Musical MIDI Accompaniment

Reference Manual

Bob van der Poel
Wynndel, BC, Canada

bob@mellowood.ca

February 14, 2008

Table Of Contents

1 Overview and Introduction 9
1.1 License, Versionand Legalities 9
1.2 AboutthisManual e 10

1.2.1 Typographic Conventions 10
122 BIpXandHTML 11
1.2.3 OtherDocumentation. e 11
1.2.4 Music Notation e 11
1.3 InstallingMma e 11
1.4 RUNNINGMIA o e e e e e e e e e e e e 12
1.5 Comments e 13
1.6 Theory Of Operation e e e e e 13
1.7 CaseSensitivity e e 14
Running M@ 15
21 CommandLine Options e e 15
2.2 LinesandSpaces e 17
2.3 Programming Comments e e e e e e 18
Tracks and Channels 19
3.1 MATracks e e 19
3.2 TrackChannels e e 19
3.3 TrackDescriptions e e e e 20
331 Drum ..o e e e 02
3.3.2 Chord e e 12
3.3.3 Ampeggio e 21
3.3.4 Scale 21
3.35 BasS e 2 2
3.3.6 Walk e 22
3.3.7 SoloandMelody e 22
3.3.8 Automatic Melodies 22
3.4 SilencingaTrack e e 22

Table Of Contents MA

4 Patterns 23
4.1 DefiningaPattern e 23
4.1.1 BaSS e e e 5
4.1.2 Chord e e 6 2
4.1.3 Arpeggio e e e 27
4.1.4 Walk . . . e 82
415 Scale e 28
4.1.6 Aria e 29
4.1.7 Drum . ..o e e 92
4.1.8 DrumTone e 30
4.2 Including Existing Patterns in New Definitions 31
4.3 Multiplying and Shifting Patterns e 31
5 Sequences 35
5.1 Defining Sequences e e e e 35
5.2 SeqClear e 37
53 SegRnd 38
54 SegRndWeight e 40
55 SeqSize 40
6 Grooves 41
6.1 Creating AGIro0OVe i e e e e 41
6.2 USINQAGIoove e e e 43
6.2.1 Overlay Grooves e 44
6.3 Groove Allases e 45
6.4 Deleting Grooves e e 46
6.5 LibraryIssues e e a7
7 Riffs 48
8 Musical Data Format 51
8.1 BarNumbers e 51
8.2 BarRepeat e 52
8.3 Chords e 52
8.4 ReSIS e 53
8.5 CaseSensitivity e 54
9 Lyrics 55
9.1 LyricOptions e e e 55
9.1.1 EventType e e e 55
9.1.2 Word Splitting e e 56
9.2 ChordName lInsertion e e 56
9.2.1 Chord Transposition e e 56
9.3 Setting LyriCS e e e 57
9.3.1 Limitations e e 59

Table Of Contents MA
10 Solo and Melody Tracks 60
10.1 NoteDataFormat. e e 61
10.1.1 Long NoOtes e 62

10.1.2 UsingDefaults e 63

10.1.3 OtherCommands o e 64

10.2 KeySig o e e 64
10.3 AutoSoloTracks e 64
10.4 Drum SoloTracks e e 65
11 Automatic Melodies: Aria Tracks 67
12 Randomizing 69
12.1 RndSeed 69
12.2 RSKIP . . . o e 69
123 RTIME o e e 70
12.4 Other RandomizingCommands i 71
13 Chord Voicing 72
13.1 VOICING . . . o e e e 72
13.1.1 VoicingMode e 73

13.1.2 VoicingRange 74

13.1.3 VoicingCenter 74

13.1.4 VoicingMove e 74

13.1.5 Voicing Dir 75

13.1.6 VoicingRmove e 75

13.2 ChordAdjust e 75
13.3 COMPresS . . . o e e e e e e 76
13.4 DUpPROOt e e e e 76
13.5 Invert e e 77
13.6 Limit 78
13.7 NoteSpan e e 78
13.8 Range e 79
13.9 DefChord e 79
13.10 PrintChord e e e 81
1311 NOtES o e e 81

14 Harmony 82
141 Harmony e e e e e 82
14.2 HarmonyOnly e 83
14.3 Harmony\Volume e 84
15 Tempo and Timing 85
151 Tempo o e e e e 85
152 TiIMe o e e e 86
15.3 TIMESI o o o e 86

Table Of Contents MA

154 BeatAdjust e e 87
155 Fermata e e e e 88
15.6 CUt e 90
16 Swing 93
17 Volume and Dynamics 96
17.1 AcCent e e e e e 97
17.2 AdjustVolume e e 98
17.2.1 MnemonicVolume Ratios e e e 98

17.2.2 MasterVolume Ratio e e 98

17.3 Volume e e e e e 99
17.4 Crescand Decresc @ i i i i i e e e 100
17.5 Swell e e 102
17.6 RVolume 103
17.7 Saving and RestoringVolumes e 103
18 Repeats 105
19 Variables, Conditionals and Jumps 108
19.1 Variables e 108
19.1.1 Set . . . e 109

19.1.2 NewSet e 109

19.1.3 MSEt e e e e 110

19.1.4 RndSet e 110

19.1.5 UnSet VariableName e 111

19.1.6 ShowVars o o e e e 111

19.1.7 IncandDec e e 111

19.1.8 VExpand OnorOff 111

19.1.9 StackValue e e 113

19.2 Predefined Variables e 113
19.3 Conditionals e e e 116
19.4 GOtO e e e 118
20 Low Level MIDI Commands 120
20.1 Channel e e 120
20.2 ChannelPref. e e e e 121
20.3 ChShare e 121
20.4 ForceOut e e e e 122
20.5 MIDI . . . o e 124
20.6 MIDIClear e e 125
20.7 MIDIFile e e e 125
20.8 MIDIGIiS e 126
20.9 MIDIINC e 126
20.10 MIDIMark e e e 128

Table Of Contents MA
20.11 MIDIPan o o e e e e e e 128
2012 MIDISEq o e e 130

20.12.1 MIDIDef e e 130
2013 MIDISplit o e e e e e 131
20.14 MIDITname o e e e e e e e e e e 132
20.15 MIDIVOICE e e e e e e e 132
20.16 MIDIVOIuME e e e e e e e e 133

21 Patch Management 135
21.1 VOICE . . . o o e e e e 135
21.2 Patch e e e 135

21.2.1 PatchSet e 136

21.2.2 PatchRename. s 137

21.2.3 Patch List e e 138

21.2.4 Ensuring ItAllWoOrks e 138

22 Fine Tuning (Translations) 140
22.1 VOICETT . . . o e e e e e e 141
22.2 DrumTr . . e e e e e e s e e 142
22.3 VoiceVoITr e 142
22.4 DrumVOITr . . . e e e 143

23 Other Commands and Directives 144
23.1 AlITracks e e 144
23.2 Articulate e e e 145
23.3 COPY . . o e e e e e 145
23.4 COmMMENt e e e e e e e e e 146
23.5 Debug e 147
23.6 Delete e e e e 148
23.7 Direction e e e 148
23.8 Mallet e e e 149

23.8.1 Rate e e 149

23.8.2 DECAY e e e e 149
23.9 OcCtave e e e 150
23.10 Off . . . o e e e e e e 150
23. 110N . . . e e 150
23. 12 Print e e e e e 151
23. 13 PrintActive e e e e e e e 151
23.14 ScaleType o e 151
23.15SeQ . . . o 151
2316 SrUM o e e e e e e e e e 152
23.17 . Synchronize e e 153
23. 18 TranSPoSe o e e e e e e e e 153
23.19UNify . . L e e e e 154

Table Of Contents MA
24 Begin/End Blocks 155
24.1 Begin e e e e 155
242 End e 156

25 Documentation Strings 157
25.1 DOC e 157
25.2 AUthOr e e e 157
25.3 DocVar e e 158

26 Paths, Files and Libraries 159
26.1 File EXIENSIONS e e e e 159
26.2 Tilde Expansion e e e e e e e 160
26.3 EOf e e 160
26.4 LibPath e 161
26.5 AutoLibPath e 161
26.6 MIDIPlayer e 161
26.7 OutPath e e 162
26.8 Include e 162
26.9 IncPath e e 163
26.10USe e e 163
26.11 MmaStart e e e e 164
26. 12 MmaEnd e e e e 165
26.13RCFiles e e 165
26.14 Library Files e e 166
26.14.1 Maintaining and Using Libraries 166

26.15 Paths on Windows Platforms 168

27 Creating Effects 169
27.1 Overlapping Notes e e 169
27.2 Jungle Birds e e 170
28 Frequency Asked Questions 171
28.1 Chord Octaves e e e 171
28.2 AABASONgFOrMS e e e e e 171
28.3 Where'sthe GUI? e e 172
28.4 Where'sthe manual index? e 173

A Symbols and Constants 174
Al ChordNames e e e e 174
A.1.1 Octave Adjustment e e e e 178

A.l.2 AlteredChords e 178

A.1.3 DiminishedChords 178

A.1.4 SlashChords e 179

A.1.5 ChordInversions e e e e . 179

A.2 MIDIVOICES e e e 180

Table Of Contents MA

A.2.1 \oices, Alphabetically e 180

A.2.2 Voices,ByMIDIValue e 181

A3 DrumNotes e e 183
A.3.1 Drum Notes, Alphabetically 183

A.3.2 Drum Notes, by MIDIValue e 183

A4 MIDIControllers e 185
A.4.1 Controllers, Alphabetically 185

A.4.2 Controllers,byValue e 186

B Bibliography and Thanks 188
C Command Summary 189

Chapter 1

Overview and Introduction

Musical MIDI Accompanimentiia,! generates standard MIBfiles which can be used as a backup track
for a soloist. It was written especially for me—I am an asgrsaxophonist and wanted a program to
“play” the piano and drums so | could practice my jazz sologh\W#a | can create a track based on the
chords in a song, transpose it to the correct key for my instnt, and play my very bad improvisations
until they get a bit better.

| also lead a small combo group which is always missing at leas player. Withwfa generated tracks
the group can practice and perform even if a rhythm playerissimy. This all works much better than |
expected when | started to write the program ... so muchrxbte | have used# generated tracks for
live performances with great success.

Around the world musicians are usingA for practice, performance and in their studios. Much moaath
ever imagined when this project was started!

1.1 License, Version and Legalities

The programmsg was written by and is copyright Robert van der Poel, 2002—2007

This program, the accompanying documentation, and libiilay can be freely distributed according to
the terms of the GNU General Public License (see the digatbiile “COPYING”).

If you enjoy the program, make enhancements, find bugs, etd & note to me @ob@mellowood.ca ;
or a postcard (or even money) to PO Box 57, Wynndel, BC, Canada WIB 2

The current version of this package is maintainecti://www.mellowood.ca/mma/

This document reflects version 1.3 wfA.

IMusical MIDI Accompaniment and the short formiz in the distinctive script are names for a program written loypBan
der Poel. The “MIDI Manufacturers Association, Inc.” uske acronym MMA, but there is no association between the two.
2MIDI is an acronym for Musical Instrument Digital Interface

1.2 About this Manual Overview and Introduction

This program has recently changed its status from beta tx &drsion. | have done everything
| can to ensure that the program functions as advertised,l lagsume no responsibility for
anythingit does to your computer or data.

Sorry for this disclaimer, but we live in paranoid times.

This manual most likely has lots of errors. Spelling, grammad probably a number of the
examples need fixing. Please give me a hand and report agythitll make it much easier for
me to generate a really good product for all of us to enjoy.

1.2 About this Manual

This manual was written by the program author—and this isagéna very bad idea. But, having no
volunteers, the choice is no manual at all or my bad perspescti

M is a large and complex program. It really does need a manndlusers really need to refer to the
manual to get the most out of the program. Even the authouémtty refers to the manual. Really.

| have tried to present the various commands in a logical aedfuliorder. The table of contents should
point you quickly to the relevant sections.

1.2.1 Typographic Conventions

J1 The name of the program is always set in the special logo type:
71 afm commands and directives are set in small capgERTIVE.
J1 Important stuff is emphasize@mportant
71 Websites look like thishttp:/iwww.mellowood.ca/mma/index.html
J1 Filenames are set in bold typewriter fofiename.mma
JJ Lines extracted from a#a input file are set on individual lines:
A command from a file

71 Commands you should type from a shell prompt (or other opegatystem interface) have a leading
$ (to indicate a shell prompt) and are shown on separate lines:

$ enter this

3The problem, all humor aside, is that the viewpoints of a papgs author and user are quite different. The two “see”
problems and solutions differently, and for a user manuaptiogrammer’s view is not the best.

10

1.3 Installing MiA Overview and Introduction

1.2.2 BTEXand HTML

The manual has been prepared with #lgX typesetting system. Currently, there are two versiond-avai
able: the primary version is a PDF file intended for printingo-screen display (generated withpdf);
the secondary version is in HTML (transformed wiiigX2HTML) for electronic viewing. If other formats
are needed ... please offer to volunteer.

1.2.3 Other Documentation

In addition to this document the following other items areoramended reading:
J1 The standard library documentation supplied with this deent in PDF and HTML formats.
J1 The a7 tutorial supplied with this document in pdf and html formats
JJ VariousREADMEiles in the distribution.

J1 The Python source files.

1.2.4 Music Notation

The various snippets of standard music notation in this ramave been prepared with the MUP program.
| highly recommend this program and use it for most of my notatasks. MUP is available from Arkkra
Enterpriseshttp://www.Arkkra.com/

1.3 Installing /7

MAis a Python program developed with version 2.4 of PythonhAwmery least you will need this version
(or later) of Python!

To play the MIDI files you'll need a MIDI player. Pmidi, tseZyl, and many others are available for Linux
systems. For Windows and Mac systems I'm sure there are many choices.

You'll need a text editor likevi, emacsetc. to create input files. Don’t use a word processor!
M consists of a variety of bits and pieces:

JJ The executable Python scriptmé4, must somewhere in your path. For users running Windows or
Mac, please checks website for details on how to install on these systems.

J1 A number of Python modules. These should all be installeceutide directorylusr/local/
share/mma/MMA . See the enclosed filSSTALL for some additional commentary.

“4In the distribution this isnma.py. It is renamed to save a few keystrokes when entering the @m

11

1.4 Running MA Overview and Introduction

J3 A number of library files defining standard rhythms. Theseusthall be installed under the directory
lusr/local/share/mmallib/stdlib

The scriptscp-install or In-install will install a2 properly on most Linux systems. Both scripts
assume that main script is to be installedusi/local/bin and the support files itusr/local/share/

mma If you want an alternate location, you can edit the pathkénscript. The only supported alternate to
use islusr/share/mma

The difference between the two scripts is tinanstall creates symbolic links to the current location;
cp-install copies the files. Which to use it up to you, but if you have unpddke distribution in a
stable location it is probably easier to use the link version

In addition, youcanrun 97 from the directory created by the untar. This is not recoruaieen but will
show some ofvig’s stuff. In this case you'll have to execute the programififea.py.

You should be “root” (or at least, you need write permissionssr/local/) to run either install script.

If you want to installama on a platform other than Linux, please get the latest updedasour website at
www.mellowood.ca/mma

1.4 Running ¥4

For details on the command line operationsvith please refer to chapter 2.
To create a MIDI file you need to:

1. Create a text file (also referred to as the “input file”) witktructions whichw# understands. This
includes the chord structure of the song, the rhythm to Umeteémpo, etc. The file can be created
with any suitable text editor.

2. Process the input file. From a command line the instruction
$ mma myfile <ENTER>

will invoke a7 and, assuming no errors are found, create a MIDInfiféle.mid
3. Play the MIDI file with any suitable MIDI player.
4. Edit the input file again and again until you get the perfiesatk.
5. Share any patterns, sequences and grooves with the aotti@y can be included in future releases!

An input file consists of the following information:

1. ¢ directives. These includeEMPO, TIME, VOLUME, etc. See chapter 23.
2. PATTERN, SEQUENCEand (RoOVE detailed in chapters 4, 5, and 6.
3. Music information. See chapter 8.

4. Comment lines and blank lines. See below.

12

1.5 Comments Overview and Introduction

Items 1 to 3 are detailed later in this manual. Please reau tidore you get too involved in this program.

1.5 Comments

Proper indentation, white space and comments @@oa thing—and you really should use them. But, in
most case9£A4 really doesn’t care:

J1 Any leading space or tab characters are ignored,
J1 Multiple tabs and other white space are treated as singlacteas,
73 Any blank lines in the input file are ignored.
Each line is initially parsed for comments. A comment is aimg following a “//” (2 forward slashes).

Comments are stripped from the input stream. Lines startiitig tve COMMENT directive are also ig-
nored. See the @UMENT discussion on page 146 for detalils.

1.6 Theory Of Operation

To understand howz works it's easiest to look at the initial development coricépitially, a program
was wanted which would take a file which looked something like

Tempo 120
Fm
Cc7

and end up with a MIDI file which played the specified chordsr@adrum track.
Of course, after starting this “simple” project a lot of cdeties developed.

First, the chord/bar specifications. Just having a singedtiper bar doesn’t work—many songs have
more than one chord per bar. Second, what is the rhythm offtbels? What about bass line? Oh, and
where is the drummer?

Well, things got more complex after that. At a bare minimuhg program or interface should have the
ability to:

J1 Specify multiple chords per bar,
J1 Define different patterns for chords, bass lines and druoks;a
J1 Have easy to create and debug input files,

J1 Provide a reusable library that a user could simply plug irmodify.

5The first choice for a comment character was a single “#”, latt $ign is used for “sharps” in chord notation.

13

1.7 Case Sensitivity Overview and Introduction

From these simple needgn was created.

The basic building blocks ol are RTTERNS. A pattern is a specification which teligz what notes of
a chord to play, the start point in a bar for the chord/noted,the duration and the volume of the notes.

MA patterns are combined iINtESUENCES. This lets you create multi-bar rhythms.

A collection of patterns can be saved and recalled Re@/Es. This makes it easy to pre-define complex
rhythms in library files and incorporate them into your sonthwa simple two word command.

M is bar or measure based (we use the words interchangeallis iddcument). This means thaga
processes your song one bar at a time. The music specifidatgmall assume that you are specifying a
single bar of music. The number of beats per bar can be adjusteever, all chord changes must fall on
a beat division (the playing of the chord or drum note can paoywhere in the bar).

To make the input files look more musical supports RPEATS and REPEATENDINGS. However,
complexities likeD.S. and Coda are not internally supported (but can be created by usingabeo
command).

1.7 Case Sensitivity

Just about everything ina file is case insensitive.
This means that the command:
Tempo 120
could be entered in your file as:
TEMPO 120
or even
TeMpO 120
for the exact same results.
Names for patterns, and grooves are also case insensitive.

The only exceptions are the names for chords, noteiroS, and filenames. In keeping with standard
chord notation, chord names are in mixed case; this is ddtanl Chapter 8. Filenames are covered in
Chapter 26.

14

Chapter 2
Running MA

M is acommand line program. To run it, simply type the programe followed by the required options.
For example,

$ mma test
processes the fillest 1 and creates the MIDI fileest.mid

Whenam is finished it displays the name of the generated file, the mumbbars of music processed and
an estimate of the song’s duration. Note:

J1 The duration is fairly accurate, but it does not take intooant any mid-barEMPo changes.

J1 The report showsiinutesandhundredthf minutes. This is done deliberately so that you can add
a number of times together. Converting the time to minutessacdnds is left as an exercise for the
user.

2.1 Command Line Options

The following command line options are available:

Option | Description

Debugging and other aids to figuring out what'’s going on.

-V Show program’s version number and exit.

-d Enable LOTS of debugging messages. This option is mainligded for program
development and may not be useful to ugers.

-0 A debug subset. This option forces the display of complet¢@dines/paths as they

are opened for reading. This can be quite helpful in detarmgiwhich library files
are being used.
-p Display patterns as they are defined. The result of this digmot exactly a duplicate

of your original definitions. Most notable are that the nateation is listed in MIDI
ticks, and symbolic drum note names are listed with their ewicrequivalents.

LActually, the filetest ortestmma is processed. Please read section 26.1.
2A number of the debugging commands can also be set dynaynicallsong. See the debug section on page 147 for details.

15

2.1 Command Line Options Running MA

-S Display sequence info during run. This shows the expandsidised in sequences.
Useful if you have used sequences shorter (or longer) tharcdinrent sequence
length.

-r Display running progress. The bar numbers are displayelegsdare created com-

plete with the original input line. Don’t be confused by nipik listing of “*” lines.
For example the line

33 Cm=* 2
would be displayed as:

88: 33 Cm =2

89: 33 Cm =2
This makes perfect sense if you remember that the same liseisel to create both
bars 88 and 89.

-e Show parsed/expanded lines. Sirg@ does some internal fiddling with input lines,
you may find this option useful in finding mismatched®N blocks, etc.
-C Display the tracks allocated and the MIDI channel assigrimafter processing the

input file. No output is generated.

Commands which modify #’s behaviour.

-S Set a macro. If a value is needed, join the value to the nanteawit’. For example:
$ mma myfile -S tempo=120
will process the filenyfile.mma with the variable $Tempo set with the value “120”.
You need not specify a value:
$ mma myfile -S test
just sets the variable $test with no value.

-n Disable generation of MIDI output. This is useful for doinggeat run or to check for
syntax errors in your script.

-mBARS | Set the maximum number of bars which can be generated. Thaltlsétting is 500
bars (a long song). This setting is needed since you can create infinite logps b
improper use of theoTo command. If your song really is longer than 500 bars use
this option to increase the permitted size.

-Mx Generate type 0 or 1 MIDI files. The parameter “x” must be seh#osingle digit
“0” or "1”. For more details, see the M1 SMF section on page 125.
-P Play and delete MIDI file. Useful in testing, the generatezvilll be played with the

defined MIDI file player (see section on page 161). The fileéatzd in the current
directory and has the name “MMAtmpXXX.mid” with “XXX” set tthe current PID.

-0 Generate a synchronization tick at the start of every MIBtkr Note that the option
character is a “zero”, not a “O”. For more details see\SHRONIZE, page 153.
-1 Force all tracks to end at the same offset. Note that the mpt@racter is a “one”,

not an “L”. For more details seeYSICHRONIZE, page 153.

Maintaining M#A’'s database.

3500 bars with 4 beats per bar at 200 BPM is about 10 minutes.

16

2.2 Lines and Spaces Running MA

-0 Update the library database for the files in th@ PATH. You should run this com-
mand after installing new library files or adding a new grotivan existing library
file. If the database (stored in the files in each library undemamemmaDB is not
updated a4 will not be able to auto-load an unknown groove. Please itefée
detailed discussion on page 166 for details.

The current installation ofifa does not set directory permissions. It simply copies
whatever is in the distribution. If you have trouble usings thption, you will proba-
bly have to reset the permissions on the lib directory.

M will update the groove database with all files in the curre®RaTH. All files
musthave a “.mma” extension. Any directory containing a file ndriv®MAIGNORE
will be ignored. Note, thaIMAIGNOREonsists of all uppercase letters and is usually
an empty file.

-G Same as the “-g” option (above), but the uppercase versime$ahe creation of a
new database file—an update from scratch just in case sargetually goes wrong.

File commands.
-i Specify the RC file to use. See page 165.

-fFILE Set output to FILE. Normally the output is sent to a file witk ttaeme of the input file
with the extension “.mid” appended to it. This option letauyset the output MIDI
file to any file name.

The following commands are used to create the documentationAs a user you
should probably never have a need for any of them.

-Dk Print list of 27 keywords. For editor extension writers.
-DxI Expand and print Dc commands used to generate the standard library reference fo

Latex processing. No MIDI output is generated when this camanis given. Doc
strings in RC files are not processed. Files included in othes éire processed.

-Dxh Same as -DxI, but generates HTML output. Used byntkibdoc.py tool.

-Dv Displays verbose information about the currently definedges, sequences and pat-
terns. This information could be used to display (graply¢ahe different patterns
in a file.

2.2 Lines and Spaces

When 27 reads a file it processes the lines in various places. Thedsling strips out blank lines and
comments of the “//” type.

On the initial pass though the file any continuation linesjairged. A continuation line is any line ending
with a single "—simply, the next line is concatenated to the current lmereate a longer line.

Unless otherwise noted in this manual, the various partslioeaare delimited from each other by runs
of white space. White space can be tab characters or spades. dbaracters may work, but that is not

17

2.3 Programming Comments Running MA

recommended, and is really determined by Python’s defirstio

2.3 Programming Comments

M is designed to read and write files; it is not a fifter.

As noted earlier in this manualf has been written entirely in Python.There were some irctbalcerns
about the speed of a “scripting language” when the projed started, but Python’s speed appears to
be entirely acceptable. On an AMD Athlon 1900+ system rugmitandrake Linux 10.1, most of songs
compile to MIDI in well under one second. If you need fastesufes, you're welcome to recode this
program into C or C++, but it would be cheaper to buy a fastetesysor spend a bit of time tweaking
some of the more time intensive Python loops.

If you have Psycohttp://psyco.sourceforge.net/ , installeda# will attempt to install the correct
module. This will speed up a compilation by about 30%.

4A filter mode could be added twfa, but I'm not sure why this would be needed.

18

Chapter 3

Tracks and Channels

This chapter discussa@g# tracks and MIDI channels. If you are reading this manualfierfitrst time you
might find some parts confusing. If you do just skip ahead—gau runas2 without knowing many of
these details.

