F) ;

end .

CloseFile
Declaration: Procedure CloseFile(Var F: FileType);

Description: CloseFile flushes and closes a fileF of any file type. F can beText or a typed or untyped
File variable. After a call toCloseFile , any attempt to write to the fileF will result in an error.

It is most likely introduced to avoid confusion between the regularClose (123) function and the
Close method ofTForm in the Delphi VCL.

Errors: None.

See also: Close (123), AssignFile (183), Reset (167), Rewrite (167), Append (118)

for an example, seeAssignFile (183).

Freemem
Declaration: Procedure FreeMem(Var p:pointer[;Size:Longint]);

Description: FreeMem releases the memory reserved by a call toGetMem (185). The (optional)Size para-
meter is ignored, since the object pascal version ofGetMemstores the amount of memory that was
requested.

Be sure not to release memory that was not obtained with theGetmemcall in Objpas. Normally, this
should not happen, since objpas changes the default memory manager to it’s own memory manager.

Errors: None.

See also: Freemem (142), GetMem (185), Getmem (143)

Listing: refex/ex89.pp

Program Example89 ;

{ Program to demonstrate the FreeMem f u n c t i o n . }
{$Mode Delphi }

184

CHAPTER 14. THE OBJPAS UNIT

Var P : Po in te r ;

begin
Wri te ln (’Memory before : ’ , Memavail) ;
GetMem (P,10000) ;
FreeMem (P) ;
Writeln (’Memory a f t e r : ’ , Memavail) ;

end .

Getmem
Declaration: Procedure Getmem(Var P:pointer;Size:Longint);

Description: GetMem reservesSize bytes of memory on the heap and returns a pointer to it inP. Size is
stored at offset -4 of the result, and is used to release the memory again.P can be a typed or untyped
pointer.

Be sure to release this memory with theFreeMem (184) call defined in theobjpas unit.

Errors: In case no more memory is available, and no more memory could be obtained from the system a
run-time error is triggered.

See also: FreeMem (184), Getmem (143).

For an example, seeFreeMem (184).

GetResourceStringCurrentValue
Declaration: Function GetResourceStringCurrentValue(TableIndex,StringIndex : Longint)

: AnsiString;

Description: GetResourceStringCurrentValue returns the current value of the resourcestring in table
TableIndex with indexStringIndex .

The current value depends on the system of internationalization that was used, and which language
is selected when the program is executed.

Errors: If eitherTableIndex or StringIndex are out of range, then a empty string is returned.

See also: SetResourceStrings (190), GetResourceStringDefaultValue (186), GetResourceStringHash
(186), GetResourceStringName (187), ResourceStringTableCount (189), ResourceStringCount
(189)

Listing: refex/ex90.pp

Program Example90 ;

{ Program to demonstrate the GetResourceStr ingCurrentValue f u n c t i o n . }
{$Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second S t r i n g ’ ;

Var I , J : Long in t ;

185

CHAPTER 14. THE OBJPAS UNIT

begin
{ P r i n t cu r ren t values o f a l l r esou rces t r i ngs }
For I : = 0 to ResourceStringTableCount−1 do

For J : = 0 to ResourceStr ingCount (i)−1 do
Wri te ln (I , ’ , ’ , J , ’ : ’ , GetResourceStr ingCurrentValue (I , J)) ;

end .

GetResourceStringDefaultValue
Declaration: Function GetResourceStringDefaultValue(TableIndex,StringIndex : Longint)

: AnsiString

Description: GetResourceStringDefaultValue returns the default value of the resourcestring in table
TableIndex with indexStringIndex .

The default value is the value of the string that appears in the source code of the programmer, and is
compiled into the program.

Errors: If eitherTableIndex or StringIndex are out of range, then a empty string is returned.

Errors:

See also: SetResourceStrings (190), GetResourceStringCurrentValue (185), GetResourceStringHash
(186), GetResourceStringName (187), ResourceStringTableCount (189), ResourceStringCount
(189)

Listing: refex/ex91.pp

Program Example91 ;

{ Program to demonstrate the GetResourceStr ingDefaul tValue f u n c t i o n . }
{$Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second S t r i n g ’ ;

Var I , J : Long in t ;

begin
{ P r i n t d e f a u l t values o f a l l r esou rces t r i ngs }
For I : = 0 to ResourceStringTableCount−1 do

For J : = 0 to ResourceStr ingCount (i)−1 do
Wri te ln (I , ’ , ’ , J , ’ : ’ , GetResourceStr ingDefaul tValue (I , J)) ;

end .