3.1 2 Tracks

To create your accompaniment trackga divides output into several internal tracks. There are al tuft
8 different types of tracks, and an unlimited number of galoks.

Whena#7 is initialized there are no tracks assigned; however, as janary and song files are processed
various tracks will be created. Each track is created a @nigume. The track types are discussed later in
this chapter, but for now they areaBs, CHORD, WALK, DRUM, ARPEGGIQ SCALE, MELODY, SOLO

and ARIA.

All tracks are named by appending a “-” and “name” to the tpp@ie. This makes it very easy to remem-
ber the names, without any complicated rules. So, drum $raak have names “Drum-1", “Drum-Loud”
or even “Drum-a-long-name”. The other tracks follow the samie.

In addition to the hyphenated names described above, yoalsamame a track using the type-name. So,
“DRUM" is a valid drum track name. In the supplied library lgou’ll see that the hyphenated form is
usually used to describe patterns.

All track names are case insensitive. This means that theesdf@hord-Sus”, “CHORD-SUS” and
“CHORD-sus” all refer to the same track.

If you want to see the names defined in a song, justmtson the file with the “-¢c” command line option.

3.2 Track Channels

MIDI defines 16 distinct channels numbered 1 to'IBhere is nothing which says that “chording” should
be sent to a specific channel, but the drum channel shoulgslbechannel 18.

1The values 1 to 16 are used in this document. Internally thegt@red as values 0 to 15.
2This is not a MIDI rule, but a convention established in the @B&neral MIDI) standard. If you want to find out more
about this, there are lots of books on MIDI available.

19

3.3 Track Descriptions Tracks and Channels

For a7 to produce any output, a MIDI channel must be assigned tack.tiuring initialization all of the
DRUM tracks are assigned to special MIDI channel 10. As nalslata is created other MIDI channels
are assigned to various tracks as needed.

Channels are assigned from 16 down to 1. This means that tlee fowmbered channels will most likely
not be used, and will be available for other programs or agglf@ard track” on your synth.

In most cases this will work out just fine. However, there araumber of methods you can use to set
the channels “manually.” You might want to read the sectionsCHANNEL (page 120), @SHARE
(page 121), @ (page 150), and €F (page 150).

Why bother with all these channels? It would be much easieutaibthe information onto one channel,
but this would not permit you to set special effects (like M@.iIs or MIDIPAN) for a specific track. It
would also mean that all your tracks would need to use the sastrementation.

3.3 Track Descriptions

You might want to come back to this section after reading nafrthe manual. But, somewhere, the
different track types, and why they exist needs to be detaile

Musical accompaniment comes in a combination of the folhauwi
J1 Chords played in a rhythmic or sustained manner,
41 Single notes from chords played in a sustained manner,
J1 Bass notes. Usually played one at a time in a rhythmic manner,
71 Scales, or parts of scales. Usually as an embellishment,
41 Single notes from chords played one at time: arpeggios.
J1 Drums and other percussive instruments played rhythngicall

Of course, this leaves the melody ... but that is up to youadat. . but, if you suspect that some power
is missing here, read the brief description afL® and MELODY tracks (page 22) and the complete “Solo
and Melody Tracks” chapter (page 60).

M comes with several types of tracks, each designed to fikdifit accompaniment roles. However, it’s
quite possible to use a track for different roles than oafljnenvisioned. For example, the bass track can
be used to generate a single, sustained treble note—or atjiegn H\RMONY, multiple notes.

The following sections describe the tracks and give a fevgsstjons on their uses.

3.3.1 Drum

Drums are the first thing one usually thinks about when we tieawvord “accompaniment”. Al#z drum
tracks share MIDI channel 10, which is a GM MIDI conventionmuB tracks play single notes determined

20

3.3 Track Descriptions Tracks and Channels

by the TONE setting for a particular sequence.

3.3.2 Chord

If you are familiar with the sound of guitar strumming, theouyre familiar with the sound of a chord.
M chord tracks play a number of notes, all at the same time. ®hene of the notes (and the number of
notes) and the rhythm is determined by pattern definitiohg. ifistrument used for the chord is determined
by the VOICE setting for a sequence.

3.3.3 Arpeggio

In musical terms a@rpeggic is the notes of a chord played one at a timéa arpeggio tracks take the
current chord and, in accordance to the current pattery, gtgle notes from the chord. The choice of
which note to play is mostly decided b7a. You can help it along with the IRECTION modifier.

ARPEGGIOtracks are used quite often to highlight rhythms. Using ti8xIR directive produces broken
arpeggios.

Using different note length values in patterns helps to miadeesting accompaniments.

3.3.4 Scale

The playing of scales is a common musical embellishmenthvhéds depth and character to a piece.

When a7 plays a scale, it first determines the current chord. Theae @ssociated scale for each chord
which attempts to match the flavor of that chord. The follgyiable sums up the logic used to create the
scales:

Major A major scale

Minor A melodic minor scal®

Diminished A melodic minor scale with a minor fifth and minor dominant eseth.
All scales start on the tonic of the current chord.

If the SCALETYPE is set to GHROMATIC, then a chromatic scale is used. The default fon&ETYPE is
AUTO.

MA plays successive notes of a scale. The timing and lengtheofdles is determined by the current
pattern. Depending on thelRECTION setting, the notes are played up, down or up and down the.scale

3The term is derived from the Italian “to play like a harp”.
41f you think that support for Melodic and Harmonic minor sesals important, please contact us.

21

3.4 Silencing a Track_ Tracks and Channels

3.3.5 Bass

BAss tracks are designed to play single notes for a chord for stahdass patterns. The note to be
played, as well as its timing, is determined by the pattefmdi®n. The pattern defines which note from
the current chord to play. For example, a standard basspatight alternate the playing of the root and
fifth notes of a scale or chord. You can also ugesBtracks to play single, sustained treble notes.

3.3.6 Walk
The WALK tracks are designed to imitate “walking bass” lines. Tiadully, they are played on bass
instruments like the upright bass, bass guitar or tuba.

A WALK track uses a pattern to define the note timing and volume. Whotd is played is determined
from the current chord and a simplistic algorithm. Theredasiser control over the note selection.

3.3.7 Solo and Melody

SoLo and MeLODY tracks are used for arbitrary note data. Most likely, thesiselody or counter-melody
... but these tracks can also be used to create interestitiggsnintroductions or transitions.

3.3.8 Automatic Melodies

Real composers don’'t need to fear much from this feature t.itlman create some interesting effects.
ARIA tracks use a predefined pattern to generate melodies overa gtogression. They can be used to
actuallycompose a bit of music or simply to augment a section of aniegipiece.

3.4 Silencing a Track

There are a number of ways to silence a track:
J1 Use the @F (page 150) command to stop the generation of MIDI data,
J1 Disable the sequence for the bar with an empty sequence 8&ge
71 Delete the entire sequence witE@CLEAR (page 37).
J1 Disable the MIDI channel with a “Channel 0” (page 120).

Please refer to the appropriate sections on this manualifthrer details.

22

Chapter 4

‘Patterns

A builds its output based omPTERNS and &QUENCEs supplied by you. These can be defined in the
same file as the rest of the song data, or can be included (aptecl26) from a library file.

A pattern is a definition for a voice or track which describdsatwhythm to play during the current bar.
The actual notes selected for the rhythm are determinedebgdhg bar data (see chapter 8).

4.1 Defining a Pattern

The formats for the different tracks vary, but are similanegh to confuse the unwary.
Each pattern definition consists of three parts:

J1 A unique label to identify the pattern. This is case-insévesi Note that the same label names can
be used in different tracks—for example, you could use tmeendyPattern” in both a Drum and
Chord pattern... but this is probably not a good idea. Namesusa punctuation characters, but
must not begin with an underscore’(: The pattern names “z” or “Z” and “-” are also reserved.

JJ A series of note definitions. Each set in the series is dedunitith a “;”.
71 The end of the pattern definition is indicated by the endiru:|

In the following sections definitions are shown in continoiadines; however, it is quite legal to mash all
the information onto a single line.

The following concepts are used when defining a pattern:

Start When to start the note. This is expressed as a beat offsetx&ompde, to start a note at the start of
a bar you use “1”, the second beat would be “2”, the fourth &¢. You can easily use off-beats
as well: The “and” of 2 is “2.5”, the “and ahh” of the first beat'll.75", etc. Using a beat offset
greater than the number of beats in a bar or less than “0” ipermhitted. Please note that offsets in
the range “0” to “.999” will actually be played in th@eviousbar (this can be useful in Jazz charts,
and it will generate a warning) See TME (page 86).

The offset can be further modified by appending a note lenggk (he duration chart, below). If
you want to specify an offset in the middle of the first beat gan use “1.5” or “1+8". The latter
means the first beat plus the value of an eight note. Thisioatet quite useful when generating

1The exception is that RME may move the chord back into the bar.

23

4.1 Defining a Pattern Patterns

“swing” sequences. For example, two “swing eights” chordgeat one would be notated as: “1
81 90; 1+81 82 90".

You can subtract note lengths as well, but this is rarely dax&d, to make your style files com-
pletely unreadable, you can even use note length combinsati§o, yes, the following pattern is
fine:2

Chord Define C1 2-81+4 82 90

Duration The length of a note is somewhat standard musical notatimce$t is impractical to draw in
graphical notes or to use fractions (like 2, uses a shorthand notation detailed in the following

table:
Notation | Description
1 Whole note
2 Half
4 Quarter
8 Eighth
81 The first of a pair of swing eights
82 The second of a pair of swing eights
16 Sixteenth
32 Thirty-second
64 Sixty-fourth
3 Eight note triplet
43 Quarter note triplet
23 Half note triplet
6 Sixteenth note triplet
5 Eight note quintuplet
0 A single MIDI tick

The “81” and “82” notations represent the values of a pairighth notes in a swing pair. These
values vary depending on the setting e/ ®8GMODE SKEW, see page 93.

The note length “0” is a special value often used in drum tsagkere the actual “ringing”length
appears to be controlled by the MIDI synth, not the drivinggyam. Internally, a “0” note length is
converted to a single MIDI tick.

Lengths can have a single or double dot appended. For exafgles a dotted half note and “4..”
adds an eight and sixteenth value to a quarter note.

Note lengths can be combined using “+”. For example, to madetted eight note use the notation
“8+16”, a dotted half “2+4”, and a quarter triplet “3+3”.

Note lengths can also be combined using a “-". For examplejake a dotted half you could use
“1-4”. Subtraction might appear silly at first, but is usefubenerating a notgist a bit shorter than
its full beat. For example, “1-0” will generate a note 1 MIdk shorter than a whole note. This

2The start offset is the value of the first of a pair of swing &ghlus a quartebeforethe second beat.

24

4.1 Defining a Pattern Patterns

can be used in generating breaks in sustained tones.

It is permissible to combine notes with “dots”, “+"s and “-"§he notation “2.+4” would be the
same as a whole note.

The actual duration given to a note will be adjusted by tla BBULATE value page 145).

Volume The MIDI velocity* to use for the specified note. For a detailed explanationwf#@i calculates
the volume of a note, see chapter 17.

MIDI velocities are limited to the range 0 to 127. Howevefiz does not check the volumes specified
in a pattern for validity,

In most cases velocities in the range 50 to 100 are useful.

Offset The offset into the current chord. If you have, for exampl€, minor chord (C, k&, and G) has 3
offsets: 0, 1 and 2. Note that the offsets refer to¢herd not the scale. For example, a musician
might refer to the “fifth"—this means the fifth note of a scalein a major chord this is the third
note, which has an offset of 2 .

Patterns can be defined fonBs, WALK, CHORD, ARPEGGIOand DRuM tracks. All patterns are shared
by the tracks of the same type=hord-Susand Chord-Pianoshare the patterns f@hord As a conve-
nience, M7 will permit you to define a pattern for a sub-track, but rementbat it will be shared by all
similar tracks. For example:

Drum Define S1 1 0 50
and
Drum-woof Define S1 1 0 50

Will generate identical outcomés.

4.1.1 Bass

A bass pattern is defined with:
Position Duration Offset Volume ; ...
Each group consists of an beat offset for the start pointntte duration, the note offset and volume.

The note offset is one of the digits “1” through “7”, each regenting a note of the chord scale. So, if you
want to play the root and fifth in a traditional bass patteragaise “1” and “5” in your pattern definition.

3See the supplied @oVE “Bluegrass” for an example.

4MIDI “note on” events are declared with a “velocity” valuehifik of this as the “striking pressure” on a piano.

5This is a feature that you probably don’t want to use, but if yeant to ensure that a note is always sounded use a very
large value (e.g., 1000) for the volume. That way, futurausiipents will maintain a large value and this large valu¢ lvél
clipped to the maximum permitted MIDI velocity.

SWhat really happens is that this definition is stored in a simhed “DRUM”.

25

4.1 Defining a Pattern Patterns

The note offset can be modified by appending a single or nelsiet of “+” or “-” signs. Each “+” will
force the note up an octave; each “-” forces it down. This riiedis handy in creating bass patterns when
you wish to alternate between the root note and the root ugtan®. . . but users will find other interesting
patterns. There is no limit to the number of “+”s or “-"s. Yoarceven use both together if you're in a
mood to obfuscate.

The note offset can be further modified with a single acciae’, "&” or "b”. This modifier will raise
or lower the note by a semitorieln the boogie-woogie library file a "6#” is used to generateaihant
7th.

Bass Define Broken8 1 8 1 90 ; \
28580 ; \
38390 ; \
4 8 1+ 80

Sheet Music Equivalent

e

- N
=4 i'vﬁvgv

Example 4.1: Bass Definition

Example 4.1 defines 4 bass notes (probably staccato eigig)raitbeats 1, 2, 3 and 4 irf dime bar. The
first note is the root of the chord, the second is the fifth; bk tnote is the third; the last note is the root
up an octave. The volumes of the notes are set to a MIDI vglo€i®0 for beats 1 and 3 and 80 for beats
2 and 4.

A refers to note tables to determine the “scale” to use in ajpat$srn. Each recognized chord type has
an associated scale. For example, the chord “Cm” consisteeafdtes “c”, “@” and “g”; the scale for this
chordis“c,d, e, f, g, a, b"

Due to the ease in which specific notes of a scale can be spe@fisstracks and patterns are useful for
much more than “bass” lines! These tracks are useful foagwst string voices, interesting arpeggio and
scale lines, and counter melodies.

4.1.2 Chord

A Chord pattern is defined with:

Be careful using this feature . .. certain scales/chords metayn non-musical results.

26

4.1 Defining a Pattern Patterns

Position Duration Volumel Volume2 .. ; ...

Each group consists of an beat offset for the start pointndte duration, and the volumes for each note
in the chord. If you have fewer volumes than notes in a chbil|ast volume will apply to the remaining
notes.

Chord Define Straight4+3 1 4 100 ; \
2490 ; \
3 4 100 ; \
4 390 ; \
43 380 ; \
46 3 80

Sheet Music Equivalent

S
<+)

|—3—l

Example 4.2: Chord Definition

Example 4.2 defines apattern in a quarter, quarter, quarter, triplet rhythm. @barter notes sound on
beats 1, 2 and 3; the triplet is played on beat 4. The examplaras that you have C major for beats 1
and 2, and G major for 3 and 4.

Using a volume of “0” will disable a note. So, you want only tie®t and third of a chord to sound, you
could use something like:

Chord Define Dups 1 8 90 0 90 0; 3 8 90 0 90 O

4.1.3 Arpeggio

An Arpeggio pattern is defined with:
Position Duration Volume ; ...

The arpeggio tracks play notes from a chord one at a time. i$lysite different from chords where the
notes are played all at once—refer to theErRBM directive (page 152).

Each group consists of an beat offset, the note durationftedote volume. You have no choice as to
which notes of a chord are played (however, they are playedténnating ascending/descending oftler.

8See the DRECTION command (page 148).

27

4.1 Defining a Pattern Patterns

Volumes are selected for the specific beat, not for the acital.

Arpeggio Define 4s 1 4 100; \
2 4 90; \
3 4 100; \
4 4 100

Sheet Music Equivalent

Example 4.3: Arpeggio Definition

Example 4.3 plays quarter note on beats 1, 2, 3 and 4 of a Hairnre.

4.1.4 Walk

A Walking Bass pattern is defined with:
Position Duration Volume ; ...

Walking bass tracks play up and down the first part of a scal@ng attention to the “coloP’of the chord.
Walking bass lines are very common in jazz and swing musiey&ppear quite often as an “emphasis”
bar in marches.

Each group consists of an beat offset, the note durationtrendote volume 264 selects the actual note
pitches to play based on the current chord (you cannot chiang)e

Example 4.4 plays a bass note on beats 1, 2 and 3 of a Bame.

4.1.5 Scale

A scale pattern is defined with:

9The color of a chord are items like “minor”, “major”, etc. Therrrent walking bass algorithm generates acceptable

(uninspired) lines. If you want something better there ithimg stopping you from using aIRF to over-ride the computer
generated pattern for important bars.

28

4.1 Defining a Pattern Patterns

Walk Define Walkd 1 4 100 ; \
2 4 90; \
3 4 90

Example 4.4: Walking Bass Definition

Position Duration Volume ; ...

Each group consists of an beat offset for the start pointtiie duration, and volume.

Scale Define S1 1 1 90
Scale Define S4 S1 x 4
Scale Define S8 S1 * 8

Example 4.5: Scale Definition

Example 4.5 defines three scale patterns: “S1” is just aesiwpble note, not that useful on its own, but it
is used as a base for “S4” and “S8”.

“S4” is 4 quarter notes and “S8” is 8 eight notes. All the voasware set to a MIDI velocity of 90.

Scale patterns are quite useful in endings. More optionsdates detailed in theCRLEDIRECTION
(page 148) and &LETYPE (page 151) sections.

4.1.6 Aria

An aria pattern is defined with:
Position Duration Volume ; ...

much like a scale pattern. Please refer to the theafsection (page 67) for more details.

4.1.7 Drum

Drum tracks are a bit different from the other tracks disedsso far. Instead of having each track saved
as a separate MIDI track, all the drum tracks are combinead DI track 10.

A Drum pattern is defined with:

29

4.1 Defining a Pattern Patterns

Drum Define S2 1 0 100; \
2080 ; \
30100 ; \
4 0 80

Example 4.6: Drum Definition

Position Duration Volume; ...

Example 4.6 plays a drum sound on beats 1, 2, 3 and 4 of a laimre. The MIDI velocity (volume) of
the drum is 100 on beats 1 and 3; 80 on beats 2 and 4.

This example uses the special duration of “0”, which indésat MIDI tick.

4.1.8 Drum Tone

Essential to drum definitions is theoNE directive.

When a drum pattern is defined it uses the default “note” orétomhich is a snare drum sound. But,
this can (and should) be changed using tleenE directive. This is normally issued at the same time as a
sequence is set up (see chapter 5).

TONE is a list of drum sounds which match the sequence length.’sd@rghort, concocted example (see
the library files for many more):

Drum Define S1 1 0 90

Drum Define S2 S1 * 2

Drum Define S4 S1 =+ 4

SeqClear

SeqSize 4

Drum Sequence S4 S2 S2 S4

Drum Tone SnareDruml SideKick LowToml Slap

Here the drum patterns “S2” and “S4” are defined to sound a dmirbeats 1 and 3, and 1, 2, 3 and 4
respectively (see section 4.3 for details on the “*” optioNext, a sequence size of 4 bars and a drum
sequence are set to use this pattern. Finally is instructed to use a SnareDrum1 sound in bar 1, a
SideKick sound in bar 2, a LowTom1 in bar 3 and a Slap in bar thdfsong has more than four bars, this
sequence will be repeated.

In most cases you will probably use a single drum tone namthéentire sequence, but it can be useful
to alternate the tone between bars.

To repeat the same “tone” in a sequence list, use a single “/".

30

4.2 Including Existing Patterns in New Definitions Patterns

The “tone” can be specified with a MIDI note value or with a syinbname. For example, a snare drum
could be specified as “38” or “SnareDrum1”. Appendix A.3diatl the defined symbolic names.

It is possible to substitute tone values. See tbesHTR command (see page 142).

4.2 Including Existing Patterns in New Definitions

When defining a pattern, you can use an existing pattern narpla@e of a definition grouping. For
example, if you have already defined a chord pattern (whighaiged on beats 1 and 3) as:

Chord Define M13 1 4 80; 3 4 80

you can create a new pattern which plays on same beats an@ aduge push note just before the third
beat:

Chord Define M1+3 M13; 2.5 16 80 0
A few points to note:
J1 the existing pattern must exist and belong to the same track,
JJ the existing pattern is expanded in place,
J1 itis perfectly acceptable to have several existing definii just be sure to delimit each with a *;”,

J1 the order of items in a definition does not matter, each wilplaeed at the correct position in the
bar.

This is a powerful shortcut in creating patterns. See thieided library files for examples.

4.3 Multiplying and Shifting Patterns

Since most pattern definitions are, internally, repet&jogwou can create complex rhythms by multiplying
a copy of an existing pattern. For example, if you have defanpdttern to play a chord on beats 1 though
4 (a quarter note strum), you can easily create a similaepato play eighth note chords on beats 1, 1.5,
etc. though 4.5 with a command like:

Track Define NewPattern OldPattern * N

where “Track” is a valid track name (“Chord”, “Walk”, “Bass’Afpeggio” or “Drum”, as well as “Chord2”
or “DRUM3”, etc.).

The “*” is absolutely required.
“N” can be any integer value between 2 and 100.

In example 4.7 a Drum pattern is defined which plays a drum tonkeat 1 (assumingjtime). Then a
new pattern, “S13”, is created. This is the old “S1” multgaliby 2. This new pattern will play a tone on
beats 1 and 3.

31

4.3 Multiplying and Shifting Patterns Patterns

Drum Define S1 1 1 100
Drum Define S13 S1 * 2
Drum Define S1234 S1 =«
Drum Define S8 S1234
Drum Define S16 S8 * 2
Drum Define S32 S16 * 2
Drum Define S64 S1 * 64

4
2

Example 4.7: Multiply Define

Next, “S1234” is created. This plays 4 notes, one the each bea

Note the definition for “S64”: “S32” could have been multgdi by 2, but, for illustrative purposes, “S1”
has been multiplied by 64—same result either way.

When 211 multiplies an existing pattern it will (usually) do what yexpect. The start positions for all
notes are adjusted to the new positions; the length of alhtites are adjusted (quarter notes become
eighth notes, etc.). No changes are made to note offsetduomes.

Example 4.8 shows how to get a swing pattern which might b&uliee a snare drum.

To see the effects of multiplying patterns, create a sinmgséftle and process it though with the “-p”
option.

Even coolel? is combining a multiplier, and existing pattern and a nevigvatall in one statement. The
following is quite legal (and useful):

Drum Define D1234 1 0 90 =+ 4
which creates drum hits on beats 1, 2, 3 and 4.
More contrived (but examples are needed) is:
Drum Define Dfunny D1234 x 2; 1.5 0 70 * 2
If you're really interested in the result, rum with the “-p” option with the above definition.

An existing pattern can be modified Ishifting it a beat, or portion of a beat. This is done imaa
definition with the $IFT directive. Example 4.9 shows a triplet pattern createddy ph beat 1, and then
a second pattern played on beat 3.

Note that the shift factor can be a negative or positive valtiean be fractional. Just be sure that the
factor doesn't force the note placement to be less than leatgrthan the iIME setting.

And, just like the multiplier discussed earlier you can shétterns as they are defined. And shifts and
multipliers can be combined. So, to define a series of quadis on the offbeat you could use:

191 this case the word “cool” substitutes for the more cortaseful”.

32

4.3 Multiplying and Shifting Patterns Patterns

Begin Drum Define
SB8 1 2+16 0 90 ; 3.66 4+32 80
SB8 SB8 * 4

End

Sheet Music Equivalent, Normal Notation

Sheet Music Equivalent, Actual Rhythm

LT MIT),

Example 4.8: Swing Beat Drum Definition

Drum Define D1234" 1 0 90 * 4 Shift .5
which would create the same pattern as the longer:
Drum Define D1234" 1.5 1 90; 25 1 90; 3.5 1 90; 45 1 90

33

4.3 Multiplying and Shifting Patterns Patterns

Chord Define C1-3 1 3 90; \
1.33 3 90; 1.66 3 90

3

Chord Define C3-3 C1-3 Shift 2
g@i‘ :
4
o $33

Example 4.9: Shift Pattern Definition

34

Chapter 5

Sequences

Patterns by themselves don’'t do much good. They have to bbioedhinto sequences to be of any use to
you or toMiA.

5.1 Defining Sequences

A SEQUENCEcommand sets the pattern(s) used in creating each trackuimspog:
Track Sequence Patternl Pattern2 ...
“Track” can be any valid track name: “Chord”, “Walk”, “WalkuS”, “Arpeggio-88”, etc.

All pattern names used when setting a sequence need to bedlefiren this command is issued; or you
can use what appears to be a pattern definition right in theesmg command by enclosing the pattern
definition in a set of curly bracketg“}”.

SeqClear
SeqSize 2
Begin Drum
Sequence Snare4
Tone Snaredruml
End
Begin Drum-1
Sequence Bassl Bass2
Tone KickDrum?2
End
Chord Sequence Broken8
Bass Sequence Broken8
Arpeggio Sequence {11100 = 8 } {11
80 * 4 }

Example 5.1: Simple Sequence

35

5.1 Defining Sequences Sequences

Example5.1 creates a 2 bar pattern. The Drum, Chord and Bdesnsatepeat on every bar; the Drum-1
sequence repeats after 2 bars. Note how the Arpeggio patdefined at run-timé.

If there are fewer patterns thare§SizE, the sequence will be filled out to correct size. If the numdder
patterns used is greater thaB@IZE (see chapter 23) a warning message will be printed and therpat
list will be truncated.

When defining longer sequences, you can use the “repeat” dymisingle “/”, to save typing. For
example, the following two lines are equivalent:

Bass Sequence Bassl Bassl Bass2 Bass2
Bass Sequence Bassl / Bass2 /

The special pattern name “-” (no quotes, just a single hyptama single “z” can be used to turn a track
off. For example, if you have set the sequences in examplartdldecide to delete the Bass halfway
though the song you could:

Bass Sequence -

The special sequences, “-” or “z”, are also the equivalerd odst or “tacet” sequence. For example, in
defining a 4 bar sequence with a 1-5 bass pattern on the firss&hd a walking bass on bar 4 you might
do something like:

Bass Sequence Bass4-13 / / z
Walk Sequence z / /| Walk4-4

If you already have a sequence defihgdu can repeat or copy the existing pattern by using a sirgle “
as the pattern name. This is useful when you are modifyingestiy sequence.

For example, assume that we have created a four BardSE called “Neato”. Now, we want to change
the CHORD pattern to use for an introduction ... but, we really only wi@nchange the fourth bar in the
pattern:

Groove Neato
Chord Sequence = *= * {1 2 90}
Defgroove Neatolntro

When a sequence is created a series of pointers to the exitgrns are created. If you change the
definition of a particular pattern later in your file the newidigion will have no effect on your existing
sequences.

Sequences are the workhorsesfz. With them you can set up many interesting patterns andtiang
This chapter should certainly give more detail and many regesmples.

The following commands help manipulate sequences in yaatioms:

Lif you run i with the “-s” option you'll see pattern names in the format™ The leading underscore indicates that the
pattern was dynamically created in the sequence.
2In reality there is always a sequence defined for every tiaakit might be a series of “rest” bars.

36

5.2 SeqClear Sequences
5.2 SeqClear

This command clears all existing sequences from memory.useful when defining a new sequence and
you want to be sure that no “leftover” sequences are actikie.cbmmand:

SeqClear
deletes all sequence information, with the important etioaghat L0 tracks are ignored.
Alternately, the command:
Drum SeqClear
deletesall drum sequences. This includes the track “Drum”, “Drum1¢g, et
If you use a sub-track:
Chord-Piano SeqClear
only the sequence for that track is cleafed.
In addition to clearing the sequence pattern, the follovatiger settings are restored to a default condition:
J1 Track Invert setting,
J1 Track Sequence Rnd setting,
J1 Track MidiSeq setting,
JJ Track octave,
JJ Track voice,
JJ Track Rvolume,
71 Track Volume,
71 Track RTime,
J3 Track Strum.

CAUTION: It is not possible to clear only a track likeADM or CHORD using this command. The
command

Chord SeqClear

resetxall CHORD tracks, whereas the command:

3|t is probably easier to use the command:
Chord-Piano Sequence -

if that is what you want to do. In this casaly sequence pattern is cleared.

37

5.3 SeqRnd Sequences

Chord-Foo SeqClear

resets the BoORD-Foo track. If you need to cleawnly the CHORD track use the “-” option.

5.3 SeqRnd

Normally, the patterns used for each bar are selected im.dideexample, if you had a sequence:

Drum-2 Sequence P1 P2 P3 z

bar 1 would use “P1”, bar 2 “P2”, etc. However, it is quite pbks (and fun and useful) to insert a
randomness to the order of sequencisl can achieve this in three different ways:

1. Separately for each track:
Drum-Snare SeqRnd On
2. Globally for all tracks:
SeqRnd On
3. For a selected set of tracks (keeping the tracks synceadji
SeqRnd Drum-Snare Chord-2 Chord-3
To disable random sequencing:

SeqRnd Off
Drum SegRnd Off

To illustrate the different effects you can generate, asstimt you have a total of four tracks defined:
Drum-Snare, Drum-Low, Chord and Bass; your sequence sizeass4 and you have created some type
of sequence for each track with a commands similar to:

Drum-Snare Sequence D1 D2 D3 D4
Drum-Low Sequence D11 D22 D33 D44
Chord Sequence C1 C2 C3 C4

Bass Sequence Bl B2 B3 B4

With no sequence randomization at all, the tracks will be toegssed as:

Bar

Track 1 2 3 4 5

Drum-Snare D1 D2 D3 D4 D1

Drum-Low | D11 D22 D33 D44 D11
Chord|C1 C2 C3 C4 cC1
Bass| Bl B2 B3 B4 Bi1

Next, assume we have set sequence randomization with:

38

5.3 SeqRnd

Sequences

SegRnd On
Now, the sequence may look like:

Bar
Track 1 2 3 4 5

Drum-Snare D3 D1 D1 D2 D4

Drum-Low | D33 D11 D11 D22 D44
Chord|C3 C1 Cl1 C2 (4
Bass B3 Bl Bl B2 B4

Note that the randomization keeps the different sequeraoggthier: Drum sequences D3 and D33 are
always played with Chord sequence C3, etc.

Next, we will set randomization for a Drum and Chord track only

Drum-Low SeqRnd On
Chord SegRnd On

Bar
Track 1 2 3 4 5

Drum-Snaref D1 D2 D3 D4 D1

Drum-Low | D22 D11 D44 D44 D33
Chord/C3 C4 C2 Cl1 cC1
Bassy B B2 B3 B4 Bl

In this case there is no relationship between any of the rangm tracks.

Finally, it is possible to set a “global’ randomization fosalected set of tracks. In this case we will set
the Drum tracks only:

SegqRnd Drum-Snare Drum-Low

Bar
Track 1 2 3 4 5

Drum-Snare, D3 D1 D4 D4 D2

Drum-Low | D33 D11 D44 D44 D22
Chord|C1 C2 C3 C4 cC1
Bassi Bl B2 B3 B4 Bl

Note that the drum sequences always “line up” with each ahdrthe Chord and Bass sequences follow
in the normal order.

The SEQCLEAR command will disable all sequence randomization. Tl Sommand will disable
“global” (for all tracks) randomization.

39

5.4 SeqRndWeight Sequences

5.4 SegRndWeight

When SEQRND is enabled each sequence for the track (or globally) hasaeal efjance of being selected.
There are times when you may want to change this behavioureXample, you might have a sequence
like this:

Chord Sequence C1 C2 C3 C4
and you feel that the patterns C1 and C2 need to be used twiceeasagfC3 and C4. Simple:
Chord SeqRndWeight 2 2 1 1

Think of the random selection occurring like selecting $allit of bag. The SQRNDWEIGHT command
“fills up the bag.” In the above case, there will be two C1 and ABpane C3 and C4 ball— for a total
of six balls.

This command can be used in both a track and global context.
The effects are saved inR®OVES

SEQCLEAR will reset both global and track contexts to the default édpoondition.

5.5 SegSize

The number of bars in a sequence are set with the “SeqSizethemith. For example:
SeqSize 4

sets it to 4 bars. The SeqSize applies to all tracks.

This command resets tlsequence counteo 1.

If some sequences have already been defined, they will beatieth or expanded to the new size. Trun-
cation is done by removing patterns from the end of the sempjexpansion is done by duplicating the
sequence until it is long enough.

40

Chapter 6

Grooves

Grooves, in some ways, an#A’s answer to macros. . . but they are cooler, easier to useharela more
musical name.

Really, though, a groove is just a simple mechanism for sasimgj restoring a set of patterns and se-
guences. Using grooves it is easy to create sequence éibrahich can be incorporated into your songs
with a single command.

6.1 Creating A Groove

A groove can be created at anytime in an input file with the camgin
DefGroove SlowRhumba

Optionally, you can include a documentation string to the efnthis command:
DefGroove SlowRumba A descriptive comment!

A groove name can include any character, including digits@mctuation. However, it cannot include a
space character (used as a delimiter) or’a tbr can consist solely of digits

In normal operation the documentation strings are ignoredwever, whena7 is run with the -Dx
command line option these strings are printed to the terdrsgraen inATEX format. The standard library
document is generated from this data. The commemnistbe suitable forATgX: this means that special
symbols like “#”, “&”, etc. must be “quoted” with a precediny’.

At this point the following information is saved:
J1 Current Sequence size,
71 The current sequence for each track,
J1 Time setting (quarter notes per bar),
71 “Accent”,

J1 “Articulation” settings for each track,

1The '/ is reserved for future enhancements.
212345and?2 are invalid;11foollanda2-2are permitted.

41

6.1 Creating A Groove Grooves

J1 “Compress”,

J3 “Direction”,

71 “DupRoot”,

J1 “Harmony”,

J1 “HarmonyOnly”,

71 “HarmonyVolume”,

I3 “Invert”,

J3 “Limit”,

J1 “Mallet” (rate and decay),

2 “MidiSeq,

J3 “MidiVoice”,

71 “MidiClear”

71 “NoteSpan”,

43 “Octave”,

71 “Range”,

53 “RSkip”,

J “Rtime”,

43 “Rvolume”,

JJ “Scale”,

J1 “SeqRnd”, globally and for each track,
J1 “SeqRndWeight”, globally and for each track,
93 “Strum”,

J1 “SwingMode” Status and Skew,
J1 “Time Signature”,

43 “Tone” for drum tracks,

33 “Unify”,

93 “Voice”,

J1 “VoicingCenter”,

J1 “VoicingMode”,

J1 “VoicingMove”,

42

6.2 Using A Groove Grooves

J1 “WoicingRange”,
3 “Volume” for tracks and master,

53 “VolumeRatio”.

6.2 Using A Groove

You can restore a previously defined groove at anytime in goag with:
Groove Name

At this point all of the previously saved information is r@sd.

A few cautions:

71 Pattern definitions aneot saved in grooves. Redefining a pattern results in a new pattdimition.
Sequences use the pattern definition in effect when the seque declared.

J1 The “SeqSize” setting is restored with a groove. The sequ@oint is also reset to bar 1. If you
have multi-bar sequences, restoring a groove may upseigeaof the sequence pattern.

To make life (infinitely) more interesting, you can specifpma than one previously defined groove. In
this case the next groove is selected after each bar. Forptgam

Groove Tango LightTango LightTangoSus LightTango
would create the following bars:
1. Tango
2. LightTango
3. LightTangoSus
4. LightTango
5. Tango

Note how the groove pattern wraps around to the first one wihehdt is exhausted. There is no way to
select an item from the list, except by going though it.

You might find this handy if you have a piece with an altermgtime signature. For example, you might
have a} 1 song. Rather than creating a 2 bar groove, you could do somggihe:

Groove Groove34 Grooved4

For long lists you can use the “/” to repeat the last groové@list. The example above could be written:

43

6.2 Using A Groove Grooves

Groove Tango LightTango LightTangoSus /

When you use the “list” feature of @ 0OVESs you should be aware of what happens with the bar sequence
number. Normally the sequence number is incremented aditghr bar is processed; and, when a new
groove is selected the sequence number is reset (@egp8ge 151). When you use a list which changes
the GROOVE after each bar the sequence number is reset after each téh.one exception: if the same
GROOVE is being used for two or more bars the sequence will not be.?ese

Another way to select 800OVEs is to use a list of grooves with a leading value. This lets gelect
the GROOVE to use based on the value of a variable ... handy if you waferdiiit sounds for repeated
sections. Again, an example:

Set loop 1 // create counter with value of 1

Repeat
Groove $loop BossaNovaSus BossaNovalSus BossaNovaFill
print This is loop $Loop ... Groove is $ _Groove
1 A/ Am

Inc Loop // Bump the counter value
RepeatEnd 4

If you use this option, make sure the value of the counteraatgr than 0. Also, note that the values larger
than the list count are “looped” to be valid. The use of “/"s fepeated names is also permitted. For an
example have a look at the fidgooves.mma , included in this distribution. You could get the same resul
with various “if” statements, but this is easier.

6.2.1 Overlay Grooves

To make the creation of variations easier, you can use@E in a track setting:
Scale Groove Funny

In this case only the information saved in the correspon@egGROOVE FUNNY for the SCALE track
will be restored. You might think of this as a “groove oveflallave a look at the sample song “Yellow
Bird” for an example.

When restoring track grooves, as in the above example, HESIRE is not reset. The sequence size of
the restored track is adjusted to fit the current sequeneessiting.

One caution with these “overlays” is that no check is donestitthe track you're using exists. Yes, the
GROOVE must have been defined, but not the track. Huh? Well, you ree&ddw a bit about howim
parses files and how it handles new tracks. Wh@mreads a line in a file it first checks to see if the first
word on the line is a simple command lik&RT, MIDI or any other command which doesn’t require a
leading trackname. Ifitis, the appropriate function idexhiand file parsing continues. Ifitis not a simple
commandnmiA tests to see if it is a track specific command. But to do thatst fias to test the first word
to see if it is a valid track name likBassor Chord-Major. And, if it is a valid track name and that track

3Actually, 27 checks to see the nextR®oOVE in the list is the same as the current one, and if it is then ramgé is done.

44

6.3 Groove Aliases Grooves

doesn’t exist, the track is created. . . this is dtwedorethe rest of the command is processed. So, if you
have a command like:

Bass-Foo Groove Something
and you really meant to type:

Bass-Foe Groove Something
you’ll have a number of things happening:

1. The trackBass-Foowill be created. This is not an issue to be concerned oveesindata will be
created for this new track unless you setEQBENCEfor it.

2. As part of the creation, all the existinqRGoVEs will have theBass-Fodrack (with its default/empty
settings) added to them.

3. And the current setting you think you're modifying withetBass-Foesettings will be created with
the Bass-Foasettings (which are nothing).

4. Eventually you'll wonder whya isn’t working.

So, be very careful using this command option. Check yourdisgelAnd use the RINTACTIVE com-
mand to verify your ROOVE creations. A basic test is done by when you use a 800OVE in this
manner and if the sequence for the named track is not defined/ijioget a warning.

6.3 Groove Aliases

In an attempt to make the entire groove naming issue simghegdditional command has been added.
More complication to make life simpler.

You can create an alias for any defineg@>VE name with:
DefAlias NewAlias SomeGroove
Now you can refer to the groove “SomeGroove” with the namewNkas”.
A few rules:
J1 the alias name must not be the name of a currently defined groov
41 when defining a new groove you cannot use the name of an alias.

Groove aliases are a tool designed to make it possible todhstadard set of groove namesiim usable
at the same time as the standard library.

There is a major difference between a groove alias and thglsiatt of assigning two names to the same
groove. Consider this snippet:

45

6.4 Deleting Grooves Grooves

define some things ...
Defgroove Good
Defgroove Good2

You now have both “good” and “good2” assigned to the same sséguences, etc. Now, lets change
something:

Groove Good
Chord Voice Accordion

Now, the groove “good” has an accordion voicing; “good2il $tas whatever the old “good” had. Com-
pare this with:

define some things ...
DefGroove Good
DefAlias Good2 Good

Now, make the same change:

Groove Good
Chord Voice Accordion

By using an alias “good2” now points to the changed “good”.

6.4 Deleting Grooves

There are times when you might wamia to forget about all the 8o0OVEs in its memory. Just do a:
GrooveClear

at any point in your input file and that is exactly what happé&hs, “why,” you may ask, “would one want
to do this?” One case would be to force the re-reading of afbfile. For example, a library file might
have a user setting like:

If Ndef ChordVoice
Set ChordVoice Pianol
Endif

In this case you could set the variable “ChordVoice” befordiag any of the GOOVEs in the file. All
works! Now, assume that you have a repeated section and avahihge the voice. Simply changing the
variabledoes not workThe library file isn’t re-read since the existinlRGoVE data is already in memory.
Using GROOVECLEAR erases the existing data and forces a re-reading of theylibla

Please note that low-level setting like MIDI track assignisearenot changed by this command.

Groove aliases are also deleted with this command.

46

6.5 Library Issues Grooves

6.5 Library Issues

If you are using a groove from a library file, you just need tasdmething like:
Groove Rhumba2
at the appropriate position in your input file.

One minor problem whiclmayarise is that more than one library file has defined the sanm/gnoame.
This might happen if you have a third-party library file. Foetproposes of this example, lets assume
that the standard library file “rhumba.mma” and a second kle-rhumba.mma” both define the groove
“Rhumba2”. The auto-load (see page 163) routines which bdarclibrary database will load the first
“Rhumba2” it finds, and the search order cannot be determifedvercome this possible problem, do a
explicit loading of the correct file. In this case, simply do:

Use xyz-rhumba

near the top of your file. And if you wish to switch to the groalefined in the standard file, you can
always do:

Use rhumba

just before the groove call. Thedg will read the specified file and overwrite the old definition of
“Rhumba2” with its own.

This issue in covered in more detail on page 166 of this manual

47

Chapter 7

Riffs

In previous chapters you were shown how to creata®r PRN which becomes a part of aEQUENCE
And how to set a musical style by defining ®GOVE.

These predefined @ oVEs are wonderful things. And, yes, entire accompanimenksraan be created
with just some chords and a singleRGOVE. But, often a bit of variety in the track is needed.

The RFF command permits the setting of an alternate pattern for @k for a single bar—this overrides
the current 8QUENCEfor that track.

The syntax for RFF is very similar to that of EFINE, with the exception that no pattern name is used.
You might think of RFF as the setting of anERQUENCEwith an anonymous pattern.

A RIFF is set with the command:
Track Riff Pattern

where:

Track is any validas7 track name,

Pattern is any existing pattern name defined for the specified track, gattern definition following the
same syntax as aHFINE. In addition the pattern can be a single “z”, indicating nttgxa for the
specified track.

Following is a short example using# to change the Chord Pattern:

Groove Rhumba

1 Fm7

2 Bb7

3 EbM7

Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
4 Eb6 / Eb

5 Fm7

In this case there is a Rhumba Groove for the song; howevearid the melodic pattern is emphasized
by chording a quarter-note triplet over beats 3 and 4. Indhge the pattern has been defined right in the
RIFF command.

The next example shows thatdR patterns can be defined just like the patterns used in a seguen

48

Drum Define Emph8 1 0 128 * 8
Groove Blues

1C

2 G

Drum-Clap Riff Emph8

3G

4 F

Drum-Clap Riff Emph8

5C

Here theEmph8pattern is defined as a series of eighth notes. This is apfdretie third and fifth bars.
If you compile and play this example you will hear a sporadiadiclap on bar 3. ThBrum-Claptrack
was previously defined in the BluesRGoVE as random claps on beats 2 and 4—owrRhanges this to
a louder volume with multiple hits.

The special pattern “z” can be used to turn off a track for glsibvar. This is similar to using a “z” in the
SEQUENCEdirective.

A few things to keep in mind when using #¥s:
J1 Each RFF s in effect for only one bar (see the discussion below abaultiple RIFFs.

71 RIFF sequences are always enabled. Even if there is no sequaraéréak, or if the “z” sequence
is being used, the pattern specified irFRwill apply.

J1 The existing voicing, articulation, etc. for the track valbply to the RFF.

71 It's quite possible to use a macro for repeatadr®. The following example uses a macro which
sets the WLUME, ARTICULATE, etc. as well as the pattern. Note how the pattern is injtsgit as
single whole note, but, redefined in theFRas a run controlled by another macro. In bar 2 an eight
note run is played and in bar 5 this is changed to a run of taple

Mset CRIff
Begin Scale
Define Run 1 1 120
Riff Run * $SSpeed
Voice AltoSax
Volume f
Articulate 80
Rskip 5
End
MsetEnd
Groove Blues
1C
Set SSpeed 8
$CRiff
2 G
3G
Set SSpeed 12

49

$CRIFF
5 C

J1 A RIFF can only be deleted by using it (i.e., a music bar follows #iirsg), with a $QCLEAR or
by a track DELETE.

RIFFs can also be used to specify a bar of music imba&or MELODY track. Please see the “Solo and
Melody” chapter 10.

The above examples show how to apply a temporary pattern itogbe oar—the bar which follows the
RIFF command. But, you can “stacka number of patterns to be processed sequentially. Eackssice
RIFF command adds a pattern to the stack; these patterns arepghked” from the stack as successive
chord lines are processed.

Recycling an earlier example, lets assume that you want ta gsstomized pattern for bars 4 and 5in a
mythical song:

Groove Rhumba

1 Fm7

2 Bb7

3 EbM7

Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
Chord Riff 1 2 100; 3 8 90;

4 Eb6 / Eb

5 Fm7

In this example the firs€hord Riff will be used in bar 4; the second in bar 5. For an example ofsigs
the sample filegs/riffs.mma

| often use this feature when creating aL® line.

LActually a queue or FIFO (First In, First Out) buffer.

50

Chapter 8

Musical Data Format

Compared to patterns, sequences, grooves and the varieesivais used im#4, the actual bar by bar
chord notations are surprisingly simple.

Any line in your input file which is not a directive or commeatdssumed to be a bar of chord data.
A line for chord data consists of the following parts:
J1 Optional line number,
JJ Chord or Rest data,
71 Optional lyric data,
J1 Optional solo or melody data,
71 Optional multiplier.
Formally, this becomes:
[num] Chord [Chord ...] [lyric] [solo] [* Factor]
As you can see, all that is really needed is a single chordth&dine:
Cm
is completely valid. As is:
10 Cm Dm Em Fm 4

The optional solo or melody data is enclosed {n}”s. The complete format and use is detailed in the
Solo and Melody Trackpage 60.

Lyrics are enclosed in "[]” brackets. See thgrics chaptey page 55.

8.1 Bar Numbers

The optional leading bar number is silently discardedby. It is really just a specialized comment which
helps you debug your music. Note that only a numeric item imjgged here.

51

8.2 Bar Repeat Musical Data Format

Get in the habit of using bar numbers. You'll thank yourselfen a song seems to be missing a bar, or
appears to have an extra one. Without the leading bar nuntleas be quite frustrating to match your
input file to a piece of sheet music.

You should note that it is perfectly acceptable to have ordgranumber on a line. This is common when
you are using bar repeat, for example:

1 Cm=+ 4
2

3

4

5A

In the above example bars 2, 3 and 4 are comment bars.

8.2 Bar Repeat

Quite often music has several sequential identical bateda of typing these bars over and over again,
M has an optionamultiplier which can be placed at the end of a line of music data. The pheltior
factor can is specified as “* NN” This will cause the current tearepeated the specified number of times.
For example:

Cm /Dm/ *x 4

produces 4 bars of output with each the first 2 beats of each Gan chord and the last 2 a Dm. (The “/”
is explained below.)

8.3 Chords

The most important part of a musical data line is, of coutse chords. You can specify a different chord
for each beat in your music. For example:

Cm Dm Em Fm

specifies four different chords in a bar. It should be obviopsow that in a piece i you'll end up with
a “Cm” chord on beat 1, “Dm” on 2, etc.

If you have fewer chord names than beats, the bar will be fdl#gdmatically with the last chord name on
the line. In other words:

Cm

and

52

8.4 Rests Musical Data Format

Cm Cm Cm Cm
are equivalent (assuming 4 beats per bar). There must be@one(e) spaces between each chord.
One further shorthand is the “/”. This simply means to repleatiast chord. So:

Cm / Dm /
is the same as

Cm Cm Dm Dm

It is perfectly okay to start a line with a “/”. In this case tlaest chord from the previous line is used. If
the first line of music data begins with a “/” you'll get an erreai tries to be smart, but it doesn’t read
minds.

MiA recognizes a wide variety of chords in standard notationaddition, you can specify slash chords
and shift the octave up or down. Refer to the complete tablleerappendix for details, page 174.

8.4 Rests

To disable a voice for a beat you can use a “z” for a chord nafesdd by itself a “z” will disable all
but the drum tracks for the given beat. However, you can tks&hord”, “Arpeggio”, “Scale”, “Walk”,
“Aria”, or “Bass” tracks as well by appending a track specifeethe “z”. Track specifiers are the single
letters “C”, “A", “S”, “W”, “B”, “R” or ‘D” and “I". Track specifier s are only valid if you also specify a
chord. The track specifiers are:

D - All drum tracks,

W - All walking bass tracks,

B - All bass tracks,

C - All chord tracks,

A - All arpeggio tracks,

S- All scale tracks,

R - All aria tracks,

I - All tracks (almost the same as DWBCA, see below).

Assuming the “C” is the chord and “AB” are the track specifiers:

CzAB - mutes the RPEGGIOand Basstracks,

Z- mutes all the tracks except for the drums,
Cz- IS not permitted,
ZAB - IS not permitted.

Assuming that you have a drum, chord and bass pattern defined:
Fm z G7zC CmzD
would generate the following beats:

1- Drum pattern, Fm chord and bass,

53

8.5 Case Sensitivity Musical Data Format

2 - Drum pattern only,
3- Drum pattern and G7 bass, no chord,
4- Cm chord and bass, no drum.

In addition, there is a super-z notation. “z!” forces alltmsnents to be silent for the given beats. “z!” is
the same as “ZABCDWR?”, except that the latter is not valid since&ds a prefixed chord.

The “z” notation is used when you have a “tacet” beat or be@tse alternate notations can be used to
silence specific tracks for a beat or two, but this is usedftesgiently.