GetResourceStringHash
Declaration: Function GetResourceStringHash(TableIndex,StringIndex : Longint) :

Longint;

Description: GetResourceStringHash returns the hash value associated with the resource string in table
TableIndex , with indexStringIndex .

The hash value is calculated from the default value of the resource string in a manner that gives the
same result as the GNUgettext mechanism. It is stored in the resourcestring tables, so retrieval is
faster than actually calculating the hash for each string.

186

CHAPTER 14. THE OBJPAS UNIT

Errors: If eitherTableIndex or StringIndex is zero, 0 is returned.

See also: Hash (187) SetResourceStrings (190), GetResourceStringDefaultValue (186), GetResourceS-
tringHash (186), GetResourceStringName (187), ResourceStringTableCount (189), ResourceS-
tringCount (189)

For an example, seeHash (187).

GetResourceStringName
Declaration: Function GetResourceStringName(TableIndex,StringIndex : Longint) :

Ansistring;

Description: GetResourceStringName returns the name of the resourcestring in tableTableIndex with
index StringIndex . The name of the string is always the unit name in which the string was
declared, followed by a period and the name of the constant, all in lowercase.

If a unitMyUnit declares a resourcestringMyTitle then the name returned will bemyunit.mytitle .
A resourcestring in the program file will have the name of the program prepended.

The name returned by this function is also the name that is stored in the resourcestring file generated
by the compiler.

Strictly speaking, this information isn’t necessary for the functioning of the program, it is provided
only as a means to easier translation of strings.

Errors: If eitherTableIndex or StringIndex is zero, an empty string is returned.

See also: SetResourceStrings (190), GetResourceStringDefaultValue (186), GetResourceStringHash
(186), GetResourceStringName (187), ResourceStringTableCount (189), ResourceStringCount
(189)

Listing: refex/ex92.pp

Program Example92 ;

{ Program to demonstrate the GetResourceStringName f u n c t i o n . }
{$Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second S t r i n g ’ ;

Var I , J : Long in t ;

begin
{ P r i n t names of a l l r esou rces t r i ngs }
For I : = 0 to ResourceStringTableCount−1 do

For J : = 0 to ResourceStr ingCount (i)−1 do
Wri te ln (I , ’ , ’ , J , ’ : ’ , GetResourceStringName (I , J)) ;

end .

Hash
Declaration: Function Hash(S : AnsiString) : longint;

187

CHAPTER 14. THE OBJPAS UNIT

Description: Hash calculates the hash value of the stringS in a manner that is compatible with the GNU gettext
hash value for the string. It is the same value that is stored in the Resource string tables, and which
can be retrieved with theGetResourceStringHash (186) function call.

Errors: None. In case the calculated hash value should be 0, the returned result will be -1.

See also: GetResourceStringHash (186),

Listing: refex/ex93.pp

Program Example93 ;

{ Program to demonstrate the Hash f u n c t i o n . }
{$Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second S t r i n g ’ ;

Var I , J : Long in t ;

begin
For I : = 0 to ResourceStringTableCount−1 do

For J : = 0 to ResourceStr ingCount (i)−1 do
I f Hash (GetResourceStr ingDefaul tValue (I , J))

<>GetResourceStringHash (I , J) then
Wri te ln (’ Hash mismatch a t ’ , I , ’ , ’ , J)

else
Wri te ln (’ Hash (’ , I , ’ , ’ , J , ’) matches . ’) ;

end .

Paramstr
Declaration: Function ParamStr(Param : Integer) : Ansistring;

Description: ParamStr returns theParam-th command-line parameter as an AnsiString. The system unit
Paramstr (161) function limits the result to 255 characters.

The zeroeth command-line parameter contains the path of the executable, except onLINUX , where it
is the command as typed on the command-line.

Errors: In caseParam is an invalid value, an empty string is returned.

See also: Paramstr (161)

For an example, seeParamstr (161).