8.5 Case Sensitivity

In direct conflict with the rest of the rules for input files| @hord namesre case sensitive. This means
that youcan notuse notations like “cm”—use “Cm” instead.

The “z” and the associated track specifiers are also caséigen$or example, the form “Zc” willhot
work!

54

Chapter 9
Lyrics

MIDI files can include song lyrics. And some MIDI players ogsencers can display them as a file is
played. Some, but not all.

I’m not aware of any keyboards which display lyrics; and mastix based players do not display them.
Exceptions to the rule are the prograiasid which displays and highlights lyrics almost in a Karaoke
mannerxplaymidiandtimidity which display the lyrics in a secondary panel.

With this qualifier out of the way, there really is no reasonljwics NOT to be useful in a program like
MA. Singers do not want a melody playing while they are voaadj{really, they are no different in this
than any other instrumentalist). And some platfotrather than Linux support lyric display in a more
useful format.

The “Standard MIDI File” document describesyic Meta-event:

FF 05 len textLyric. A lyric to be sung. Generally, each syllable will be a sepahatic
event which begins at the event’s tirfie.

Unfortunately, not all players and creators follow the sfieation—the most notable exception are “.kar”
files. These files eschew thgric event and place their lyrics asTaxt Event There are programs strewn
on the net which convert between the two formats (but | reddiy’t know if conversion is needed).

If you want to read the word from the source, refer to the @fitliDI lyrics documentation alttp:
[lwww.midi.org/about-midi/smf/rp017.shtml

9.1 Lyric Options

M has a number of options in setting lyrics. They are all caliedhe LYyrRiC command. Most options

"

are set as option/setting pairs with the option name andatieg joined with an “=".

9.1.1 Event Type

M supports both format for lyrics (discussed above). The EVEdgtion is used to select the desired

IPointers and reviews to other players would be would apatedi
2] am quoting from “MIDI Documentation” distributed with tHESE Library. Pete Goodliffe, Oct. 21, 1999. Page 41.

55

9.2 Chord Name Insertion Lyrics

mode.
Lyric EVENT=LYRIC

selects the defaulttRiC EVENT mode.
Lyric EVENT=TEXT

selects the EXT EVENT mode. Use of this option also prints a warning message.

9.1.2 Word Splitting

Another option controlled by theMrRIC command is to determine the method used to split words. As
mentioned earlier (and in various MIDI documents), thedyrshould be split into syllablesyiz does
this by taking each word (anything with white space surraogdt) and setting a MIDI event for that.
However, depending on your player, you might want only orenéper bar. You might even want to put
the lyrics for several bars into one event. In this case sirsgt the “bar at a time” flag:

Lyric SPLIT=BAR
You can return to normal (syllable/word) mode at anytimehwit

Lyric SPLIT=NORMAL

9.2 Chord Name Insertion

It is possible to havem duplicate the current chord names and insert them as a.lyfesoption:
Lyric CHORDS=0n

will enable this. In this mode the chord line is parsed andritesl as verse one into each bar.

The mode is enabled with “On” or “1” and disabled with “Off” tB".

After the chords are extracted they are treated exactlydikerse you have entered as to word splitting,
etc. Note that the special chord “z” is converted to “N.C.” alekctives after the “z” in constructs like
“C7zCS” will appear with only the chord name.

9.2.1 Chord Transposition

If you are transposing a piece or if you with to display therdsdor a guitar with a cappo you can tell
MiA to transpose the chord names inserted wiHDEDS=ON. Just add a transpose directive in therlLC
command:

56

9.3 Setting Lyrics Lyrics

Lyric CHORDS=0On Transpose=2
Please note that the Lyrics code doeslook at the global RANSPOSESetting®

M isn’t too smart in it's transposition and will often displélye “wrong” chord names in relation to
“sharp” and “flat” names. If you find that you are getting toonypdwrong” names, try setting the
CNAMES option to either “Sharp” or “Flat”. Another example:

Lyric CHORDS=0On Transpose=2 CNames=Flat

By default, the “flat” setting is used. In addition to “Flat”@fSharp” you can use the abbreviations “#”,
“b” and “&".

You can (and may well need to) change the ANt s setting anywhere in the song.

9.3 Setting Lyrics

Adding a lyric to your song is a simple matter ...and like soyntnings, there is more than one way to
doit.

Lyrics can be set for a bar in-between a paiflsfsomewhere in a data faFor example:

z [Pardon]

C [me If 'm]

E7 [sentimental, \r]
C [when we say good]

The alternate method is to use therLC SET directive:
Lyric Set Hello Young Lovers

Unlike the other IvrIC options, the &T option must be the last one on a line, and it does not use the
“="sign. If you are setting the lyric for a single verse tfje are optional; however, for multiple verses
they are used (just like they are when you include the lyria aata/chord line). The advantage to using
LYRIC SET is that you can specify multiple bars of lyrics at one poinyaur file. See the sample file
egs/lyricssmma for an example.

The lyrics for each bar are separated into individual eveote for each word ...unless the option
SPLIT=BAR has been used, in which case the entire lyric is placed atfteet@orresponding to the
start of the bar.

M recognizes two special characters inveLC:

J1 A \r is converted into an EOL character (hex value 0xOD)r Ahould appear at the end of each
lyrical line.

3This is a feature! It permits you to have separate controt pugsic generation and chord symbol display.
4Although the lyric can be placed anywhere in the bar, it imnemended that you only place the lyric at the end of the bar.
All the examples follow this style.

57

9.3 Setting Lyrics Lyrics

1 A\nis converted into a LF character (hex value OxOA\should appear at the end of each verse
or paragraph.

When a multi-verse section is created using BPRAT or GOTO, different lyrics can be specified for
different passes. In this case you simply specify two motg ayrics:

A / Am / [First verse] [Second Verse]

However, for this work properly you must set the internalmieu LyRICV ERSEfor any verse other than
1. This counter is set with the command:

Lyric Verse=Value | INC | DEC
This means that you can directly set the value (the defalueva 1) with a command like:
Lyric Verse=2

And you can increment or decrement the value with the INC aB€Dptions. This is handy at to use in
repeat sections:

Lyric Verse=Inc
You cannot set the value to a value less than 1.
There are a couple of special cases:

JJ Ifthere is only one set of lyrics in a line, it will be treates @xt for verse 1, regardless of the value
of LYRICVERSE

J1 If the value of LYRICVERSEIs greater than the number of verses found after splittieditie, then
no lyrics are produced. In most cases this is probably not ywdawant.

At times you may wish to overridefa's method of determining the beat offsets for a lyric or a Eng
syllable in a lyric. You can specify the beat in the bar by esitlg the value in <>" brackets. For
example, suppose that your song starts with a pickup bar amd Yike the lyrics for the first bar to start
on beat 4:

z z z C [<4>Hello]
F [Young lovers |

Assumingj the above would put the word “Hello” at beat 4 of the first bafoting” on the first beat of
bar 2; and “lovers” on beat 3 of bar 2.

Note: there must not be a space inside the-", nor can there be a space between the bracket and the
syllable it applies to.

Only the first “<>" is checked. So, if you really want to have the character 6r “ >" in a lyric just
include a dummy to keepfa happy:

C [<><Verse _1.>This is a Demo]

Example 9.2 shows a complete song with lyrics. You should also examiadiliegs/lyrics.mma for
an alternate example.

SIncluded in this distribution asongs/twinkle.mma

58

9.3 Setting Lyrics Lyrics

Tempo 200

Groove Folk

Repeat

G [Twinkle,] [When the]

G [Twinkle] [blazing]

C [little] [sun is]

G [star; \r] [gone, \r]
Am [How I] [When he]

G [wonder] [nothing]

D7 [what you] [shines u-]
G J[are. \r] [pon. \r]
G [Up a-] [then you]

10 D7 [bove the] [show your]
11 G [world so] [little]

12 D [high, \r] [light, \r]
13 G [Like a] [Twinkle,]

14 D7 [diamond] [twinkle,]

15 G [in the] [all the]

16 D7 [sky! \r] [night. \r]
17 G [Twinkle,]

18 G [twinkle]

19 C [Little]

20 G [star, \r]

21 Am [How 1]

22 G [wonder]

23 D7 [what you]

24 G Jare. \r \n]

=

O©CoOo~NOULh,WN

Lyric Verse=Inc
RepeatEnd

Example 9.1: Twinkle, Twinkle, Little Star

9.3.1 Limitations

A few combinations are not permitted:
41 You cannot specify lyrics in bars that are being repeatel thi¢ “*” option.

41 You cannot insert lyrics with YRIC SET and [STUFH.

59

Chapter 10

Solo and Melody Tracks

So far the creation of accompaniment tracks using drum aodigtatterns has been discussed. However,
there are times when chording (and chord variations suchpag@ios) are not sufficient. Sometimes you
might want a real melody line!

MA has two internal track types reserved for melodic lines. yTéie the L0 and MELODY tracks.
These two track types are identical with two major excepstion

J1 SoLo tracks are only initialized once, at start up. Commands like®@_EAR are ignored by 8LO
tracks.

71 No settings in ®L0 tracks are saved or restored witlRGovE commands.

These differences mean that you can set parameters fora tack in a preamble in your music file and
have those settings valid for the entire song. For example nyay want to set an instrument at the top of
a song:

Solo Voice TenorSax

On the other hand, MLODY tracks save and restore grooves just like all the otheraaitracks. If you
have the following sequence in a song file:

Melody Voice TenorSax
Groove Blues
musical data

no one will be surprised to find that theBMoDY track playing with the default voice (Piano).

As a general rule, MLODY tracks have been designed as a “voice” to accompany a preddifinm
defined in a @OOVE—itis a good idea to define KLODY parameters as part of aBRGOVE. SOLO tracks
are thought to be specific to a certain song file, with theiapuaaters defined in the song file.

Apart from the exceptions noted aboveyl® and MELODY tracks are identical.

Unlike the other available tracks, you do not define a sequenpattern for a 8LO or MELODY track.
Instead, you specify a series of notes asieFRattern. For example, consider the first two bars of “Bill
Bailey” (the details of melody notation will be covered laiethis chapter):

Solo RIff 4c;2d;4f;
F
Solo Riff 4.a;8g#;4a;4c+;

60

10.1 Note Data Format Solo and Melody TracKs

F
In this example the melody has been added to the song file.

Specifying a RFF for each bar of your song can get tedious, so there is a short@any data surrounded
by curly brackets { }" is interpreted as a RF for a SOLO or MELODY track. This means that the above
example could be rewritten as:

F {4c;2d;4f; }
F {4.a;8g#4a;4c+; }

By default the note data is inserted into theL® track. If more than one set of note data is present, it will
be inserted into the next track set by the TROSOLOTRACKS command (page 64).

10.1 Note Data Format

The notes in a 8Lo or MELODY track are specified as a series of “chords”. Each chord carsbegke
note, or several notes (all with the same duration). Eachidchothe bar is delimited with a single
semicolont

Each chord can have several parts. All missing parts withdketo the value in the previous chord. The
various parts of a chord must be specified in the order givéindriollowing table.

Duration The duration of the note. This is specified in the same marmehard patterns; see page 24
for details on how to specify a note duration.

Pitch The note in standard musical notation. The lowercase $t&rto “g” are recognized as well as
“r" to specify a rest (please note the exceptionBoum Solo Trackspage 65).

Accidental A pitch modifier consisting of a single “#” (sharp), “&” (flagr “n” (natural). Please note
that an accidental will override the currenEKsIG for the current bar (just like in real musical
notation). Unlike standard musical notation the accidewilh apply to similarly named notes in
different octaves.

Please note that when you specify a chordv# you can use either a “b” or a “&” to represent a
flat sign; however, when specifying notes for al® you can only use the “&” character.

Octave Without an octave modifier, the current octave specified By@bTAVE directive is used for the
pitch(es). Any number of “-” or “+” signs can be appended taéen Each “-” drops the note by an
octave and each “+” will increase it. The base octave begitis“w” below the treble clef staff.

Volume A volume can be specified. The volume is a string like “ff” sumded by «<>" brackets.
For example, to set the volume of a chord to “very loud”, youldause the string<ffff > in the
chord specification (page 96) Of course, it is probably edsiset accented beats with th€ AENT

1| have borrowed heavily from the notation program MUP forsfgatax used here. For notation | highly recommend MUP
and use it for most of my notation tasks, including the coeabf the score snippets in this manual. MUP is available from
Arkkra Enterpriseshttp://www.Arkkra.com/

61

10.1 Note Data Format Solo and Melody TracKs

directive (page 97). A volume setting applies to all the satethe current chord and will be in
effect for the duration of the current bar.

Tilde The tilde character, =, can appear as the first or last itermimt@ sequence. As the last character it
signals that the final note duration extend past the end dbaineas the first character it signals to
use the duration extending past the end of the previous lzar estial offset. For details, see below.

Null You can set a “ignore” or “do nothing” chord with the simpletaion “<>". If this is the only
item in the chord then that chord will be ignored This mearad tio tones will be generated, and
the offset into the bar will not be changed. The use of thetmrtas mainly for tilde notation with
notes held over multiple bars.

To make your note data more readable, you can include any ewaftspace and tab characters (which
are ignored byvin).

s 2 °
KeySig 1b
F { 4ca-; 2da-; 4fd; }
F { 4.af, 8g#f; 4af; c+f; }
F { 4ca-; 2da-; 4fc; }
F { 1af; }

Example 10.1: Solo Notation

Example 10.1 shows a few bars of “Bill Bailey” with timg»7 equivalent.

10.1.1 Long Notes

Notes tied across bar lines can be easily handledinscores. Consider the following:

F

T —— '6

o) o @

It can be handled in three different ways in your score:

62

10.1 Note Data Format Solo and Melody TracKs

9 F {4c;d;e;4+2f; }
F {2r;2c; }

In this case youwsz will generate a warning message since the last note of thédérsends past the
end of that bar. The rest in the second bar is used to poshi®hadlf note correctly.

R F {4c.d;e;d+2f" };
F {2r;2c; }

This time a ™ character has been added to the end of the fiestlfirthis case it just signals that you
“know” that the note is too long, so no warning is printed.

7 F {4c;d;e;4+2f; }
F {2c; }

The cleanest method is shown here. The “forces the insatithe extra 2 beats from the previous
bar into the start of the bar.

If you have a very long note, as in this example:

C

@ [(@)
Q) @ T— Tre—— =

you can have both leading and ending tildes in the same choveever, to forcevia to ignore the chord
you need to include an empty chord marker:

C {4c;d;e;4+2f; }
C {’<>7 }
C {2c }
M has some built-in error detection which will signal probkeihyou use a tilde at the end of a line

which doesn’'t have a note held past the end of the currentbiryou use a tilde to start a bar which
doesn’'t have one at the end of the previous bar.

10.1.2 Using Defaults

The use of default values can be a great time-saver, anddeahfusion! For example, the following all
generate four quarter note “f’s:

Solo RIiff 4f; 4f; 4f, A4f;
Solo RIiff 4f; f; f; f;
Solo Riff 4f; 4; 4; 4;
Solo Riff 4f; ; ; ;

63

10.2 KeySig Solo and Melody Tracks

10.1.3 Other Commands

Most of the timing and volume commands available in othetksaalso apply to §Lo and MELODY
tracks. Important commands to consider includRTACULATE, VOICE and OCcTAVE. Also note that
TRANSPOSES applied to your note data.

10.2 KeySig

If you are including L0 or MELODY tracks you should set the key signature for the song:
KeySig 2b

The argument consists of a single digit “0” to “7” followed hyb” or “&” for flat keys or a “#” for sharp
keys.

As an alternate, you can use a musical name like “F” or “G#".

The optional keywords “Major” or “Minor” (these can be abbiegged to “Maj” or “Min” ... and case
doesn’t count) can be added to this command. This will ac¢isimpwro things:

1. The MIDI track Key Signature event will be set to reflect orior major.
2. If you are using a musical name the proper key will be used.

Setting the key signature effects the notes usedincsr MELODY tracks and sets a MIDI Key Signature
event?

To summarize, the following are all valide¢ SIG directives:

KeySig 2# Major
KeySig 1b
KeySig Ob Min
KeySig F Min
KeySig A Major

10.3 AutoSoloTracks

When a*{ }” expression is found in a chord line, it is assumed to be nate dnd is treated as afR. You
can have any number of “}” expressions in a chord line. They will be assigned to thekisaspecified in
the AUTOSOLOTRACKS directive.

By default, four tracks are assigne8olq Solo-1 Solo-2 andSolo-3 This order can be changed:

2For the most part, MIDI Key Signature events are ignored kaylphck programs. However, theyaybe used in other
MIDI programs which handle notation.

64

10.4 Drum Solo Tracks Solo and Melody TracKs

AutoSoloTracks Melody-Oboe Melody-Trumpet Melody-Horn

Any number of tracks can be specified in this command, but thest all be L0 or MELODY tracks.
You can reissue this command at any time to change the assigam

The list set in this command is also used to “fill out” melodyels for tracks set as ARMONYONLY .
Again, an example:

AutoSoloTracks Solo-1 Solo-2 Solo-3 Solo-4
Solo-2 HarmonyOnly 3Above
Solo-3 HarmonyOnly 8Above

Of course, some voicing is also set . ..and a chord line:
C {4ab;c;d; }

The note datd4a;b;c;d;} will be set to theSolo-1track. But, if you've not set any other note data
by way of RFF commands td&olo-2and Solo-3 the note data will also be copied to these two tracks.
Note that the traclSolo-4is unaffected since it inota HARMONYONLY track. This feature can be very
useful in creating harmony lines with the harmonies goinglitterent instruments. The supplied file
egs/harmony.mma shows an example.

10.4 Drum Solo Tracks

A solo or melody track can also be used to create drum solos.fiidt thing to do is to set a track as a
drum solo type:

Solo-MyDrums DrumType

This will create a new 8Lo track with the nameéolo-MyDrumsand set its “Drum” flag. If the track
already exists and has data in it, the command will fail. THBMhannel 10 is automatically assigned to
all tracks created in this manner. You cannot change a “dtuack back to a normal track.

These is no limit to the number ofdh0 or MELODY tracks you can create . .. and it probably makes sense
to have several different tracks if you are creating anygliayond a simple drum pattern.

Tracks with the “drum” setting ignoreRANSPOSEand HARMONY settings.

The specification for pitches is different in these tracksstéad of standard notation pitches, you must
specify a series of drum tone names or MIDI values. If you waote than one tone to be sounded
simultaneously, create a list of tones separated by commas.

Some examples:
Solo-MyDrums Riff 4 SnareDruml; ; r ; SnareDruml;

would create a snare hit on beats 1, 2 and 4 of a bar. Note hosettund hit uses the default tone set in
the first beat.

65

10.4 Drum Solo Tracks Solo and Melody TracKs

Solo-MyDrums RIiff 8,38;;;;

creates 4 hits, starting on beat 1. Instead of “names” MIDieshave been used (*38” and “SnareDrum1”
are identical). Note how “,” is used to separate the inigaigth from the first tone.

Solo-MyDrums Riff 4 SnareDrum1,53,81; r; 4 SideKick ;
creates a “chord” of 3 tones on beat 1, a rest on beat 2, andlaK&ik” on beat 3.

Using MIDI values instead of names lets you use the full rasfgeote values from 0 to 127. Not all will
produce valid tones on all synths.

To make the use of solo drum tracks a bit easier, you can ush¢éh®NE command to set the default
drum tone to use (by default this is a SnareDrum. If you do pet#y a tone to use in a solo the default
will be used.

You can access the default tone by using the special Tondri*the following example:

Begin Solo-Block
DrumType
Tone LowWoodBlock
End

Solo-Block Riff 4r; SnareDrum; *
Solo-Block Riff 4;;;;

The first solo created will have a rest on beat 1, a SnareDrubeah?2 and LowWoodBlock on beats 3
and 4. The second will have LowWoodBlock on each beat.

66

Chapter 11

Automatic Melodies: Aria Tracks

ARIA tracks are designed to letfz automatically generate something resembling melody. Biprleis
will never put real composers on the unemployment line (vmelimore than they are mostly there already).

You might want to use an RIA to embellish a section of a song (like an introduction or adireg). Or
you can havevi generate a complete melody over the song chords.

In a traditional song the melody depends on two parts: pet@E. note lengths, volume, articulation)
and pitch (usually determined by the chords in a song). Iflyave been using#s at all you will know

that that chords are the building block of whettz does already. So, to generate a melody we just need
some kind of pattern. And, since# already uses patterns in most things it does, it is a shqrttstase a
specialized pattern to generate a melody.

It might serve to look at the sample song files enclosed imthikage in the directomggs/aria . Compile
and play them. Not too bad?

Just like other track, you can create as margiA4s as you want. So, you can have the trackss1,
ARIA, and ARIA-SILLY all at the same time. And, the majority of other commandse(BCTAVE,
ARTICULATE, etc.) apply to ARIAS.

The following commands are important to note:
Range Just like scale tracks. A RGE of 2 would letas7z work on a 2 octave chord, etc.

ScaleType Much like a scale track. By default, the setting for this is CHOmBDt, you can use AUTO,
SCALE or CHROMATIC. AUTO and SCALE are identical and forg#4 to select notes from the
scale associated with the current chord; CHROMATIC gensiatel 1 tone scale starting at the root
note of the chord.

Direction As M processes the song it moves a note-selection pointer umor.dy default DRECTION
is set to the single value "1” which tell## to add 1 after each note is generated. However, you can
set the value to an integer -4 to 4 or the special value "r" hWit a random value -1, 0 or 1 will be
used. Important: in an AIA track the sequence size/point is ignored foRECTION.

A bit more detail on defining an RAIA:
First, here is a simplified sample track definition:

Begin Aria
Voice JazzGuitar
Volume f

67

Automatic Melodies: Aria Tracks

Sequence 1.5 8 90; 2 8 90; 2.5 8 90;
3 890; 358 90; 4 8 90; 45 8 90
Direcion r 0 01 -1 00 1 r

Next assume that we have a few bars of music with only a CMajorccthe default RNGE of “1” and
the default 8ALETYPE of “Scale’. The following table shows the notes which woukl denerated for
each time event:

Event| Offset Pointer| Note

1 0 c

2 0 c

3 1 e

4 3..0 C

5 4..0 C

6 2.2 g

7 random c,eorg
8 random c,e,org
9 etc.

In the above table the “..” notation indicates that the dffseout-of-range and converted to the second
value.

If you were to change theG\LETYPE or RANGE you would get a completely different series.
Please note the following:

JJ ARIAs arenotsaved or modified by &oove commands. Well, almost . . . the sequence size will be
adjusted to match the new size from the groove. This mightiespected:

» Load a groove. Let’s say it has &8sizEof 4.

> Create an RIA. Use 4 patterns to match the groove size (if you domt will expand the
sequence size for theRA, just like other tracks).

N Process a few bars of music.

» Load a new groove, but this time with &8sizeof 2. Now, the AR1A will be truncated. This
behaviour is duplicated in other tracks as well, but it migdtunexpected here.

71 DIRECTION can not be changed on a bar per bar basis. It applies to the satjiuence.

You can make dramatic changes to your songs with a few simpkst Try modifying the DRECTION set-
tings just slightly; use several patterns areQ&ND to generate less predicable patterns; useoNLY ONLY
with a different voice and pattern.

Oh, and have fun!

68

Chapter 12

Randomizing

One criticism of computer generated music is that all toroits too predictable or mechanical sounding.
Again, in a7 we're not trying to replace real, flesh and blood musiciansabplying some randomization
to the way in which tracks are generated can help bridge theaha—mechanical gap.

12.1 RndSeed

All of the random functions (RME, RsKIP, etc.) ina depend on th&ython randonmodule. Each
time 264 generates a track the values generated by the random fasetit be different. In most cases
this is a “good thing”; however, you may wamiA to use the same sequence of random valaash time
it generates a track. Simple: just use:

RndSeed 123.56

at the top of your song file. You can use any value you want:allyeloesn’'t make any difference, but
different values will generate different sequences.

You can also use this with no value, in which case Python usesiin value (see the Python manual for
details). Essentially, using no value undoes the effectiwpiermits the mixing of random and not-so-
random sections in the same song.

One interesting use of MO SEED could be to ensure that a repeated section is identical:lgistart the
section with something like:

Repeat
RndSeed 8
chords

It is highly recommended that yalo notuse this command in library files.

12.2 RSkip

To aid in creating syncopated sounding patterns, you cathesB X1p directive to randomly silence or
skip notes. The command takes a value in the range 0 to 99. harument disables skipping. For

1¥es, this is a contradiction of terms.

69

12.3 RTime Randomizing

example:

Begin Drum
Define D1 1 0 90
Define D8 D1 =+ 8
Sequence D8
Tone OpenHiHat
RSkip 40

End

In this case a drum pattern has been defined to hit short “Ojptatthotes 8 per bar. The R&P argument
of “40” causes the note to be NOT sounded (randomly) only 40%etime.

Using a value of “10” will cause notes to be skipped 10% of theet(they are played 90% of the time),
“90” means to skip the notes 90% of the time, etc.

You can specify a different R8P for each bar in a sequence. Repeated values can be represghtad
“/H:

Scale RSkip 40 90 / 40

If you use the R&IP in a chord track, the entire chowdll not be silenced. The option will be applied to
the individual notes of each chord. This may or may not be whbatare after. You cannot use this option
to generate entire chords randomly. For this effect you neenteate several chord patterns and select
them with SEQRND.

12.3 RTime

One of the biggest problem with computer generated drumlaytim tracks is that, unlike real musicians,
the beats are precise and “on the beat”. TheMETdirective attempts to solve this.

The command can be applied to all tracks.
Drum-4 Rtime 4

The value passed to the RAE directive is the number of MIDI ticks with which to vary theast time of
the notes. For example, if you specify “5” the start timed walry from -5 to +5 ticks) on each note for
the specified track. There are 192 MIDI ticks in each quarbée.n

Any value from 0 to 100 can be used; however values in the r@ngel0 are most commonly used.
Exercise caution in using large values!

You can specify a different RME for each bar in a sequence. Repeated values can be represéhtad
“/H:

Chord RTime 4 10 / 4

RTIME is guaranteed never to start a note before the start of a bar.

70

12.4 Other Randomizing Commands Randomizing

12.4 Other Randomizing Commands

In addition to the above, the following commands should mEred:
JJ ARIA (page 67) tracks have a 'r’ option for the movement direction

J1 The track DRECTION (page 148) command has a random’ option for playing scalgsggios,
and other tracks.

71 RVOLUME (page 103) makes random adjustments to the volume of eaeh not
JJ The VoicING (page 75) command has an RME option.
71 RNDSET (page 110) lets you set a variable to a random value.

J1 SEQRND (page 38) enables randomization of sequences; this ramdtioni can be fine-tuned with
the SEQRNDWEIGHT (page 40) command.

/1

Chapter 13

Chord Voicing

In music, a chord is simply defined as two more notes playedisameously. Now, this doesn’t mean that
you can play just any two or three notes and get a chord whighdsonice—but whatever you do get will
be a chord of some type. And, to further confuse the unwaffgrdnt arrangements of the same notes
sound better (or worse) in different musical situations.

As a simple example, consider a C major chord. Built on the tingtd and fifth notes of a C major scale
it can be manipulated into a variety of sounds:

e

-
Root

Wide Position

1st Inversion
2nd Inversion

These are all C major chords ... but they all have a differeand or color. The different forms a chord
can take are called “voicings”. Again, this manual is no¢imded to be a primer on musical theory—that'’s
a subject for which lots of lessons with your favorite mugiadher is recommended. You'll need a bit of
basic music theory if you want to understand how and why creates its tracks.

The different options in this chapter effect not only the whprds are constructed, but also the way bass
lines and other tracks are formed.

There are generally two ways W4 to take care of voicings.
1. usemi’s extensive \OICING options, most likely with théOptimal” voicing algorithm,
2. do everything by yourself with the commanas/ERT and COMPRESS

The commands iMIT and DuPROOT may be used independently for both variants.

13.1 \Voicing

The VoICING command is used to set the voicing mode and several othemsptelating to the selected
mode. The command needs to have BOBD track specified and a series of Option=Value pairs. For
example:

72

13.1 Voicing Chord Voicing

Chord-Piano Voicing Mode=Optimal Rmove=10 Range=9

In the following sections all the options available will bevered.

13.1.1 \Voicing Mode

The easiest way to deal with chord voicings is via thei®NG MoDE=XX option.

When choosing the inversion of a chord to play an accompainilistake into consideration the style of
the piece and the chord sequences. In a general sense,réferied to as “voicing”.

A large number of the library files have been written to takesathge of the following voicing commands.
However, not all styles of music take well to the concept. Adain’t forget about the other commands
since they are useful in manipulating bass lines, as welttser @¢hord tracks (e.g., sustained strings).

24 has a variety of sophisticated, intelligent algoritirtssdeal with voicing.

As a general rule you should not use thevERT and COMPRESScommands in conjunction with the
VoICING command. If you do, you may create beautiful sounds. But, ¢salts are more likely to be
less-than-pleasing. Use of voicing and other combinatrafiglisplay various warning messages.

The main command to enable voicings is:
Chord Voicing Mode=Type

As mentioned above, this command can only be appliedHoRD tracks. Also note that this effects all
bars in the sequence . ..you cannot have different voiciogdifferent bars in the sequence (attempting
to do this would make no sense).

The following MODE types are available:

Optimal A basic algorithm which automatically chooses the best dmgnvoicing depending on the
voicing played before. Always try this option before anpthelse. It might work just fine without
further work.

The idea behind this algorithm is to keep voicings in a sege@tose together. A pianist leaves his
or her fingers where they are, if they still fit the next chortief, the notes closest to the fingers are
selected for the next chord. This way characteristic nategmphasized.

Root This Option may for example be used to turn ofbMING within a song. \OICING MODE=R0OOT
means nothing else than doing nothing, leaving all chordseonhposition.

None This is the same as thed®T option.

Invert Rather than basing the inversion selection on an analysiastfghords, this method quite stupidly
tries to keep chords around the base point of “C” by inverti@§ and “A’ chords upward and “D”,
“E” and “F” downward. The chords are also compressed. Cdytaiot an ideal algorithm, but it
can be used to add variety in a piece.

1Great thanks are due to Alain Brenzikofer who not only press$ume into including the WICING options, but wrote a
great deal of the actual code.

/3

13.1 Voicing Chord Voicing

CompressedDoes the same as the stand-alor@v@RESscommand. Like BOT, it is only added to be
used in some parts of a song wherelZING MODE=OPTIMAL is used.

13.1.2 \Voicing Range
To get wider or closer voicings, you may define a range for thieings. This can be adjusted with the
RANGE option:

Chord-Guitar Voicing Mode=Optimal Range=12

In most cases the default value of 12 should work just fine. yut,may want to fine tune . . .it's all up to
you. This command only effects chords created witbD&=OPTIMAL.

13.1.3 \Voicing Center
Just minimizing the Euclidean distance between chordsrdods the trick as there could be runaway
progressions that let the voicings drift up or down infinjtel

When a chord is “voiced” or moved to a new position, a “centenfianust be used as a base. By default,
the fourth degree of the scale corresponding to the chordeasonable choice. However, you can change
this with:

Chord-1 Voicing Center=<value>

Thevaluein this command can be any number in the range 0 to 12. Tryrdiftevalues. The color of
your whole song might change.

Note that the value is the note in the scale, not a chord-rastgipn.

This command only effects chords created witloME=OPTIMAL .

13.1.4 \Voicing Move

To intensify a chord progression you may want to have asognali descending movement of voicings.
This option, in conjunction with the & optional (see below) sets the number of bars over which a move
ment is done.

For the MoVvE option to have any effect you must also set the directiontteeei1 or 1. Be careful that
you don't force the chord too high or low on the scale. Use of tommand in a RPEAT section can
cause unexpected results. For this reason you should mal@Q command at the beginning of repeated
sections of your songs.

In most cases the use of this command is limited to a secti@saing, its use is not recommended in
groove files. You might want to do something like this in a song

74

13.2 ChordAdjust Chord Voicing

..select groove with voicing

chords..

Chord-Piano Voicing Move=5 Dir=1
more chords..

Chord-Piano Voicing Move=5 Dir=-1
more chords..

13.1.5 \Voicing Dir

This option is used in conjunction with the®¥E option to set the direction (-1 or 1) of the movement.

13.1.6 Voicing Rmove

As an alternate to movement in a specified direction, randa@vement can add some color and variety
to your songs. The command option is quite useful (and saieepin groove files. The argument for this
option is a percentage value specifying the frequency ttyapmove in a random direction.

For example:
Chord-3 Voicing Mode=Optimal Rmove=20

would cause a movement (randomly up or down) in 20% of the. bAssnoted earlier, using explicit

movement instructions can move the chord into an undesinarige or even “off the keyboard”; how-
ever, the algorithm used in RMOVE has a sanity check to ensatethhie chord center position remains,
approximately, in a two octave range.

13.2 ChordAdjust

The actual notes used in a chord are derived from a table vdoiotains the notes for each variation of a
“C” chord—this data is converted to the desired chord by agldirsubtracting a constant value according
to the following table:

G -6 B -1 Df 3
G -5 c -1 B 3
Gt -4 Bf O E 4
Ab -4 cC o =
A -3 ct 1 Ef 5
Af -2 Db 1 F 5
Bb -2 D 2 =

This means that whenf encounters an “Am” chord it adjusts the notes in the choréetdbwn by 3
MIDI values; an “F” chord is adjusted 5 MIDI values up. This@almeans that “A’ chords will sound
lower than “F” chords.

75

13.3 Compress Chord Voicing

In most cases this works just fine; but, there are times whefiRhchord might sound bettdower than
the “A’. You can force a single chord by prefacing it with agim “-” or “+” (see page 178). But, if
the entire song needs adjustment you can use®bADJUSTcommand to raise or lower selected chord
pitches:

ChordAdjust E=-1 F=-1 Bb=1

Each item in the command consists of a pitchi(BC”, etc.) an “=" and an octave specifier (-1, 0 or 1).
The pitch values are case sensitive and must be in uppertbase;musnot be a space on either side of
the “=".

To a large extent the need for octave adjustments depend®amord range of a song. For example, the
supplied song “A Day In The Life Of A Fool” needs all “E” and “IEhords to be adjusted down an octave.

The value “0” will reset the adjustment to the original valaetting a value a second time has no effect.

13.3 Compress

When a1 grabs the notes for a chord, the notes are spread out fronooheosition. This means that

if you specify a “C13” you will have an “A’ nearly 2 octaves al®the root note as part of the chord.
Depending on your instrumentation, pattern, and the chiuttsire of your piece, notes outside of the
“normal” single octave range for a chonslysound strange.

Chord Compress 1
Forcesafr to put all chord notes in a single octave range.

This command is only effective in @RD and ARPEGGIOtracks. A warning message is printed if it is
used in other contexts.

Notes: ®MPRESsStakes any value between 1 and 5 as arguments (however, sdnes vall have no
effect as detailed above). You can specify a differentMBRESSfor each bar in a sequence. Repeated
values can be represented with a “/”

Chord Compress 1 / 0 /
To restore to its default (off) setting, use a “0” as the argom

For a similar command, with different results, see thilL command (page 78).

13.4 DupRoot

To add a bit of fullness to chords, it is quite common of keylgalayers to duplicate the root tone of a
chord into a lower (or higher) octave. This is accomplishregfiz with the command:

76

13.5 Invert Chord Voicing

DupRoot -1 1 -1 1

The command determines whether or not the root tone of a dealldplicated in another octave. By
default notes are not added. A value of -1 will add a note otavedower than the root note, -2 will add
the tone 2 octaves lower, etc. Similarly, the value of 1 wdllaa note one octave higher than the root tone,
etc.

Only the values -9 to 9 are permitted.

The volume used for the generated note is an adjusted avefdlge notes in the chord. This volume is
always less than the chord notes—which is probably what yantwf you want a loud bass note, create
a second track (probably aaBstrack) with the appropriate pattern.

Different values can be used in each bar of the sequence.
The option is reset to 0 after alEQUENCEoOr SEQCLEAR commands.

The DuPRooT command is only valid in @ORD tracks.

13.5 Invert

By defaulta: uses chords in the root position. By example, the notes of ajGrrolaord are C, E and G.
Chords can be inverted (something musicians do all the tis&ggking with the C major chord, the first
inversion shifts the root note up an octave and the chordrbesde, G and C. The second inversion is G,
CandE.

M extends the concept of inversion a bit by permitting thet$bibe to the left or right, and the number
of shifts is not limited. So, you could shift a chord up seVeraves by using large invert valués.

Inversions apply to each bar of a sequence. So, the folloisiagyood example:

SeqSize 4
Chord-1 Sequence STR1
Chord-1 Invert 0 1 0 1

Here the sequence pattern size is set to 4 bars and the platterach bar in the Chord-1 track is set to
“STR1”. Without the next line, this would result in a ratherring, repeating pattern. But, the Invert
command forces the chord to be in the root position for theébias, the first inversion for the second, etc.

You can use a negative Invert value:
Chord-1 Invert -1
In this case the C major chord becomes G, C and E.

Note that using fewer Invert arguments than the currentesscpisize is permitteddi simply expands
the number of arguments to the current sequence size. Yowsesg “/” for a repeated value.

2The term “shift” is used here, but that’s not quite wia#z does. The order of the notes in the internal buffer stays the
same, just the octave for the notes is changed. So, if theletaies are “C E G” with the MIDI values “0, 4, 7” an invert of 1
would change the notes to & G” and the MIDI values to “12, 4, 7.

77

13.6 Limit Chord Voicing

A SEQUENCEOr CLEARSEQ command resetsNVERT to O.

This command on has an effect iIHGRD and ARPEGGIOtracks. And, frankly, RPEGGICG sound a bit
odd with inversions.

If you use a large value foNIVERT you can force the notes out of the normal MIDI range. In theedhe
lowest or highest possible MIDI note value will be used.

13.6 Limit

If you use “jazz” chords in your piece, some people might ikt the results. To some folks, chords like
11th, 13th, and variations have a dissonant sound. And, thoe®they are in a chart, but don't really
make sense. ThelluIT command can be used to set the number of notes of a chord used.

For example:
Chord Limit 4

will limit any chords used in the BoRD track to the first 4 notes of a chord. So, if you have a C11 chord
which is C, E, G, B, D, and F, the chord will be truncated to C, E, G and B

This command only applies toHORD and ARPEGGIOtracks. It can be set for other tracks, but the setting
will have no effect.

Notes: UMIT takes any value between 0 and 8 as an argument. The “0” argumiedisable the com-
mand. This command applies to all chords in the sequencey-emel value can be given in the command.

To restore to its default (off) setting, use a “0” as the argom

For a similar command, with different results, see tt@eRESscommand (page 76).

13.7 NoteSpan

Many instruments have a limited range. For example, thededson of an accordion is limited to a single
octavé To emulate these sounds it is a simple matter of limitiig's output to match the instrument. For
example, in the “frenchwaltz” file you will find the directive

Chord NoteSpan 48 59
which forces all GiORD tones to the single octave represented by the MIDI valuebd@gh 59.

This command is applied over other voicing commands likr&E and RANGE and even RANSPOSE
Notes will still be calculated with respect to these settingut then they’ll be forced into the limited
NOTESPAN.

3Some accordions have “freebass” switches which overconigsbut that is the exception.

/8

13.8 Range Chord Voicing

NOTESPAN expects two arguments: The first is the range start, the detb@nrange end (first and last
notes to use). The values are MIDI tones and must be in theer@nig 127. The first value must be less
than the second, and the range must represent at least boetave (12 notes). It can be applied to all
tracks except RUM.

13.8 Range

For ARPEGGIOand SALE tracks you can specify the number of octaves used. The efféthe RANGE
command is slightly different between the two.

SCALE: Scale tracks, by default, create three octave scales. EnesRvalue will modify this to the
number of octaves specified. For example:

Scale Range 1
will force the scales to one octave. A value of 4 would createtéve scales, etc.
You can use fractional values when specifyingN&E. For example:

Scale Range .3
will create a scale of 2 notésAnd,

Scale Range 1.5

will create a scale of 10 notes. Now, this gets a bit more cainfufor you if you have set GALETYPE
CHROMATIC. In this case a RNGE 1 would generate 12 notes, and®RGE 1.5 18.

Partial scales are useful in generating special effects.

ARPEGGIa Normally, arpeggios use a single octavélhe RANGE command specifies the number of
octave$ to use. A fractional value can be used; the exact result dipen the number of notes in the
current chord.

In all cases the values of “0” and "1” have the same effect.

For both ALE and ARPEGGIOthere will always be a minimum of two notes in the sequence.

13.9 DefChord

M comes with a large number of chord types already defined. Ist m@ses, the supplied set (see
page 174) is sufficient for all the “modern” or “pop” chartsrmally encountered. However, there are
those times when you want to do something else, or sometiiffiegesht.

4Simple math here: take the number of notes in a scale (7) aitipipiby .3. Take the integer result as the number of notes.
SNot quite true: they use whatever notes are in the chord,iwhight exceed an octave span.
6Again, not quite true: the command just duplicates the agjpagotes the number of times specified in theN® E setting.

79

13.9 DefChord Chord Voicing

You can define additional chord types at any time, or redefiigtieg chord types. The BFCHORD
command makes no distinction between a new chord type orefingthbn, with the exception that a
warning message is printed for the later.

The syntax of the command is quite strict:
DefChord NAME (NoteList) (ScaleList)
where:

71 Namecan be any string, but cannot contain a “/%™or space. It is case sensitive. Examples of
valid names include “dim”, “NO3” and “foo-12-xx".

71 NoteListis a comma separated list of note offsets (actually MIDI natties), all of which are
enclosed in a set of “()”s. There must be at least 2 note affgett no more than 8 and all values
must be in the range 0 to 24. Using an existing chord type, &hotd would be defined with (0, 4,
7, 10). In the case of a C7 chord, this translates to the notes ¢ b).

71 ScalelLists a list of note offsets (again, MIDI note values), all of whiare enclosed in a set of “()”s.
There must be exactly 7 values in the list and all values meist the range 0 to 24. Following on
the C7 example above, the scale list would be (0, 2, 4, 5, 7,)%rlibe notes (c, d, e, f, g, ah)b

Some examples might clarify. First, assume that you havetaseof your piece which has a major chord,
but you only want the root and fifth to sound for the chords amal want the arpeggios and bass notes to
onlyuse the root. You could create new patterns, but it's jusbayg & create a new chord type.

DefChord 15 (0,4) (0, 0, 0, 0, 0, 0, 0)
15C/ G/
16 C15 / G15

In this case a normal Major chords will be used in line 15. e IiL6 the new “15” will be used. Note the
trick in the scale: by setting all the offsets to “0” only th&ot note is available to the/ALK andBASS
tracks.

Sometimes you'll see a new chord type th&i doesn’t know. You could write the author and ask him to
add this new type, but if it is something quite odd or rare,igimbe easier to define it in your song. Let's
pretend that you've encountered a “Cmajl2” A reasonablegyisethat this is a major 7 with an added
12th (just the 5th up an octave). You could change the “majib2t of the chord to a “M7” or “maj7” and

it should sound fine. But:

DefChord maj12 (0, 4, 7, 11, 19) (O, 2, 4, 5, 7, 9, 11)
is much more fun. Note a few details:
J1 The name “maj12” can be used with any chord. You can have “C2hajlGbmaj12”.
J1 “maj12” a case sensitive name. The name “Maj12” is quiteediht (and unknown).
J1 A better name might be “maj(add12)”.

J1 The note and scale offsets are MIDI values. They are easyucefifjyou think of the chord as a
“C”. Just count off notes from “C” on a keyboard (C is note 0).

80

13.10 PrintChord Chord Voicing

41 Do Notinclude a chord name (ie: C opBin the definition. Just thgype

The final example handles a minor problemgifia and “diminished” chords. In most of the music the
author ofam encounters, the marking “dim” on a chord usually means afifished 7th”. So, whenfa
initializes it creates a copy of the “dim7” and calls it “dimBut, some people think that “dim” should
reference a “diminished triad”. It's pretty easy to charge by creating a new definition for “dim”:

DefChord dim (0, 3, 6) (0, 2, 3, 5, 6, 8 9)

In this example the scale notes use the same notes as tho&bnm/a. You might want to change thebB
(9) to By (10) or B (11). If you really disagree with the choice to maldira7 the default you could even
put this in ammarc file.

It is even easier to use the non-standard notation “dim3pé&xsy a diminished triad.

13.10 PrintChord

This command can be used to make the create of custom chortsimpler. Simply pass one or more
chord types after the command and they will be displayed am gyminal. Example:

PrintChord m M7 dim
in a file should display:

m: (0,3 7) (@O, 2 3,5 7,9, 11) Minor triad.

M7 : (0, 4, 7, 11) (O, 2, 4, 5, 7, 9, 11) Major 7th.

dm : (0, 3, 6, 9) (0, 2, 3, 5, 6, 8 9) Diminished. MA assumes
a diminished 7th.

From this you can cut and paste, change the chord or scaleserd the data into aEFCHORD command.

13.11 Notes

M makes other adjustments on-the-fly to your chords. Thisigedo make the resulting sounds “more
musical” . ..to keep life interesting, the definition of “neomusical” is quite elusive. The following notes
will try to list some of the more common adjustments made itbeélyour back”.

73 Just before the notes (MIDI events) for a chord are genethgefirst and last notes in the chord are
compared. If they are a separated by a half-step (or 1 MIDIejabr an octave plus half-step, the
volume of the first note is halved. This happens in chords ssch Major-7th or Flat-9th. If the
adjustment is not done the dissonance between the two teresitelms the ear.

81

Chapter 14

Harmony

M can generate harmony notes for you .. . just like hitting twmore keys on the piano! And you don’t
have to take lessons.

Automatic harmonies are available for the following tragges: Bass, Walk, Arpeggio, Scale, Solo and
Melody.

Just in case you are thinking thata is a wonderful musical creator when it comes to harmonies’t the
fooled. a7's ideas of harmony are quite facile. It determines harmartg$ by finding a note lower or
higher than the current note being sounded within the ctioleord. And its notion of “open” is certainly
not that of traditional music theory. But, the sound isn’t bzal.

14.1 Harmony

To enable harmony notes, use a command like:
Solo Harmony 2

You can set a different harmony method for each bar in youneece.

The following are valid harmony methods:
2 or 2Below Two part harmony. The harmony note selected is lower (ondhke}l
2Above The same as “2”, but the harmony note is raised an octave.
3 or 3Below Three part harmony. The harmony notes selected are lower.
3Above The same as “3”, but both notes are raised an octave.

Openor OpenBelow Two part harmony, however the gap between the two notesgsdar
than in “2”.

OpenAbove Same as “Open”, but the added note is above the original.
8 or 8Below A note 1 octave lower is added.
8Above A note 2 octave higher is added.

16 or 16Below A single note two octaves below is added.

82

14.2 HarmonyOnly Harmony

16Above A single note two octaves above are added.
24 or 24Below A single note three octaves below is added.
24Above A single note three octaves above is added.
You can combine any of the above harmony modes by using a ‘Bt"ekample:

OPEN+8Below will produce harmony notes with an “Open” harmony and a notectave
below the current note.

3Above+16 will generate 2 harmony notes above the current note plusse?nactaves below.

8Below+8Above+16Belowwill generate 3 notes: one 2 octaves below the current, one an
octave below, and one an octave above.

There is no limit to the number of modes you can concatenatey diplicate notes generated will be
ignored.

All harmonies are created using the current chord.
To disable harmony use a “0”, “-” or “None”.

Be careful in using harmonies. They can make your song sousniyhespecially with Bss notes (ap-
plying a different volume may help).

The command has no effect inRDM or CHORD tracks.

14.2 HarmonyOnly

As a added feature to the automatic harmony generationgtiedun the previous section, it is possible to
set a track so that wnly plays the harmony notes. For example, you might want to sétvaparpeggio
tracks with one playing quarter notes on a piano and a harrranl playing half notes on a violin. The
following snippet is extracted from the song file “Cry Me A Rivand sets up 2 different choir voices:

Begin Arpeggio
Sequence A4
Voice ChoirAahs
Invert 0 1 2 3
SegRnd
Octave 5
RSkip 40
Volume p
Articulate 99

End

Begin Arpeggio-2

Sequence A4
Voice VoiceOohs

83

14.3 HarmonyVolume Harmony

Octave 5

RSkip 40

Volume p

Articulate 99

HarmonyOnly Open
End

Just like the hRMONY command, above, you can have different settings for eacnbyaur sequence.
Setting a bar (or the entire sequence) to "-” or “0” disabtegh the FARMONY and HARMONY ONLY
settings.

The command has no effect inRDM or CHORD tracks.

If you want to use this feature withc& 0 or MELODY tracks you can duplicate the notes in youriRor
in-line notationor with the AUTOHARMONY TRACKS command, see page 64.

14.3 HarmonyVolume

By default,2m2 will use a volume (velocity) of 80% of that used by the oridinate for all harmony notes
it generates. You can change this with the theriMONYVOLUME command. For example:

Begin Solo
Voice JazzGuitar
Harmony Open
HarmonyVolume 80
End

You can specify different values for each bar in the sequenidee values are percentages and must
be greater than 0 (large values works just fine if you want @renlony louder than the original). The
command has no effect infumM or CHORD tracks.

84

Chapter 15

Tempo and Timing

M has a rich set of commands to adjust and vary the timing of gyong.

15.1 Tempo
The tempo of a piece is set in Beats per Minute with the “TempiEative.

Tempo 120
sets the tempo to 120 beats/minute. You can also use the teompmand to increase or decrease the
current rate by including a leading “+”, “-” or “*” in the rateFor example (assuming the current rate is
120):

Tempo +10

will increase the current rate to 130 beats/minute.

The tempo can be changed series of beats, much like a rit.corimeceal music. Assuming that a time
signature of}, the current tempo is 120, and there are 4 beats in a bar, thenand:

Tempo 100 1

will cause 4 tempo entries to be placed in the current bah@MIDI meta track). The start of the bar
will be 115, the 2nd beat will be at 110, the 3rd at 105 and teeda100.

You can also vary an existing rate using a “+”, “-” or “*” in thate.
You can vary the tempo over more than one bar. For example:
Tempo +20 5.5

tells a1 to increase the tempo by 20 beats per minute and to step tteaseover the next five and a half
bars. Assuming a start tempo of 100 and 4 beats/bar, the naetawill have a tempo settings of 101,
102, 103 ...120. This will occur over 22 beats (5.5 bars * 4%)eat music.