ReAllocMem
Declaration: function ReAllocMem(var p:pointer;Size:Longint):pointer;

Description: ReAllocMem resizes the memory pointed to byP so it has sizeSize . The value ofP may change
during this operation. The contents of the memory pointed to byP (if any) will be copied to the new
location, but may be truncated if the newly allocated memory block is smaller in size. If a larger
block is allocated, only the used memory is initialized, extra memory will not be zeroed out.

Note thatP may be nil, in that case the behaviour ofReAllocMem is equivalent toGetmem (143).

188

CHAPTER 14. THE OBJPAS UNIT

Errors: If no memory is available then a run-time error will occur.

See also: Getmem (143), Freemem (142)

ResetResourceTables
Declaration: Procedure ResetResourceTables;

Description: ResetResourceTables resets all resource strings to their default (i.e. as in the source code)
values.

Normally, this should never be called from a user’s program. It is called in the initialization code of
theobjpas unit. However, if the resourcetables get messed up for some reason, this procedure will
fix them again.

Errors: None.

See also: SetResourceStrings (190), GetResourceStringDefaultValue (186), GetResourceStringHash
(186), GetResourceStringName (187), ResourceStringTableCount (189), ResourceStringCount
(189)

ResourceStringCount
Declaration: Function ResourceStringCount(TableIndex : longint) : longint;

Description: ResourceStringCount returns the number of resourcestrings in the table with indexTableIndex .
The strings in a particular table are numbered from0 to ResourceStringCount-1 , i.e. they’re
zero based.

Errors: If an invalidTableIndex is given,-1 is returned.

See also: SetResourceStrings (190), GetResourceStringCurrentValue (185), GetResourceStringDe-
faultValue (186), GetResourceStringHash (186), GetResourceStringName (187), ResourceS-
tringTableCount (189),

For an example, seeGetResourceStringDefaultValue (186)

ResourceStringTableCount
Declaration: Function ResourceStringTableCount : Longint;

Description: ResourceStringTableCount returns the number of resource string tables; this may be zero
if no resource strings are used in a program.

The tables are numbered from 0 toResourceStringTableCount-1 , i.e. they’re zero based.

Errors:

See also: SetResourceStrings (190), GetResourceStringDefaultValue (186), GetResourceStringHash
(186), GetResourceStringName (187), ResourceStringCount (189)

For an example, seeGetResourceStringDefaultValue (186)

189

CHAPTER 14. THE OBJPAS UNIT

SetResourceStrings
Declaration: TResourceIterator = Function (Name,Value : AnsiString;Hash : Longint):AnsiString;

Procedure SetResourceStrings (SetFunction : TResourceIterator);

Description: SetResourceStrings callsSetFunction for all resourcestrings in the resourcestring tables
and sets the resourcestring’s current value to the value returned bySetFunction .

TheName,Value andHash parameters passed to the iterator function are the values stored in the
tables.

Errors: None.

See also: GetResourceStringCurrentValue (185), GetResourceStringDefaultValue (186), GetResourceS-
tringHash (186), GetResourceStringName (187), ResourceStringTableCount (189), ResourceS-
tringCount (189)

Listing: refex/ex95.pp

Program Example95 ;

{ Program to demonstrate the SetResourceStr ings f u n c t i o n . }
{$Mode ob j fpc }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second S t r i n g ’ ;

Var I , J : Long in t ;
S : Ans iS t r i ng ;

Function Trans la te (Name , Value : Ans iS t r i ng ; Hash : l o n g i n t) : Ans iS t r i ng ;

begin
Wri te ln (’ T rans la te (’ ,Name , ’) = > ’ , Value) ;
Write (’−> ’) ;
Readln (Resul t) ;

end ;

begin
SetResourceStr ings (@Translate) ;
Writeln (’ Trans la ted s t r i n g s : ’) ;
For I : = 0 to ResourceStringTableCount−1 do

For J : = 0 to ResourceStr ingCount (i)−1 do
begin
Wri te ln (GetResourceStr ingDefaul tValue (I , J)) ;
Writeln (’ T rans la tes to : ’) ;
Writeln (GetResourceStr ingCurrentValue (I , J)) ;
end ;

end .