Using the multiplier is handy if you are switching to “doubiee”:
Tempo *2

and to return:

85

15.2 Time Tempo and Timing

Temp *.5

Note that the “+”, “-” or “*” sign mustnot be separated from the tempo value by any spaces. The value
for TEMPO can be any value, but will be converted to integer for the fsedling.

15.2 Time

M doesn’t really understand time signatures. It just caresiaiine number of beats in a bar. So, if you
have a piece irf time you would use:

Time 4
For 3 use:
Time 3
For § you'd probably want either “2” or “6”.

Changing the time also cancels all existing sequences. teo aime directive you’ll need to set up your
sequences or load a new grodve.

15.3 TimeSig

Even thoughna doesn't really use Time Signatures, some MIDI programs dogrize and use them.
So, here’s a command which will let you insert a Time Sigreataryour MIDI output:

TimeSig NN DD

The NN parameter is the time signature numerator (the nuoifidegats per bar). 1§ you would set this
to H3)).

The DD parameter is the time signature denominator (thetheofithe note getting a single beat). in
you would set this to “4”.

The NN value must be an integer in the range of 1 to 126. The Dikevaust be one of 1, 2, 4, 8, 16, 32
or 64.

M assumes that all songs aretiand places that MIDI event at offset 0 in the Meta track.

The TIMESIG value is remembered by K®0VES and is properly set when grooves are switched. You
should probably have a time signature in any groove librdeg ffou create (the supplied files all do).

The common time signatures “common” and “cut” are supporférty are translated byfz to 4 ands.

1The time value is saved/restored with grooves so settinga it redundant in this case.

86

154 BeatAdjust Tempo and Timing
15.4 BeatAdjust

Internally, M tracks its position in a song according to beats. For exampke?} piece the beat position
is incremented by 4 after each bar is processed. For the radstls works fine; however, there are some
conditions when it would be nice to manually adjust the beaitpn:

71 Insert some extra (silent) beats at the end of bar to simalasuse,
71 Delete some beats to handle a “short” bar.
71 Change a pattern in the middle of a bar.

Each problem will be dealt with in turn. In example 15.1 a @aisssimulated at the end of bar 10. One
problem with this logic is that the inserted beat will be silebut certain notes (percussive things like
piano) often will continue to sound (this is related to thealeof the note, not thatf has not turned off
the note). Frankly, this really doesn’t work too well . . . whiis why the ERMATA (page 88) was added.

Time 4
1Cm/ /1]
10 Am / C /

BeatAdjust 1

Example 15.1: Adding Extra Beats

In example 15.2 the problem of the “short bar” is handled. His example, the sheet music has the
majority of the song irf time, but bar 4 is irg. This could be handled by setting theME setting to 2
and creating some different patterns. Forcing silence ettt 2 beats and backing up the counter is a bit
easier.

1Cm/ /1]

4 Am [/ z! |
BeatAdjust -2

Example 15.2: Short Bar Adjustment

Note that the adjustment factor can be a partial beat. Fonpbea

87

15.5 Fermata Tempo and Timing

BeatAdjust .5
will insert half of a beat between the current bars.

Finally in example 15.3, the problem of overlapping barsaadied. We want to change theRGOVE in
the middle of a bar. So, we create the third bar two times. Tisedne has a “z!” (silence) for beats 3
and 4; the second has “z!” for beats 1 and 2. This permits toeh@ves to overlap without conflict. The
BEATADJUSTforces the two bars to overlap completely.

Groove BigBand

1C

Groove BigBandFill

2 Am

31/ 1 2z

BeatAdjust -4

Groove BigBand
zl | F

5 F

Example 15.3: Mid-Bar Groove Change

15.5 Fermata

A “fermata” or “pause” in written music tells the musician beld a note for a longer period than the
notation would otherwise indicate. In standard music manat is represented by & above a note.

To indicate all thismz uses a command like:
Fermata 1 1 200
Note that there are three parts to the command:

1. The beat offset from the current point in the score to apgy'pause”. The offset can be positive or
negative and is calculated from the current bar. Positivelyars will apply to the next bar; negative
to the previous. For offsets into the next bar you use offsttging at “0”; for offsets into the
previous bar an offset of “-1” represents the last beat ihlha

For example, if you were irf time and wanted the quarter note at the end of the next bar to be
paused, you would use an offset of 3. The same effect can bevadhby putting the ERMATA
command after the bar and using an offset of -1.

2. The duration of the pause in beats. For example, if you haygarter note to pause your duration
would be 1, a half note (or 2 quarter notes) would be 2.

88

15.5 Fermata Tempo and Timing

3. The adjustment. This represented as a percentage ofrilemtualue. For example, to force a note
to be held for twice the normal time you would use 200 (two<dred percent). You can use a value
smaller than 100 to force a shorter note, but this is seldone do

Example 15.4 shows how you can placeeERMATA before or after the effected bar.

Lo

oJ

Ma Equivalent

Fermata 3 1 200
C

Gm7

Alternate

C
Fermata -1 1 200
Gm7

Example 15.4: Fermata

Here example 15.5 shows the first four bars of a popular tavoly.sThe problem with the piece is that
the first beat of bar four needs to be paused, and the accomgainstyle has to switch in the middle of
the bar. The example shows how to split the fourth bar witHitisebeat on one line and the balance on a
second. The “z!"s are used to “fill in” the 4 beats skipped by BEATADJUST.

The following conditions will generate warning messages:
J1 A beat offset greater than one bar,
J1 A duration greater than one bar,
J1 An adjustment value less than 100.

This command works by adjusting the global tempo in the MIRtantrack at the point of the fermata.

In most cases you can put more than oERMATA command in the same bar, but they should be in beat
order (no checks are done). If theRMATA command has a negative position argument, special code is
invoked to remove any note-on events in the duration spegiiier the start of the beatThis means that
extra rhythm notes will not be sounded—probably what youeekp held note to sound like.

2Technically speakingifa determines an interval starting 5% of a beat after the sfaheofermata to a point 5% of a beat
before the end. Any MIDI Note-On events in this range (iniatks) are deleted.

89

15.6 Cut Tempo and Timing

C C#dim

G7

C / C#dim

G7 z!

Fermata -4 1 200
Cut -3

BeatAdjust -3.5
Groove EasySwing
z! G7 C7

Example 15.5: Fermata with Cut

15.6 Cut

This command was born of the need to simulate a “cut” or, moreectly, a “caesura”. This is indicated
in music by two parallel lines put at the top of a staff indiogithe end of a musical thought. The symbol
is also referred to as “railroad tracks”.

The idea is to stop the music on all tracks, pause briefly, asdme’

A provides the ©T command to help deal with this situation. But, before the camans described in
detail, a diversion: just how is a note or chord sustained™mill file?

Assume that a4 input file (and the associated library) files dictates thaheamotes are to be played
from beat 2 to beat 4 in an arbitrary bar. Whatz does is:

J1 determine the position in the piece as a midi offset to theetuibar,
J1 calculate the start and end times for the notes,

71 adjust the times (if necessary) based on adjustable feasueh aSTRUM, ARTICULATE, RTIME,
etc.,

J1 insert the required MIDI “note on” and “note off” commandstia¢ appropriate point in the track.

You may think that a given note starts on beat 2 and ends (ustmgcULATE 100) right on beat 3—but
you would most likely be wrong. So, if you want the note or chtwr be “cut”, what point do you use to

3The answer to the music theory question of whether the “gaakes timefromthe current beat or is treated as a “fermata”
is not clear—but as far a&m is concerned the command has no effect on timing.

90

15.6 Cut Tempo and Timing

instructafg correctly? Unfortunately, the simple answer is “it depéndgyain, the answers will consist
of some examples.

In this first case you wish to stop the track in the middle oflgst bar. The simplest answer is:

1C

36 C/z! [/

Unfortunately, this will “almost” work. But, any chords wiiicare longer than one or two beats may
continue to sound. This, often, gives a “dirty” sound to thd ef the piece. The simple solution is to add
to the end of the piece:

Cut -2

Depending on the rhythm you might have to fiddle a bit with thewalue. But, the example here puts a
“all notes off” message in all the active tracks at the sthiteat 3. The exact same result can be achieved
by placing:

Cut 3
beforethe final bar.

In this second example a tiny bit of silence is desired betwses 4 and 5 (this might be the end of a
musical introduction). The following bit should work:

1C
2 G
3G
4 C
Cut
BeatAdjust .2
5G

In this case the “all notes off” is placed at the end of bar 4 @valtenths of a beat is inserted at the same
location. Bar 5 continues the track.

The final example show how you might combineT with FERMATA. In this case the sheet music shows
a caesura after the first quarter note and fermatas over #réegmotes on beats 2, 3 and 4.

1 C C#dim

2 G7

3 C / C#dim
Fermata 1 3 120
Cut 1.9

Cut 2.9

Cut 3.9

4 G7 | C7 |/

5 F6

91

15.6 Cut Tempo and Timing

A few tutorial notes on the above:
JJ The command
Fermata 1 3 120

applies a slow-down in tempo to the second beat for the fatigwar (an offset of 1), for 3 beats.
These 3 beats will be played 20% slower than the set tempo.

J1 The threecut commands insert MIDI “all notes off” in all the active trackst beforebeats 2, 3
and 4.

Finally, the proper syntax for the command:
[Voice] Cut [Offset]
If the voice is omitted, MIDI “all notes off” will be insertethto each active track.

If the offset is omitted, the current bar position will be ds&his the same as using an offset value of 0.

92

Chapter 16
Swing

In jazz and swing music there is a convention to apply spéonahg to eighth notes. Normally, the first of

a pair of eights is lengthened and the second is shortendélde Bheet music this can is sometimes notated
as sequences of a dotted eighth followed by a sixteenth. Bybui were to foolish enough to play the
song with this timing you'd get a funny look from a jazz muaitiwho will tell you to “swing” the notes.

The easiest way to think about swing eighths is to mentalhwed them to a triplet consisting of a quarter
note and and eighth.

0

y AW
ANa,
J & - o
()
ANV] = : ‘I' d
0 _‘_ .
O I_3_| r 3 1 r 3 1 '_3—|
p 4
y AW \ A
[M an) N A]]
AN 1))
Y) & o

In the above music the first and second bar are both playedtis third.

M can handle this musical style in a number of ways, the corgnblough the $/INGMODE command
and options.

In default modeMz assumes that you don’t want your song to swing.

To enable automatic conversions, simply set M ODE to “on”:
SwingMode On

This directive accepts the value “On” and “Off” or “1” and “0”

With SWINGM ODE enabledMi takes some extra steps when creating patterns and pragegssoLo
and MELODY parts.

J1 Any eighth note in a pattern “on the beat” (1, 2, etc.) is coteato a “81” note.

93

Swing

71 Any eighth note is a pattern “off the beat” (1.5, 2.5, etc.ydsiverted to “82” note, and the offset is
adjusted to the prior beat plus the value of an “81” note.

J1 Drum notes with a value of a single MIDI tick are handled in #zne way, but only the offset
adjustment is needed.

41 In SoLo and MELODY tracks any successive pairs of eighth notes (or rests) gustad.

Important: when defining patterns and sequences remember that thémaeiiss made when the pattern
is compiled. With a EFINE command the arguments are compiled (and swing will be agpliut

a EQUENCEcommand with an already defined pattern will use the exigpaigern values (the swing
adjustment may or may not have been done at define time).l¥iiialou have a dynamic define in the
sequence the adjustment will take place if needed.

SWINGM ODE has an additional option,kK&w. This factor is used to create the “81” and “82” note lengths
(see page 24). By default the value “66” is used. This simplgamsdhat the note length “81” is assigned
66% of the value of an eight note, and “82” is assigned 34%.

You can change this setting at any point in your song or stide.filt will take effect immediately on all
future patterns and solo lines.

The setting:
SwingMode Skew=60
will set a 60/40 setting.

If you want to experiment, find a @ ovEwith note lengths of “81” and “82” (“swing” is as good a choice
as any). Now, put aWBINGMODE SKEW=VALUE directive at the top of your song file (before selecting
any GROOVEs). Compile and play the song with different values to heaeffexts.

If you want to play with different effects you could do somathlike this:

SwingMode On Skew=40
... Set CHORD pattern/groove
SwingMode Skew=30
Set Drum-1 pattern/groove
SwingMode Skew=whatever
Set Drum-2

This will give different rates for different tracks. I'll pbably not enjoy your results, but | play polkas on
the accordion for fun.

The complete &#INGM ODE setting is saved in the currenRGovEand can be accessed via th&®ingMode
built-in macro.

The easy (and ugly and unintuitive) way to handle swing isst@licode the value right into your patterns.
For example, you could set a swing chord pattern with:

Chord Define Swing8 1 3+3 80; 1.33 3 80; 2 3+3 80; 2.33 3 80 ...

We really don’t recommend this for the simple reason thastiag rate is frozen as quarter/eighth triplets.

94

Swing

If you refer to the table of note lengths (page 24) you will fthd cryptic values of “81” and “82”. These
notes are adjusted depending of theISGSKEW value. So:

Chord Define Swing8 1 81 80; 1+81 82 80; 2 81 80; 2+81 82 80 ...

is a bit better. In this case we have set a chord on beat 1 aggheffan eighth note, and a chord on the
off-beat as the second. Note how we specify the off-beat4 881", etc.

In this example the feel of the swing will vary with thev&\NG SKEw setting.
But, aren’t computers supposed to make life simple? Welk ieeour recommended method:

SwingMode On
Chord Define Swing8 1 8 80; 1.5 8 80; 2 8 80; 2.5 8 80 ...

Now, 27 will convert the values for you. Magic, well ... almost.
There are times when you will need to be more explicit, esggdn SoLo and MELODY tracks:
71 If a bar has both swing and straight eighths.

71 If the note following an eighth is not an eight.

95

Chapter 17

Volume and Dynamics

24 is very versatile when it comes to the volumes or dynamicsd irsgour songt
Each generated note goes though several adjustments:
1. The initial velocity is set in the pattern definition, sémpter 42

2. the velocity is then adjusted by the master and track velsettings (see page 98 for the discussion
of ADJUSTVOLUME RATIO),

3. if certain notes are to be accented, yet another adjusiserade,
4. and, finally, if the random volume is set, more adjustment.

For the most partf7 uses conventional musical score notation for volumesrrnatly, the dynamic name
is converted to a percentage value. The note volume is adjlstthe percentage.

The following table shows the available volume settings ttwedadjustment values.

Symbolic Name Ratio (Percentage) Adjustment
off 0
pppp S
ppp 10
pp 25
p 40
mp 70
m 100
mf 110
f 130
ff 160
fff 180
ffff 200

The setting ®F is useful for generating fades at the end of a piece. For ebeamp

Lwe'll try to be consistent and refer to a MIDI “volume” as a foeity” and internalaf adjustments to velocity as volumes.
2Solo and Melody track notes use an initial velocity of 90.

96

17.1 Accent Volume and Dynamics

Volume ff
Decresc Off 5
G/ Gm/ * 5

will cause the last 5 bars of your music to fade frofifi & silence.

The initial velocity of a note is set in the pattern definiti@ee chapter 4). The following commands set
the master volume, track volume and random volume adjugsnen

In addition to the note velocities generated 42 your MIDI device can also change the mix between
channels. See the discussion for MIDIMUME (page 133).

17.1 Accent

“Real musicians®, in an almost automatic manner, emphasize notes on cegats.bin popular Western
music written inZ time this is usually beats one and three. This emphasisteefmidse or beat in a piece.

In 9672 you can set the velocities in a pattern so that this emphasaistomatically adjusted. For example,
when setting a walking bass line pattern you could use arpattfinition like:

Define Walk W1234 1 4 100; 2 4 70; 3 4 80; 4 4 70

However, it is much easier to use a definition which has all#ecities the same:
Define Walk W1234 1 1 90 * 4

and use the ACENTcommand to increase or decrease the volume of notes onrcbeais:
Walk Accent 1 20 2 -10 4 -10

The above command will increase the volume for walking basesion beat 1 by 20%, and decrease the
volumes of notes on beats 2 and 4 by 10%.

You can use this command in all tracks.

When specifying the accents, you must have matching pairataf d he first item in the pair is the beat

(which can be fractional), the second is the volume adjustmeéhis is a percentage of the current note
volume that is added (or subtracted) to the volume. Adjustrfeetors must be integers in the range -100
to 100.

The ACCENTs can apply to all bars in a track; as well, you can set diffeaenents for different bars. Just
use a {}” pair to delimit each bar. For example:

Bass Accent {1 20} // {1 30 3 30}
The above line will set an accent on beat 1 of bars 1, 2 and 3arid Ibeats 1 and 3 will be accented.

You can use a “/” to repeat a setting. The “/” can be enclosed‘if}” delimiter if you want.

3as opposed to mechanical.

97

17.2 AdjustVolume Volume and Dynamics

17.2 AdjustVolume

17.2.1 Mnemonic Volume Ratios
The ratios used to adjust the volume can be changed fromlileeatthe start of this chapter. For example,
to change the percentage used foriresetting:
AdjustVolume MF=95 =120
Note that you can have multiple setting on the same line.

The values used have the same format as those used forothemE command, below. For now, a few
examples:

AdjustVolume Mf=mp+200
will set the adjustment factor fonf to that ofmpplus 200%.
And,

AdjustVolume mf=+20
will increase the currentf setting by 20%.

You might want to do these adjustment in your MMArc file(s).

17.2.2 Master Volume Ratio

M uses both the master and track volumes to determine the étadity of a note. By default, the track
volume setting accounts for 60% of the adjustment and theenaslume for the remaining 40%. The
simple-minded logic behind this is that if the user goes ®dfiort of setting a volume for a track, then
that is probably more important than a volume set for thaepiiece.

You can change the ratio used at anytime with tlmeAsTVOLUME RATIO=<VALUE > directive.<Value>
is the percentage to use for theack volume. A few examples:

AdjustVolume Ratio=60

This duplicates the default setting.
AdjustVolume Ratio=40

Volume adjustments use 40% of the track volume and 60% of tetenvolume.
AdjustVolume Ratio=100

Volume adjustments use only the track volume (and ignorertaster volume completely).

98

17.3 Volume Volume and Dynamics

AdjustVolume Ratio=0
Volume adjustments use only the master volume (and ignergdck volumes completely).

Any value in the range 0 to 100 can be used as an argument $ocammand. This setting is saved in
GROOVES.

Feel free to experiment with different ratios.

17.3 Volume

The volume for a track and the master volume, is set with tee WME command. Volumes can be
specified much like standard sheet music with the convealtidynamic names. These volumes can be
applied to a track or to the entire song. For example:

Arpeggio-Piano Volume p

sets the volume for the Arpeggio-Piano track to somethimy@pmatingpiano.
Volume f

sets the master volume forte.

In most cases the volume for a specific track will be set withenGRooVE definition; the master volume
is used in the music file to adjust the overall feel of the piece

When using \OLUME for a specific track, you can use a different value for eachrbarsequence:
Drum Volume mp ff / ppp
A “I” can be used to repeat values.

In addition to the “musical symbols” likf andmpyou can also use numeric values to indicate a percent-
age. In this case you can use intermediate values to thos#isgén the table above. For example, to set
the volume betweemf andf, you could do something like:

Volume 87
But, we don’t recommend that you use this!

A better option is to increment or decrement an existingwvaly a percentage. A numeric value prefaced
by a “+” or “-” is interpreted as a change. So:

Drum-Snare Volume -20
would decrement the existing volume of th&Dv-SNARE track by 20%.

And, finally, for fine tuning you can adjust a “musical symbetilume by a percentage. The volume “mf-
10” will generate a volume 10% less than the value of “mf”; 26¢ will generate a volume 20% greater
than “f”.

99

17.4 Cresc and Decresc Volume and Dynamics

17.4 Cresc and Decresc

If you wish to adjust the volume over one or more bars use tResc or DEcCRes¢ commands. These
commands work in both the master context and individuaksac

For all practical purposes, the two commands are equivadswept for a possible warning message. If
the new volume in less than the current volume inrRESC a warning will be displayed; the converse
applies to a ECRESC In addition, a warning will be displayed if the effect oftfetr command results in
no volume change.

The command requires two or three arguments. The first anguisian optional initial volume followed
by the new (destination) volume and the number of bars thesadent will take.

For example:
Cresc fff 5

will gradually vary the master volume from its current sgitio a “triple forte” over the next 5 bars. Note
that the very next bar will be played at the current volume thiedifth bar affff with the other three bars
at increasing volumes.

Similarly:

Drum-Snare Decresc mp 2
will decrease the “drum-snare” volume to “mezzo piano” aver next 2 bars.
Finally, consider:

Cresc pp mf 4

which will set the current volume tpp and then increase it tmf over the next 4 bars. Again, note that
the very next bar will be played ap and the fourth ainf.

You can use numeric values (not recommended!) in thesetidigsec
Cresc 20 100 4
As well as increment/decrement:

Volume ff

Decresc -10 -40 4

The above example will first set the volume to 10% less tharctineentff setting. Then it will decrease
the volume over the next 4 bars to a volume 40% less than theseting for the first bar.

A SEQCLEAR command will reset all track volumes to the defawult

When applying @Escor DECREScCat the track level the volumes for each bar in the sequendend
up being the same. For example, assuming a two bar sequéemgthk,lgou might have:

4We use the term “decrescendo”, others prefer “diminuendo”.

100

17.4 Cresc and Decresc Volume and Dynamics

Chord Volume MP F
which alternates the volume between successive bars indHlaRGtrack. Now, if you were to:
Chord Cresc M FF 4
The following actions take effect:
1. A warning message will be displayed,
2. The volume for the chord track will be setrg
3. The volume for the chord track will incrementffoover the next four bars,
4

. The volume for the sequence will end up bethdor all the bars in the remaining sequence. You
may need to reissue the initial chord volume command.

You may find that certain volume adjustments don’t createvttemes you are expecting. In most cases
this will be due to the fact thatf uses a master and track volume to determine the final resylif yu
want a fade at the end of a piece you might do:

Decresc m pppp 4
and find that the volume on the last bar is still too loud. Treeetwo simple solutions:
71 Add a command to decrease the track volumes. For example:
Alltracks Decresc m pppp 4
in addition to to the master setting.
J1 Change the ratio between track and master settings:
AdjustVolume Ratio=0
or some other small value.
These methods will produce similar, but different results.

The adjustments made foREscand DECREScare applied over each bar effected. This means that the
first note or notes in a bar will be louder (or softer) than th&t.| You can use this effect for interesting
changes by using a single bar for the range. Assuming a ¢woignme ofmp

Cresc fff 1
will set the final notes in the following bar to I, etc.

If you have a number of bars with the same chord and the traglay® modifying has NIFY enabled the
volume will not change. WIFY creates long notes sustained over a number of bars for wincixalume
is only set once.

Sometimes a €Es command will span a groove changei handles this in two different ways:

J1 Master GREsccommands can continue over a new@dVE. For example:

SThis applies to BcREscand SVELL as well.

101

17.5 Swell Volume and Dynamics

Groove One
Cresc mp ff 8
C=* 4

Groove Two
Dm=+* 4

will work just fine. This makes sense since library files anobge definitions normally do not have
master volume settings.

J1 However, volume changes at a track level cannot spra@ E changes. Using a simlar example:

Groove One

Chord Cresc mp ff 8
Cx+ 4

Groove Two

Dm=+* 4

In this casemz will truncate the @REscafter 4 bars and issue a warning message. TherD
volume will never reachf. Since groove definitions and library files normally do setividual
volumes for each track it would be counter intuitive to pdreiprevious @EScCto continue its
effect.

17.5 Swell

Often you want a crescendo to be followed by a decrescendtegsrcommanly, a decrescendo followed
by a crescendo). Technically, this isreessa di vocé You'll see the notation in sheet music with opposed

“hairpins”.

A SWELL is set with a command like:
Swell pp ff 4

or
Chord Swell ff 4

In the first case the master volume will be increased over 2 foam pp to ff and then back tpp. In the
second case theH®RD volume will be increased ttf over 2 bars, then back to the original volume.

You can achieve the same results with a pair eBEScand DECRESccommands (and you might be safer
to do just this since WELL doesn’t issue as many warnings).

Note that, just like in @ESG you can skip the first argument (the initial volume settingylso, note that
the final argument is the total number of bars to effect (analist be 2 or more).

6Some references indicate thaessa di vocapplies to a single tone, amdn is not capable of doing this.

102

17.6 RVolume Volume and Dynamics

17.6 RVWVolume

Not even the best musician can play each note at the same @olNior would he or she want to—the
result would be quite unmusical ... 3@74 tries to be a bit human by randomly adjusting note volume
with the RvoLUME command.

The command can be applied to any specific track. Examples:

Chord RVolume 10
Drum-Snare RVolume 5

The RVOLUME argument is a percentage value by which a volume is adjustedtting of O disables the
adjustment for a track (this is the default).

When set, the note velocity (after the track and master voladpgstments) is randomized up or down by
the value. Again, using the above example, let us assume thate in the current pattern gets a MIDI
velocity of 88. The random factor of 10 will adjust this by 1Q@8b or down—the new value can be from
78 to 98.

The idea behind this is to give the track a more human soureffegt. You can use large values, but it’s
not recommended. Usually, values in the 5 to 10 range work Well might want slightly larger values
for drum tracks. Using a value greater than 30 will generatamning message.

Notes:
71 No generated value will be out of the valid MIDI velocity rangf 1 to 127.
J1 A different value can be used for each bar in a sequence:
Scale RVolume 10 0 / 20

J1 A“l” can be used to repeat values.

17.7 Saving and Restoring Volumes

Dynamics can get quite complicated, especially when yowdjesting the volumes of a track inside a
repeat or other complicated sections of music. In this se@itempts to give some general guidelines and
hints.

For the most part, the supplied groove files will have baldn@dumes between the different instruments.
If you find that some instruments or drum tones are consigtés loud or soft, spend some time with
the chapter on Fine Tuning, page 140.

Remember that 800VEs save all the current volume settings. This includes theenastting as well
as individual track settings. So, if you are using the myhgroove “Wonderful” and think that the
Chord-Pianovolume should be louder in a particular song it’'s easy to doetbing like:

103

17.7 Saving and Restoring Volumes Volume and Dynamics

Groove Wonderful
Chord-Piano Volume ff
DefGroove Wonderful

Now, when you call this groove the new volume will be used. eNibtat you'll have to do this for each
variation of the groove that you use in the song.

In most songs you will not need to do major changes. But, itée mo use the same volume each time
though a section. In most cases you’ll want to do a explidtirsgat the start of a section. For example:

Repeat
Volume mf

Cresc ff 5

EndRepeat
Another useful technique is the use of thé #sTVOLUME macro. For example:

Volume pp
Cresc f 5

$_LastVolume // restores to pp

104

Chapter 18

Repeats

M attempts to be as comfortable to use as standard sheet Mmh&dncludesepeatsandendings

More complex structures likB.S, Coda etc. arenot directly supported. But, they are easily simulated
with by using some simple variables, conditionals amuirGs. See chapter 19 for details. Often as not,
it may be easier to use your editor to cut, paste and duplicat®ther, alternate, method of handling
complicated repeats is to set sections of code 8EVI(see page 110) variables and simply expand those.

A section of music to be repeated is indicated with BPRAT and REPEATEND or ENDREPEAT! In
addition, you can have BPEATENDINGS.

(1.2 3. 1[4.
D7 D7 Dm G7 A

N

Pn
S5
"N

e

Repeat

1 Am

2 C
RepeatEnding 2
3 D7
RepeatEnding
4 D7 /| Dm
RepeatEnd

5 G7

6 A

Example 18.1: Repeats

In example 18.1m7 produces music with bars:

1,2,3,

1The reason for both BDREPEAT and REPEATEND is to match FEND and BNDIF.

105

Repeats

, 6

PR
N NN
[O2 ~NIOV]

This works just like standard sheet music. Note that batREATENDING and REPEATEND can take an
optional argument indicating the number of times to use titkrgy or to repeat the block. The effect of an
optional count for RPEATENDING is illustrated in the example, above. The following simptample:

Repeat

1 Am

2 Cm
RepeatEnd 3

Will expand to:

1, 2,
1, 2,
1,2

Note that the optional argument “3” produces a total of troegies. The default argument folEREAT

is “2”. Using “1” cancels the RPEAT and “0” deletes the entire section. Using “1” and “0” are wéf
setting up Coda sections where you want a different countebersl time the section is played. Note that
the count argument can be a macro. Have a look at the sampiepiles.mma for lots of examples.

Combining optional counts with bothEREATENDING and REPEATEND is permitted. Another example:

Repeat

1 Am

2 C
RepeatEnding 2
3 D7
RepeatEnd 2

Produces:

))3)
2,3

e
NN NN

M processes repeats by reading the input file and creatingcdtgs of the repeated material. This means
that a directive in the repeated material would be processdtiple times. Unless you know what you
are doing, directives should not be inserted in repeat@etiBe especially careful if you define a pattern
inside a repeat. UsingelMpPo with a “+” or “-” will be problematic as well.

Repeats can be nested to any level.

Some count values for BPEATEND or ENDREPEAT and REPEATENDING will generate a warning mes-
sage. Using the optional tektoWarnas the first argument will suppress the message:

106

Repeats

Repeat

RepeatEnd Nowarn 1

There must be one BPEATEND or ENDREPEAT for every REPEAT. Any number of REPEATENDINGS
can be included before theeREATEND.

107

Chapter 19

Variables, Conditionals and Jumps

To make the processing of your music easig® supports a very primitive set for variable manipulations
along with some conditional testing and the oft-frownedwupoTo command.

19.1 Variables

M lets you set a variable, much like in other programming laggs and to do some basic manipulations
on them. Variables are most likely to be used for two reasons:

JJ For use in setting up conditional segments of your file,
J1 As a shortcut to entering complex chord sequences.
To begin, the following list shows the available commandseband manipulate variables:

Set VariableName String
Mset VariableName ... MsetEnd
UnSet VariableName

ShowVars

Inc Variablename [value]

Dec Variablename [value]
Vexpand ON/Off

All variable names are case-insensitive. Any characterdeaused in a variable name. The only excep-
tions are that a variable name cannot start with a “$” or’d&n underscore—this is reserved for internal
variables, see below).

Variables are set and manipulated by using their names.ablas are expanded when their name is
prefaced by a space followed by single “$” sign. For example:

Set Silly Am / Bm /
1 $Silly

The first line creates the variable “Silly”; the second cesat bar of music with the chords “Am / Bm /.

Note that the “$” must be the first item on a line or follow a spabaracter. For example, the following
will NOT work:

108

19.1 Variables Variables, Conditionals and Jumps
Set Silly 4a;b;c;d;
1 Am {$Sily }

However:
1 Am { $Silly }

will work fine.

Following are details on all the available variable comnsand

19.1.1 Set
Set or create a variable. You can skip @teingif you do want to assign an empty string to the variable.
A valid example is:
Set PassCount 1
You can concatenate variables or constants by using a siiglEor example:

Groove Rhumba
Repeat

Set a $ Groove + Sus
Groove $a

Groove Rhumbal
Repeatend

This can be useful in calling ®oVE variations.

19.1.2 NewSet
The NEwWSET command works the same as®8with the exception that that it is completely ignored if the
variable already exists. So,
NewSet ChordVoice JazzGuitar
and

If NDef ChordVoice
Set ChordVoice JazzGuitar
Endif

have identical results.

109

19.1 Variables Variables, Conditionals and Jumps

19.1.3 Mset

This command is quite similar toeS, but MSET expects multiple lines. An example:

MSet LongVar
1 Cm
2 Gm
3 G7
MsetEnd

It is quite possible to set a variable to hold an entire saatianusic (perhaps a chorus) and insert this via
macro expansion at various places in your file.

Each MseT must be terminated by aNBM SeTor MSETEND command (on its own separate line).

Be careful if you use an M variable in a RINT statement . .. you’ll probably get an error. ThRIRT
command will print thdirst line of the variable and the remainder will be reinserted the input stream
for interpretation.

Special code im#a will maintain the block settings from BGIN/END. So, you can do something like:

Mset Spam
Line one
Line 2
333

EndMset

Begin Print
$Spam

End

19.1.4 RndSet

There are times when you may want a random value to use intisglexr GROOVE or for other more
creative purposes. TheN®RSET command sets a variable from a value in a list. The list camgéhang;
just remember that each white space forms the start of a eew 5o,

RndSet Var 1 2 3 4 5
will set $VAR to one of the values 1, 2, 3, 4 or 5.
You could use this to randomly select RGOVE:
Groove $var Groovel Groove2 Groove3
Alternately,
RndSet Grv Groovel Groove2 Groove3
will set $GRV to one of “Groovel”, “Groove2” or “Groove3”.

Then you can do the same as in the earlier example with:

110

19.1 Variables Variables, Conditionals and Jumps

Groove $Grv

You can also have fun using random values for timing, trasisijon, etc.

19.1.5 UnSet VariableName

Removes the variable. This can be useful if you have condititests which simply rely on a certain
variable being “defined”.

19.1.6 ShowVars

Mainly used for debugging, this command displays the narhdseadefined variables and their contents.
The display will preface each variable name with a “$”. Ndtattinternalvia variables are not displayed
with this command.

You can call $iowVARs with an argument list. In this case the values of the varghkmes in the list
will be printed. Variables which do not exist willot cause an error. EQ:

ShowVars xXx Count foo
$XXX - not defined
$COUNT: 11
$FOO: This is Foo

19.1.7 Inc and Dec

These commands increment or decrement a variable. If noremguis given, a value of 1 is used; other-
wise, the value specified is used. The value can be an integeftaating point number.

A short example:

Set PassCount 1
Set Foobar 4
Showvars

Inc FooBar 4
Inc PassCount
ShowVars

This command is quite useful for creating conditional tést@roper handling of codas or groove changes
in repeats.

19.1.8 VExpand On or Off

Normally variable expansion is enabled. These two optialigwn expansion on or off. Why would you
want to do this? Well, here’s a simple example:

111

19.1 Variables Variables, Conditionals and Jumps

Set LeftC Am Em

Set RightC G /
VExpand Off

Set Full $LeftC $RightC
VExpand On

In this case the actual contents of the variable “Full” is é8iC $RightC”. If the G-F/ON option lines
had not been used, the contents would be “Am Em G /. You cailyeasify this with the SHOwWVARS
option.

When a7 processes a file it expands variables in a recursive mannigs means that, in the above
example, the line:

1 $Full

will be changed to:
1 Am Em G /

However, if later in the file, you change the definition of ori¢ghe variables ... for example:
Set LeftC Am /

the same line will now be “1 Am /G /.

Most of aA’s internal commandsanbe redefined with variables. However, you really shouldsé this
feature. It's been left for two reasons: it might be usefalj,at’s hard to disable.

However, not all commands can be redefined. The followingpastdist of things which will work (but,
again, not all suggestions should be used!):

Set Rate Tempo 120
$Rate

Set R Repeat

$R

But, the following will not work:

Set B Begin
Set E End
$B Arpeggio Define
$E
This fails since the Begin/End constructs are expanded é&fmiable expansion. However:

Set A Define Arpeggio
Begin $a ... End

is quite alright.

Even though you can use a variable to substitute for theBAT or |F directives, using one for BPEATEND,
ENDREPEAT, REPEATENDING, LABEL, IFEND or ENDIF will fail.

112

19.2 Predefined Variables Variables, Conditionals and Jumps

Variable expansion should usually not be a concern. In moshal files, a# will expand variables as
they are encountered. However, when reading the data iBRERY, IF or MSET section the expansion
function is skipped—but, when the lines are processed; bétimg stored in an internal queue, variables
are expanded.

19.1.9 StackValue

Sometimes you just want to save a value for a few lines of cdtie. StACKVALUE command will save
its arguments. You can later retrieve them via th8t&ckValue macro. For example (taken from the
stdpats.mma file):

StackValue $ _SwingMode

SwingMode On

Begin Drum Define
Swing8 1 0 90 * 8

End

SwingMode $ _StackValue

Note that the $StackValue macro removes the last value from the stack. Ufigeoke the macro when
there is nothing saved an error will occur.

19.2 Predefined Variables

For your conveniencef tracks a number of internal settings and you can access\yhkss with special
macrost All of these “system” variables are prefaced with a singldemscore. For example, the current
tempo is displayed with the variableBEMPO.

There are two categories of system variables. The first arsithple values for global settings:
$ AutoLibPath Current AuTOLIBPATH setting.
$_BarNum Current bar number of song.
$_Debug Current debug settings.
$_Groove Name of the currently selected groove. May be empty if nogedas been selected.

$_KeySig Key signature as defined in song file. If no key signature isheesomewhat cryptic 0# will
be returned.

$_LineNum Line number in current file.

$.IncPath Current NCPATH setting.

1The values are dynamically created and reflect the curretihgs, and may not be exactly the same as the value you
originally set due to internal roundings, etc.

113

19.2 Predefined Variables Variables, Conditionals and Jumps

$_LastDebug Debug settings prior to lastE8UG command. This setting can be used to restore settings,
IE:

Debug Warnings=off
stuff generating annoying warnings
Debug $_LastDebug

$ LastGroove Name of the groove selectéeforethe currently selected groove.
$_LastVolume Previously set global volume setting.

$_LibPath Current LBPATH setting.

$_Lyric Current LYRIC settings.

$_MIDISplit List of SPLITCHANNELS.

$ OutPath Current QUTPATH setting.

$_SegRnd Global SEQRND setting (on, off or track list).

$ SeqRndWeight Global S QRNDWEIGHT settings.

$_SeqSizeCurrent $QSIZE setting.

$_SwingMode Current SVINGMODE setting (On or Off) and the Skew value.
$_StackValue The last value stored on the &K VALUE stack.

$_Tempo Current TEMPO. Note that if you have used the optiorar countin setting the tempo this
will be the target tempo.

$_Time The current TME (beats per bar) setting.
$ ToneTr List of all TONETR settings.
$_Transpose Current TRANSPOSESetting.

$_VExpand VExpand value (On/Off). Not very useful since you can’'t dea¥yEXPAND back with a
macro.

$_VoiceTr List of all VOICETR settings.
$_Volume Current global volume setting.
$_ VolumeRatio Global volume ratio (track vrs. master) frorDAUSTVOLUME Ratio setting.

The second type of system variable is for settings in a cettack. Each of these variables is in the
form $ TRACKNAME VALUE. For example, the current voice setting for the “Bass'Strack can be
accessed with the variableBass-Sus/oice.

If the associated command permits a value for each sequenarir pattern, the macro will more than
one value. For example (assuming efSIZE of 4):

114

19.2 Predefined Variables Variables, Conditionals and Jumps

Bass Octave 3 4 2 4
Print $ _Bass Octave
3 4 2 4
The following are the available “TrackName” macros:
$_ TRACKNAME _Accent
$ TRACKNAME _Articulate
$ TRACKNAME _Channel Assigned MIDI channel 1-16, O if not assigned.
$_.TRACKNAME _Compress
$. TRACKNAME _Direction
$_ TRACKNAME _DupRoot (only permitted in Chord Tracks)
$_ TRACKNAME _Harmony
$ TRACKNAME _HarmonyVolume
$_ TRACKNAME _Invert
$ TRACKNAME _Limit
$_ TRACKNAME _Mallet Rate and delay values (only valid in Solo and Melody tracks)
$ TRACKNAME _NoteSpan
$. TRACKNAME _Octave
$ TRACKNAME _Range
$_ TRACKNAME _Rskip
$ TRACKNAME _Rtime
$. TRACKNAME _Rvolume
$ TRACKNAME _SeqgRnd
$_ TRACKNAME _SegRndWeight
$_ TRACKNAME _Sequence
$_ TRACKNAME _Strum (only permitted in Chord tracks)
$ TRACKNAME _Tone (only permitted in Drum tracks)
$ TRACKNAME _Unify
$_ TRACKNAME _Voice
$ TRACKNAME _Voicing (only permitted in Chord tracks)
$_ TRACKNAME _Volume

115

19.3 Conditionals Variables, Conditionals and Jumps

The “TrackName” macros are useful in copying values betwesmsimilar tracks and €SHARE tracks.
For example:

Begin Bass
Voice AcousticBass
Octave 3

End

Begin Walk
ChShare Bass
Voice $ _Bass _Voice
Octave $ _Bass _Octave

End

19.3 Conditionals

The most important reason to have variablesviit is to use them available in conditionals. M2 a
conditional consists of a line starting with an diirective, a test, a series of lines to process (depending
upon the result of the test), and a closingtEF or IFEND? directive. An optional ESE statement may

be included.

The first set of tests are unary (they take no arguments):
Def VariableName Returns true if the variable has been defined.
Ndef VariableName Returns true if the variable has not been defined.

In the above tests you must supply the name of a variable—+daske the mistake of including a “$”
which will invoke expansion and result in something you weoéexpecting.

A simple example:

If Def InCoda
5 Cm
6 /

Endif

The other tests are binary (they take two arguments):

LT Strl Str2 Returns true ifStrlis less tharbtr2 (Please see the discussion below on how the tests are
done.)

LE Strl Str2 Returns true istrlis less than or equal t6tr2
EQ Strl Str2 Returns true iktrlis equal taStr2

2a6m’s author probably suffers from mild dyslexia and can't renber if the command is IFEND or ENDIF, so both are
permitted. Use whichever is more comfortable for you.

116

19.3 Conditionals Variables, Conditionals and Jumps

NE Strl Str2 Returns true istrlis not equal tdtr2
GT Strl Str2 Returns true itrlis greater tharstr2
GE Strl Str2 Returns true iftrlis greater than or equal ®tr2

In the above tests you have several choices in specifytrigandStr2 At some point, whem#z does the
actual comparison, two strings or numeric values are ergde&o, you really could do:

If EQ abc ABC

and get a “true” result. The reason that “abc” equals “ABC” @&tthll the comparisons inf4 are case-
insensitive.

You can also compare a variable to a string:
If GT $foo abc

will evaluate to “true” if thecontentsof the variable “foo” evaluates to something “greater théadic”.
But, there is a bit of a “gotcha’ here. If you have set “foo” tontword string, thermaz will choke on
the command. In the following example:

Set Foo A B
If GT $Foo abc

the comparison is passed the line:
If GT A B abc

and M seeing three arguments generates an error. If you want thpartson done on a variable which
might be more than one word, use the “$$” syntax. This delagskpansion of the variable until the |
directive is entered. So:

If $$foo abc
would generate a comparison between “A B” and “ABC”.
Delayed expansion can be applied to either variable. It algks in an F directive.

Strings and numeric values can be confusing in compariséasexample, if you have the strings “22”
and "3” and compare them as strings, “3” is greater than “2@&iyvever, if you compare them as values
then 3 is less than 22.

The rule in9fm is quite simple: If either string in a comparison is a numesdue, both strings are
converted to values. Otherwise they are compared as sfrings

This lets you do consistent comparisons in situations like:
Set Count 1
If LE $$Count 4

IfEnd

3An attempt is made to convert each string to a float. If conwarsf both strings is successful, the comparison is made
between two floats, otherwise two strings are used.

117

19.4 Goto Variables, Conditionals and Jumps

Note that the above example could have used “$Count”, but iould probably always use the “$$” in
tests.

Much like other programming languages, an optionatEcondition may be used:

If Def Coda
Groove Rhumbal
Else
Groove Rhumba
Endif

The H_SE statement(s) are processed only if the test for thiest is false.
Nesting of Fs is permitted:

If ndef Foo
Print Foo has been defined.
Else
If def bar
Print bar has been defined. Cool.
Else
Print no bar...go thirsty.
Endif
Endif

works just fine. Indentation has been used in these exampldedrly show the nesting and conditions.
You should do the same.

19.4 Goto

The GoTo command redirects the execution order of your script to that@t which a LABEL or line
number has been defined. There are really two parts to this:

1. A command defining a label, and,
2. The GTo command.
A label is set with the LBEL directive:
Label Pointl
The string defining the label can be any sequence of chasatiabels are case-insensitive.

To make this look a lot more line those old BASIC programs, amgs starting with a line number are
considered to be label lines as well.

A few considerations on labels and line numbers:

J3 A duplicate label generated with aBEL command will generate an error.

118

19.4 Goto Variables, Conditionals and Jumps

71 Aline number label duplicating aABEL is an error.
73 A LABEL duplicating a line number is an error.
J1 Duplicate line numbers are permitted. The last one encoeahtgill be the one used.
71 All label points are generated when the file is opened, ndtiagparsed.
71 Line numbers (really, just comments) do not need to be in adgro
The command:
Goto Pointl

causes an immediate jump to a new point in the file. If you areeatly in repeat or conditional segment
of the file, the remaining lines in that segment will be igrtbre

M does not check to see if you are jumping into a repeat or dondit section of code—but doing so
will usually cause an error. Jumping out of these sectionsuslly safe.

The following example shows the use of both types of labethism example only lines 2, 3, 5 and 6 will
be processed.

Goto Foo
1 Cm
Label Foo
2 Dm
3/

Goto 5

4 Am

5 Cm

6 Dm

For an example of how to use some simple labels to simulateSadiCoda” examine the file “lullaby-of-
Broadway” in the sample songs directory.

119

Chapter 20

Low Level MIDI Commands

The commands discussed in this chapter directly effect Mdid output devices.

Not all MIDI devices are equal. Many of the effects in this ptea may be ignored by your devices. Sorry,
but that’s just the way MIDI is.

20.1 Channel

As noted in the Tracks and Channels chapter (pagentf)assigns MIDI channels dynamically as it
creates tracks. In most cases this works fine; however, youfgau wish force the assignment of a
specific MIDI channel to a track with theHANNEL command.

You cannot assign a channel number to a track if it alreadyeéfjwell, see the sectiorHSHARE, below,
for the inevitable exception), nor can you change the chaassignments for any of thedwm tracks.

Let us assume that you want tBasstrack assigned to MIDI channel 8. Simply use:
Bass Channel 8

Caution: If the selected channel is already in use an errbbeigenerated. Due to the wayA allocates
tracks, if you really need to manually assign track it is rmogended that you do this in a MMZC file.

You can disable a channel at any time by using a channel nuofifer
Arpeggio-1 Channel 0

will disable the Arpeggio-1 channel, freeing it for use bihettracks. A warning message is generated.
Disabling a track without a valid channel is fine. When you selhannel to 0 the track is also disabled.
You can restart the track with theNadcommand (see page 150).

You don't need to have a valid MIDI channel assigned to a ttaao things like: MIDIRAN, MIDIG LIS,
MIDIV oLUME or even the assignment of any music to a track. MIDI data iatecein tracks and then
sent out to the MIDI buffers. Channel assignment is checkédalocated at this point, and an error will
be generated if no channels are available.

It's quite acceptable to do channel reassignments in thelmiof a song. Just assign channel 0 to the
unneeded track first.

MIDI channel settings areot saved in ROOVES.

120

20.2 ChannelPref Low Level MIDI Commands

MA inserts a MIDI “track name” meta event when the channel bbsiffee first assigned at a MIDI offset
of 0. If the MIDI channel is reassigned, a new “track name’hsarted at the current song offset.

A more general method is to used&NNEL PREF detailed below.

You can access the currently assigned channel with fTRRACK_CHANNEL macro.

20.2 ChannelPref

If you prefer to have certain tracks assigned to certainebisn/ou can use theHANNEL PREFcommand

to create a custom set of preferences. By defadit,assigns channels starting at 16 and working down to
1 (with the expectation of drum tracks which are all assigetgahnel 10). If, for example, you would like
the Basstrack to be on channel 9, sustained bass on channel 3Aigredjgioon channel 5, you can have
a command like:

ChannelPref Bass=9 Arpeggio=5 Bass-Sus=3
Most likely this will be in yourMMARC file.

You can use multiple command lines, or have multiple ass@rison a single line. Just make sure that
each item consists of a trackname, an “=" and a channel numitee range 1 to 16.

20.3 ChShare

MiA is fairly conservative in its use of MIDI tracks. “Out of theX' it demands a separate MIDI channel
for each of its tracks, but only as they are actually used. dstroases, this works just fine.

However, there are times when you might need more tracksthigaavailable MIDI channels or you may
want to free up some channels for other programs.

If you have different tracks with the same voicing, it's gugimple. For example, you might have an
arpeggio and scale track:

Arpeggio Sequence Al6 z
Arpeggio Voice Pianol
Scale Sequence z S8
Scale Voice Pianol

In this example M will use different MIDI channels for th&rpeggioand theScale Now, if you force
channel sharing:

Scale ChShare Arpeggio
both tracks will use the same MIDI channel.

This is really foolproof in the above example, especialhcsithe same voice is being used for both. Now,
what if you wanted to use a different voice for the tracks?

121

20.4 ForceOut Low Level MIDI Commands

Arpeggio Sequence Al6 z
Arpeggio Voice Pianol Strings
Scale Sequence z S8

Scale ChShare Arpeggio

You might think that this would work, but it doesn#4 ignores voice changes for bars which don’t have
a sequence, so it will set “Pianol” for the first bar, then it®fs” for the second (so far, so good). But,
when it does the third bar (anRPEGGIQ it will not know that the voice has been changed to “Strings”
by theScaletrack.

So, the general rule for track channel sharing is to use amivoice.
One more example which doesn’t work:

Arpeggio Sequence A8
Scale Sequence S4
Arpeggio Voice Pianol
Scale Voice Pianol
Scale ChShare Arpeggio

This example has an active scale and arpeggio sequencehimaacSince both use the same voice, you
may think that it will work just fine ... but it may not. The prein here is thatm will generate MIDI

on and off events which may overlap each other. One or the etliibe truncated. If you are using a
different octave, it will work much better. It may sound okauyt you should probably find a better way
to do this.

When a GiSHARE directive is parsed the “shared” channel is first checkednguee that it has been
assigned. If not currently assigned, the assignment igiiins¢. What this means is that you are subverting
M’s normal dynamic channel allocation scheme. This may causelepletion of available channels.

Please note that that the use of theSEARE command is probably never really needed, so it might have
more problems than outlined here. If you want to see how muabtlzer channel sharing becomes, have
a look at the standard library fifeenchwaltz.mma . All this so the accordion bass can use one channel
instead of 6. If | were to write it again I'd just let it suck upet MIDI channels.

For another, simpler, way of reassigning MIDI tracks antrgtaz do most of the work for you, refer to
the DELETE command, see page 148.