SetResourceStringValue
Declaration: Function SetResourceStringValue(TableIndex,StringIndex : longint; Value

: Ansistring) : Boolean;

190

CHAPTER 14. THE OBJPAS UNIT

Description: SetResourceStringValue assignsValue to the resource string in tableTableIndex with
indexStringIndex .

Errors:

See also: SetResourceStrings (190), GetResourceStringCurrentValue (185), GetResourceStringDe-
faultValue (186), GetResourceStringHash (186), GetResourceStringName (187), ResourceS-
tringTableCount (189), ResourceStringCount (189)

Listing: refex/ex94.pp

Program Example94 ;

{ Program to demonstrate the SetResourceStr ingValue f u n c t i o n . }
{$Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second S t r i n g ’ ;

Var I , J : Long in t ;
S : Ans iS t r i ng ;

begin
{ P r i n t cu r ren t values o f a l l r esou rces t r i ngs }
For I : = 0 to ResourceStringTableCount−1 do

For J : = 0 to ResourceStr ingCount (i)−1 do
begin
Wri te ln (’ T rans la te = > ’ , GetResourceStr ingDefaul tValue (I , J)) ;
Write (’−> ’) ;
Readln (S) ;
SetResourceStr ingValue (I , J ,S) ;
end ;

Writeln (’ Trans la ted s t r i n g s : ’) ;
For I : = 0 to ResourceStringTableCount−1 do

For J : = 0 to ResourceStr ingCount (i)−1 do
begin
Wri te ln (GetResourceStr ingDefaul tValue (I , J)) ;
Writeln (’ T rans la tes to : ’) ;
Writeln (GetResourceStr ingCurrentValue (I , J)) ;
end ;

end .

191

Index

Abs,117
Addr, 117
Append,118
Arctan,118
Assert,119
Assign,119
Assigned,120
AssignFile,183

BinStr,120
Blockread,121
Blockwrite,121
Break,122

Chdir,122
Chr,123
Close,123
CloseFile,184
CompareByte,124
CompareChar,125
CompareDWord,126
CompareWord,127
Concat,128
Continue,129
Copy,129
Cos,130
CSeg,130

Dec,131
Delete,131
Dispose,132
DSeg,133

Eof, 133
Eoln,134
Erase,134
Exclude,135
Exit, 136
Exp,137

Filepos,138
Filesize,138
FillByte, 139
Fillchar,140
FillDWord, 140
Fillword, 141

Flush,141
Frac,142
Freemem,142, 184

Getdir,143
Getmem,143, 185
GetMemoryManager,144
GetResourceStringCurrentValue,185
GetResourceStringDefaultValue,186
GetResourceStringHash,186
GetResourceStringName,187

Halt, 144
Hash,187
HexStr,144
Hi, 145
High, 145

Inc, 146
Include,147
IndexByte,147
IndexChar,148
IndexDWord,149
IndexWord,150
Insert,150
Int, 151
IOresult,151
IsMemoryManagerSet,151

Length,153
Ln, 153
Lo, 154
LongJmp,154
Low, 154
Lowercase,155

Mark, 155
Maxavail,156
Memavail,156
Mkdir, 157
Move,157
MoveChar0,158

New,158

OctStr,159

192

INDEX

Odd,158
Ofs,159
Ord,160

Paramcount,160
Paramstr,161, 188
Pi, 161
Pos,162
Power,162
Pred,162
Ptr,163

Random,163
Randomize,164
Read,164
Readln,165
Real2Double,165
ReAllocMem,188
Release,166
Rename,166
Reset,167
ResetResourceTables,189
ResourceStringCount,189
ResourceStringTableCount,189
Rewrite,167
Rmdir,168
Round,169
Runerror,169

Seek,169
SeekEof,170
SeekEoln,171
Seg,171
SetJmp,172
SetLength,172
SetMemoryManager,172
SetResourceStrings,190
SetResourceStringValue,190
SetString,173
SetTextBuf,173
Sin,174
SizeOf,175
Sptr,175
Sqr,175
Sqrt,176
SSeg,176
Str,177
StringOfChar,177
Succ,178
Swap,178

Trunc,178
Truncate,179

Upcase,179

Val, 180

Write, 181
WriteLn, 181

193

	I The Pascal language
	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Turbo Pascal reserved words
	Delphi reserved words
	Free Pascal reserved words
	Modifiers

	Identifiers
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants
	Resource strings

	Types
	Base types
	Ordinal types
	Integers
	Boolean types
	Enumeration types
	Subrange types

	Real types

	Character types
	Char
	Strings
	Short strings
	Ansistrings
	Constant strings
	PChar - Null terminated strings

	Structured Types
	Arrays
	Record types
	Set types
	File types

	Pointers
	Forward type declarations
	Procedural types

	Objects
	Declaration
	Fields
	Constructors and destructors
	Methods
	Method invocation
	Static methods
	Virtual methods
	Abstract methods

	Visibility

	Classes
	Class definitions
	Class instantiation
	Methods
	invocation
	Virtual methods
	Message methods

	Properties

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	The @ operator
	Operators
	Arithmetic operators
	Logical operators
	Boolean operators
	String operators
	Set operators
	Relational operators

	Statements
	Simple statements
	Assignments
	Procedure statements
	Goto statements

	Structured statements
	Compound statements
	The Case statement
	The If..then..else statement
	The For..to/downto..do statement
	The Repeat..until statement
	The While..do statement
	The With statement
	Exception Statements

	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Parameter lists
	Value parameters
	Variable parameters
	Constant parameters
	Open array parameters
	Array of const

	Function overloading
	Forward defined functions
	External functions
	Assembler functions
	Modifiers
	alias
	cdecl
	export
	inline
	interrupt
	pascal
	popstack
	public
	register
	saveregisters
	safecall
	stdcall

	Unsupported Turbo Pascal modifiers

	Operator overloading
	Introduction
	Operator declarations
	Assignment operators
	Arithmetic operators
	Comparision operator

	Programs, units, blocks
	Programs
	Units
	Blocks
	Scope
	Block scope
	Record scope
	Class scope
	Unit scope

	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

	II Reference : The System unit
	The system unit
	Types, Constants and Variables
	Types
	Constants
	Variables

	Function list by category
	File handling
	Memory management
	Mathematical routines
	String handling
	Operating System functions
	Miscellaneous functions

	Functions and Procedures
	Abs
	Addr
	Append
	Arctan
	Assert
	Assign
	Assigned
	BinStr
	Blockread
	Blockwrite
	Break
	Chdir
	Chr
	Close
	CompareByte
	CompareChar
	CompareDWord
	CompareWord
	Concat
	Continue
	Copy
	Cos
	CSeg
	Dec
	Delete
	Dispose
	DSeg
	Eof
	Eoln
	Erase
	Exclude
	Exit
	Exp
	Filepos
	Filesize
	FillByte
	Fillchar
	FillDWord
	Fillword
	Flush
	Frac
	Freemem
	Getdir
	Getmem
	GetMemoryManager
	Halt
	HexStr
	Hi
	High
	Inc
	Include
	IndexByte
	IndexChar
	IndexDWord
	IndexWord
	Insert
	IsMemoryManagerSet
	Int
	IOresult
	Length
	Ln
	Lo
	LongJmp
	Low
	Lowercase
	Mark
	Maxavail
	Memavail
	Mkdir
	Move
	MoveChar0
	New
	Odd
	OctStr
	Ofs
	Ord
	Paramcount
	Paramstr
	Pi
	Pos
	Power
	Pred
	Ptr
	Random
	Randomize
	Read
	Readln
	Real2Double
	Release
	Rename
	Reset
	Rewrite
	Rmdir
	Round
	Runerror
	Seek
	SeekEof
	SeekEoln
	Seg
	SetMemoryManager
	SetJmp
	SetLength
	SetString
	SetTextBuf
	Sin
	SizeOf
	Sptr
	Sqr
	Sqrt
	SSeg
	Str
	StringOfChar
	Succ
	Swap
	Trunc
	Truncate
	Upcase
	Val
	Write
	WriteLn

	The OBJPAS unit
	Types
	Functions and Procedures
	AssignFile
	CloseFile
	Freemem
	Getmem
	GetResourceStringCurrentValue
	GetResourceStringDefaultValue
	GetResourceStringHash
	GetResourceStringName
	Hash
	Paramstr
	ReAllocMem
	ResetResourceTables
	ResourceStringCount
	ResourceStringTableCount
	SetResourceStrings
	SetResourceStringValue