20.4 ForceOut

Under normal conditions#a only generates the MIDI tracks it thinks are valid or releva®o, if you
create a track but insert no note data into that track it vall Ibe generated. An easy way to verify this
is by creating file and runningfa with the -c command line option. Lets start off by creatingl@ you
might think will set the keyboard channel on your synth to adr&ax voice:

Begin Solo-Keyboard
Channel 1

122

20.4 ForceOut Low Level MIDI Commands

Voice TenorSax
MIDIVolume 100
End

If you compile this you should get:

$ mma test -c
File ’test’ parsed, but no MIDI file produced!

Tracks allocated:
SOLO-KEYBOARD

Channel assignments:
1 SOLO-KEYBOARD

So, amiA track was created, but if you compile this file and examina¢sealting MIDI file you will find
that the voicenas notbeen set.

To overcome this, insert thedRCEOUT command at the end of the track setup. For example, here is
a more complete file which will set the keyboard track to T&=zorwith a volume of 100, play a bar of
accompaniment, set a Trumpet voice with a louder volume, gather bar, and finally reset the keyboard
to the default Piano voice.

Groove BossaNova

Begin Solo
Channel 1
Voice TenorSax
MIDIVolume 100
ForceOut

End

1C

Begin Solo
Voice Trumpet
MIDIVolume 120
ForceOut

End

2 G
Begin Solo
Voice Pianol

MIDIVolume 127
ForceOut

123

20.5 MIDI Low Level MIDI Commands

End

Note: The same or similar results could be accomplished thighMIDI command; however, it’s a bit
harder to use and the commands would be in the Meta track.

20.5 MIDI

The complete set of MIDI commands is not limitless—but frdmns tend it seems that adding commands
to suit every possible configuration is never-ending. S@nrattempt to satisfy everyone, a command
which will place any arbitrary MIDI stream in your tracks Hasen implemented. In most cases this will
be a MIDI “Sysex” or “Meta” event.

For example, you might want to start a song off with a MIDI tese
MIDI OxFO Ox05 Ox7e Ox7f 0x09 0x01 Oxf7

The values passed to the MIDI command are normal integevsever, they must all be in the range of
0x00 to Oxff. In most cases it is easiest to use hexadecimabeus by using the “0x” prefix. But, you
can use plain decimal integers if you prefer.

In the above example:
OxFO Designates a SYSEX message
0x05 The length of the message
Ox7e ...The actual message
Another example places the key signature of F major (1 flaf)égrmeta track:
MIDI Oxff 0x59 0x02 Oxff 0x00
Somecautions:
J1 a7 makes no attempt to verify the validity of the datal!
J1 The “Length” field must be manually calculated.

J1 Malformed sequences can create unplayable MIDI files. Ineex¢ situations, these might even
damage your synth. You are on your own with this command . cabeful.

JJ The MipI directive always places data in tMetatrack at the current time offset into the file. This
should not be a problem.

Cautions asidencludes/init. nma has been included in this distribution. | use this withoypament
problems; to use it add the command line:

1This is much easier to do with the KeySig command, page 64

124

20.6 MIDIClear Low Level MIDI Commands

MMAstart init

in your MMARC file. The file is pretty well commented and it sets a synth upoimesthing reasonably
sane.

If you need a brief delay after a raw MIDI command, it is pobsito insert a silent beat with the
BEATADJUSTcommand (see page 87). See theifithides/reset. mma for an example.

20.6 MIDIClear

As noted earlier in this manual you should be very carefutggpamming MIDI sequences into your song
and/or library files. Doing damage to a synthesizer is priybalbemote possibility ... but leaving it in a
unexpected mode is likely. For this reason the MIDEER command has been added as a companion to
the MIDIVoice and MIDISEQ commands.

Each time a MIDI track (not necessary the same agratrack) is ended or a new EDOVE is started,

a check is done to see if any MIDI data has been inserted inrdlok with a MIDIVoICE or MIDISEQ
command. If it has, a further check is done to see if there fsatio” sequence defined via a MIDLEAR
command. That data is then sent; or, if data has not be deforethé track, a warning message is
displayed.

The MIDICLEAR command uses the same syntax as MIDI¥E and MIDISEQ; however, you can not
specify different sequence for different bars in the seqaen

Bass-Funky MIDIClear 1 Modulation 0; 1 ReleaseTime 0

As in MIDIV oice and MIDISEQ you can include sequences defined in a MIBHDThe <beat>offsets
are required, but ignored.

20.7 MIDIFile

This option controls some fine points of the generated MI. fiThe command is issued with a se-
ries of parameters in the form “MODE=VALUE". You can have tipie settings in a single MIDIEE
command.

MA can generate two types of SMF (Standard MIDI Files):

0. This file contains only one track into which the data forthé# different channel tracks has been
merged. A number of synths which accept SMF (Casio, Yamahaotrats) only accept type O
files.

1. This file has the data for each MIDI channel in its own tra€his is the default file generated by
MA.

You can set the filetype in an RC file (or, for that matter, in aleygrocessed by#2) with the command:

125

20.8 MIDIGlis Low Level MIDI Commands

MidiFile SMF=0
or
MidiFile SMF=1

You can also set it on the command line with the -M option. gshe command line option will override
the MIiDISMF command if it is in a RC file.

By defaultaz uses “running status” when generating MIDI files. This cadigabled with the command:
MidiFile Running=0

or enabled (but this is the default) with:
MidiFile Running=1

Files generated without running status will be about 20 & 38rger than their compressed counterparts.
They may be useful for use with brain-dead sequencers anddagdling generated code. There is no
command line equivalent for this option.

20.8 MIDIGIis

This sets the MIDI portamenta(in case you're new to all this, portamento is like glissatgtween
notes—wonderful, if you like trombones! To enable portatoen

Arpeggio MIDIGIis 30
The parameter can be any value between 1 and 127. To turndireysyff:
Arpeggio MIDIGIis 0

This command will work with any track (including drum tragk&lowever, the results may be somewhat
“interesting” or “disappointing”, and many MIDI devicesmiosupport portamento at all. So, be cautious.
The data generated is not sent into the MIDI stream until calislata is created for the relevant MIDI
channel.

20.9 MIDIInc

M has the ability to include a user supplied MIDI file at any paifits generated files. These included
files can be used to play a melodic solo ovewia pattern or to fill a section of a song with something like
a drum solo.

When the MIDINC command is encountered the current line is parsed for attbe file is inserted into
the stored MIDI stream, and processing continues. Thedechas no effect on any song pointers, etc.

2The name “Glis” is used because “MIDIPortamento” gets to bé bng to type and “MIDIPort” might be interpreted as
something to do with “ports”.

126

20.9 MIDIInc Low Level MIDI Commands

MIDI INC has a number of options, all set in the form OPTION=VALUE.|&wing are the recognized
options:

FILENAME The filename of the file to be included. This must be a complé&adme. The file-
name will be expanded by the Python os.path.expandusergjifun for tilde expansion. No pre-
fixes or extensions are added 1. Examples: H.ENAME =/home/bob/midi/myfile.mid . or
FILENAME =~ /sounds/myfile.mid

VOLUME An adjustment for the volume of all the note on events in tleuided MIDI file. The ad-
justment is specified as a percentage with values under 1€f@aieng the volume and over 100
increasing it. If the resultant volume (velocity) is lesanhl a velocity of 1 will be used; if it is over
127, 127 will be used. Example:oLumME=80.

OCTAVE Octave adjustment for all notes in the file. Values in the eai#gto 4 are permitted. Notes in
drum tracks (channel 10) will not be effected. ExampleT@E=2.

TRANSPOSE Transposition adjustment settings in the range -24 to 2pamitted. If you do not set
a value for this the global transpose setting will be app(eecting channel 10, drum, notes).
Example: RANSPOSE=-2.

LYRIC This option will copy anyLyric events to thev meta track. The valid settings are “On” or
“Off”. By default this is set to “Off”. Example kric=0n.

TEXT This option will copy anyTextevents to them meta track. The valid settings are “On” or “Off”.
By default this is set to “Off”. Example @xT=0n.

START Specifies the start poimf the file to be includeth beats. For example, “Start=22" would start
the include process 22 beats into the file. The data will berted at the current song position in
your MMA file. The value used must greater or equal to 0 and neegy foactional beat value (18.456
if fine).

END Specifies the end poimif the file to be includeth beats. For example, “End=100" would discard
all data after 100 beats in the file. The value used must beayrmat theStart position and can be
fractional.

TRACK A tracknamemust be seinto which notes are inserted. You can set more than one/tlaahnel
if you wish. For example, if you had the opti@RUM=10any notes in the MIDI file with a channel
10 setting would be inserted into th&z Drumtrack. Similarity,Solo-Tenor=1will copy notes from
channel 1 into thé&olo-Tenortrack. If the track doesn’t exist, it will be created. Nothistmeans
that the channel assignment in your included file and the mengenerated file will most likely be
different.

At least onel'RACK option is required to include a MIDI file. Itis up to the userdwamine exisiting
MIDI files to determine the tracks being used and which to idelunto 244’s output.

A complete example of usage is shown in the files in the dirgdags/frankie in the distribution. A
short example:

MIDIlinc File=test.mid Solo-Piano=1 Drum=10 Volume=70

127

20.10 MIDIMark. Low Level MIDI Commands

will include the MIDI file “test.mid” at the current positioand assign all notes in channel 1 to ®elo-
Pianotrack and the notes from channel 10 to Bremtrack. The volumes for all the notes will be adjusted
to 70% of that in the original.

A few notes:

J1 MIDI files to be included do not have to have the same tempmIMic adjusts this automatically
during the importation. However, the internal setting feabdivision should be the same#
assumes a beat division of 192 (this is set in bytes 12 and f8d¥IDI file). If the included file
differs a warning is printed analfz will attempt to adjust the timings.

J1 Allfiles are parsed to find the offset of the first note-on eyantes to be included are set with their
offsets compensated by that time. This means that any silahthe start of the included file is
skipped (this may surprise you if you have used the optiStaitsetting). If you want the included
file to start somewhere besides the start of the current hacga use a BATADJUST before the
MiDIINC—use another to move the pointer back right after the inclodeeep the song pointer
correct.

J1 Not all events in the included files are transferred: notali\gystem and meta events (other than
text and lyric, see above) are ignored.

71 If you want to apply different YWLUME or other options to different tracks, just do multiple irchés
of the same file (with each include using a different track aepigons).

20.10 MIDIMark

You can insert a MIDI Marker event into the Meta track withsteibommand. The mark can be useful in
debugging your MIDI output with a sequencer or editor whiagp@orts Mark events (most do).

MidiMark Label

will insert the text “Label” at the current position. You cadd an optional negative or positive offset in
beats:

MidiMark 2 Label4

will insert “Label4” 2 beats into the next bar.

20.11 MIDIPan

In MIDI-speak “pan” is the same as “balance” on a stereo. Bystit)g the MIDIRAN for a track you can
direct the output to the left, right or both speakers. Examnpl

128

20.11 MIDIPan Low Level MIDI Commands

Bass MIDIPan 4

This command is only available in track mode. The data geeéiia not sent into the MIDI stream until
musical data is created for the relevant MIDI channel.

The value specified must be in the range 0 to 127, and must reeyer.
A variation for this command is to have the pan value change avange of beats:
Solo MidiPan 10 120 4
in this case you must give exactly 3 arguments:
1. The initial pan value (0 to 127),
2. The final pan value (0 to 127),
3. The number of beats to apply the pan over.

Using a beat count you can create interesting effects witbrdnt instruments moving between the left
and right channels.

MIDIPAN is not saved or restored byR®@oVE commands, nor is it effected bye®CLEAR. A MIDIPAN
is inserted directly into the MIDI track at the point at whitls encountered in the music file. This means
that the effect of MIDIRN will be in use until another MIDIRN is encountered.

MIDIPAN can be used in MIDI compositions to emulate the sound of almestca. By assigning different
values to different groups of instruments, you can get tleéirfg of strings, horns, etc. all placed in the
“correct” position on the stage.

MIDIPAN can be used for much cruder purposes. When creating accomganiracks for a mythical
jazz group, you might set all the bass tracks (Bass, Walk, Bas$z) set to aMIDIBRN 0. Now, when
practicing at home you have a “full band”; and the bass plager practice without the generated bass
lines simply by turning off the left speaker.

Because most MIDI keyboard do not reset between tunes, theutdsbe a MIDIRAN to undo the effects
at the end of the file. Exampfe:

Include swing
Groove Swing
Bass MIDIPan 0O
Walk MIDIPan O
1C

2 C

123 C

Bass MIDIPan 64
Walk MIDIPan 64

3This is much easier to do with the MMAStart and MMAENd optice chapter 26.

129

20.12 MIDISeq Low Level MIDI Commands

20.12 MIDISeq

It is possible to associate a set of MIDI controller messag#scertain beats in a sequence. For example,
you might want to have the Modulation Wheel set for the firsttb@aa bar, but not for the third. The
following example shows how:

Seqgsize 4

Begin Bass-2

Voice NylonGuitar

Octave 4

Sequence {14 190; 243090, 345290441+ 90 }
MIDIDef WheelStuff 1 1 Ox7f ; 2 1 0x50; 3 1 O

MidiSeq WheelStuff

Articulate 90

End

Cx 4

The MiDISEQ command is specific to a track and is saved as part of tRedvE definition. This lets
style file writers use enhanced MIDI features to dress up gwinds.

The command has the following syntax:
TrackName MidiSeq <Beat> <Controller> <Datum> [; ...]
where:

Beat is the Beat in the bar. This can be an integer (1,2, etc.) or &rfppoint value (1.2, 2.25, etc.). It
must be 1 or greater and less than the end of bt imust be less than 5).

Controller A valid MIDI controller. This can be a value in the range 0x0Mk7f or a symbolic name.
See the appendix (page 185) for a list of defined names.

Datum All controller messages use a single byte “parameter” irrdimge 0x00 to Ox7f.

You can enter the values in either standard decimal notati@am hexadecimal with the prefixed “0x”. In
most cases, your code will be clearer if you use values lik&f0rather than the equivalent “127”.

The MIDI sequences specified can take several forms:
1. A simple series like:
MIDISeq 1 ReleaseTime 50; 3 ReleaseTime O

in this case the commands are applied to beats 1 and 3 in eaohtha sequence.

20.12.1

2. As a set of names predefined in an MIDdBcommand:

130

20.13 MIDISplit Low Level MIDI Commands

MIDIdef Rell 1 ReleaseTime 50; 3 ReleaseTime O
MIDIdef Rel2 2 ReleaseTime 50; 4 ReleaseTime O
MIDISeq Rell Rel2

Here, the commands defined in “Rell” are applied to the firstilbéne sequence, “Rel2” to the
second. And, if there are more bars in the sequence thantaefsin the line, the series will be
repeated for each bar.

3. Asetof series enclosed{n} braces. Each braced series is applied to a different baeiseuence.
The example above could have been does as:

MIDISeq { 1 ReleaseTime 50; 3 ReleaseTime 0 o
{ 2 ReleaseTime 50; 4 ReleaseTime 0 }

4. Finally, you can combine the above into different combores. For example:

MIDIDef Rell 1 ReleaseTime 50
MIDIDef Rel2 2 ReleaseTime 50
MIDISeq { Rell; 3 ReleaseTime 0 } { Rel2; 4 ReleaseTime 0O }

You can have specify different messages for different b@atdifferent messages/controllers for the same
beat) by listing them on the sameliM SEQ line separated by “;"s.

If you need to repeat a sequence for a measure in a sequencaryose the special notation “/” to force
the use of the previous line. The special symbol “z” or ”-” ¢enused to disable a bar (or number of bars).
For example:

Bass-Dumb MIDISeq 1 ReleaseTime 20 z / FOOBAR

would set the “ReleaseTime” sequence for the first bar of thaesgce, no MIDISeq events for the second
and third, and the contents of “FOOBAR” for the fourth.

To disable the sending of messages just use a single “-

Bass-2 MidiSeq - // disable controllers

20.13 MIDISplit

For certain post-processing effects it is convenient teheach different drum tone in a separate MIDI
track. This makes it easier to apply an effect to, for exantple snare drum. Just to make this a bit more
fun you can split any track created bya.

To use this feature:
MIDISplit <list of channels>

So, to split out just the drum chanfiglou would have the command:

4In o this will always be channel 10.

131

20.14 MIDITname Low Level MIDI Commands

MIDISplit 10
somewhere in your song file.

When processingfA creates an internal list of MIDI note-on events for each tongitch in the track. It
then creates a separate MIDI track for each list. Any othentssare written to another track.

20.14 MIDITname

When creating a MIDI tracky inserts a MIDI Track Name event at the start of the track. Bywadkf
this name is the same as the associat@ttrack name. You can change this by issuing the MIRAME
command. For example, to change thed®D track name you might do something like:

Chord MidiTname Piano

Please note that th@nly effects the tracks in the generated MIDI file. You still refeithe track in your
file as CHORD.

20.15 MIDIVoice

Similar to the MIDISEQ command discussed in the previous section, the MI®IBE command is used
to insert MIDI controller messages into your files. Instebddending the data for each bar as MIEH@

does, this command just sends the listed control eventeatént of a track and then, if needed, at the
start of each bar.

Again, a short example. Let us assume that you want to usdRbledse Time” controller to sustain notes
in a bass line:

Seqsize 4

Begin Bass-2

Voice NylonGuitar

MidiVoice 1 ReleaseTime 50

Octave 4

Sequence { 14 190; 24390, 345290;44 1+ 90 }
Articulate 60

End

Cx 4
should give an interesting effect.

The syntax for the command is:

132

20.16 MIDIVolume Low Level MIDI Commands

Track MIDIVoice <beat> <controller> <Datum> [; ...]

This syntax is identical to that discussed in the sectioMtiDISEQ, above. The<beat-value is required
for the command—it determines if the data is sent before tar éifie VOICE command is sent. Some
controllers are reset by a voice, others not. My experimsimbsv that B\NK should be sent before, most
others after. Using a “beat” of “0” forces the MidiVoice datebe sent before the Voice control; any other
“beat” value causes the data to be sent after the Voice dohtrthis silly example:

Voice Pianol
MidiVoice {0 Bank 5; 1 ReleaseTime 100 }

the MIDI data is created in an order like:

0 Param Ch=xx Con=00 val=05
0 ProgCh Ch=xx Prog=00
0 Param Ch=xx Con=72 val=80

All the MIDI events occur at the same offset, but the ordemay be) important.

By defaultafz assumes that the MIDIVoice data is to be used only for thelfastin the sequence. But,
it's possible to have a different sequence for each bar irséfggience (just like you can have a different
Voickefor each bar). In this case, group the different data groutis {§ brackets:

Bass-1 MIDIVoice {1 ReleaseTime 50 } {1 ReleaseTime 20 }
This list is stored with other @00VE data, so is ideal for inclusion in a style file.
If you want to disable this command after it has been issuedcam use the form:
Track MIDIVoice - /I disable
Some technical notes:
J1 afm tracks the events sent for each bar and will not duplicataessoes.

JJ Be cautious in using this command to switch voice banks. Ifgoi't switch the voice bank back
to a sane value you'll be playing the wrong instruments!

71 Do use the MIDI@EAR command (see section 20.6) to “undo” anything you've doa@WIDIVOICE
command.

20.16 MIDIVolume

MIDI devices equipped with mixer settings can make use of@ennel” or “Master” volume settings.

M doesn’t set any channel volumes without your knowledge. olf want to use a set of reasonable
defaults, look at the filencludes/init.mma which sets all channels other than “1” to “100”. Channel
“1” is assumed to be a solo/keyboard track and is set to themmuam volume of “127”.

5| discovered this on my keyboard after many frustrating battempting to balance the volumes in the library. Other
programs would change the keyboard settings, and not beiageaf the changes, I'd end up scratching my head.

133

20.16 MIDIVolume Low Level MIDI Commands

You can set selected MIDI®LUMES:
Chord MIDIVolume 55

will set the Chord track channel. For most users, the use ®tthinmand imotrecommended since it will
upset the balance of the library grooves. If you need a trafteisor louder you should use the volume
setting for the track.

The data generated is not sent into the MIDI stream until caliglata is created for the relevant MIDI
channel.

Caution: If you use the command withLATRACKS you should note that only existingia tracks will be
effected.

134

Chapter 21

Patch Management

Modern music keyboards and synthesizers are capable ai@raga bewildering variety of sounds. Many
consumer units priced well under $1000.00 contain sevenadliied or more unique voices. But, “out of
the box” a4 supports only 128 “General MID¥preset voices. These voices are assigned the values 0 to
127. We refer to the various voices as “tones”, “instrumermts“patches”?

21.1 \oice

The MIDI instrument or voice used for a track is set with:
Chord-2 Voice Pianol

Voices apply only to the specified track. The actual instmihean be specified via the MIDI instrument
number, an “extended” value, or with the symbolic name. $eetables in the MIDI voicing section
(page 180) for lists of the standard, recognized names.

You can create interesting effects by varying the voice wgid drum tracks. By default “Voice 0” is
used. However, you can change the drum voices. The supiieayl files do not change the voices since
this is highly dependent on the MIDI synth you are using.

You can specify a different ¥ICE for each bar in a sequence. Repeated values can be represghtad
“/":

Chord Voice Pianol / / Piano2

It is possible to set up translations for the selected vaee:the WICETR command (see page 141).

21.2 Patch

In addition to the 128 standard voices mandated by the Mi@idards (referred to as the GM voicegn
also supports extended voice banks.

1The General MIDI or GM standard was developed by the MIDI Mantures Association.
2«patch” a bit of a historical term dating back to the times wisgnthesizers cost a lot of money and used bits of wire and
cable to “patch” different oscillators, filters, etc. tolget.

135

21.2 Patch Patch Management

The rest of this chapter presents features which are highhgddent your hardware. It is quite
possible to create midi files which sound very different (@neawful, or perhaps not at all) on
other hardware. We recommend that yaa notuse these features to create files you want to
share!

A typical keyboard will assign instruments to different s@ibanks. The first, default, bank will contain
the standard set of 128 GM instruments. However, you carttsédifferent banks, each with a variety
of voices, by changing the current voice bank. This switghisidone by changing the value of MIDI
Controller 0, 32 or both. You'll need to read the manual forryleardware to figure this out.

In order to use voices outside of the normal GM ramga uses an extended addressing mode which
includes values for the patch and controllers 0 and 32. Eatires separated from the others with a

single “.". Two examples would include 22.33.44 and 22.33e Tirst value is the Patch Number, the
second is a value for Controller 0. The third value, if presirthe setting for Controller 32.

My Casio Wk-3000 lists Bank-53, Program-27 as "Rotary Guitars.dasy to use this voice directly in a
VoIcE command:

Chord Voice 27.53

Yes, but who wants all those “funny” numbers in thef# files? Well, no one that | know. For this reason
the RTCH command has been developed. This command lets you modsfigrexpatch names, list names
and create new ones.

PATCH takes a variety of options. We suggest you read this sectidnreaamine some of the included
example files before venturing out on your own. But, really,nbt that complicated.

Unless otherwise noted, you can stack a number of diffenetndros onto the sameaPcH line.

21.2.1 Patch Set
The ST option is used to assign one or more patch values to symbafitees. Going back to my Casio
example, above, | could use the following line to registertbice witham

Patch Set 27.53=RotaryGuitar

The assignment consists of two parts or keys joined by a ‘gri.sNo spaces are permitted. The left part
of the assignment is a value. It can be a single number in tiger@ to 127; or 2 or 3 numbers joined by
“s. The right right part is a symbolic name. Any charactans permitted (but no spaces!).

After the assignment you can use “RotaryGuitar” just like ather instrument name:
Chord Voice rotaryguitar
Note that once the voice has been registered you don’t negdrty about the case of individual letters.

It's even possible to register a number of voices in this neann

136

21.2 Patch Patch Management

Patch set 27.53=RotaryGuitar 61.65=BASS+TROMBONE
Just make sure that thee®assignments are the last thing on thhg & line.

It is relatively easy to load entire sets of extended patechasaby creating specialfz include files. For
example, for a Casio WK-3000 keyboard you might have thenitlades/casio-wk3.mma with a large
number of settings. Here’s a snippet:

Begin Patch Set
0.48=GrandPiano
1.48=BrightPiano
2.48=ElecGrandPiano
3.48=Honky-Tonk1

End
Now, at the top of your song file or inlaMARC file insert the command:
include casio-wk300 3

A file like this can be created by hand or you can convert exgstin existing file to a format understands.
A number of “patch” files exist for the popular “Band in a Box” gram from PGMusic. There files
may be subject to copyright, so use them with respect. Ndddés are included in this distribution, but
many are freely available on the internet. For a start youhinigant to look atttp://www.pgmusic.
com/support_miscellaneous.htm . These files cannot be read my, so we have included a little
conversion utilityutil/pg2mma.py . There is a short file with instructionsil/README.pg2mma .

The ST option will issue warning messages if you redefine existirggrument names or addresses. We
suggest that you edit any configuration files so that they baigue names and that you do not rename
any of the standard GM names.

21.2.2 Patch Rename

The naming of patches is actually quite arbitrary. You'lidfithat different manufacturers use different
names to refer to the same voices. Most of the time this ismiggor concern, but you have the freedom
in ¢ to change any patch name you want. For examptg,calls the first voice in the GM set “Pianol”.
Maybe you want to use the name “AcousticGrand”. Easy:

Patch Rename Pianol=AcousticGrand

Each RENAME option has a left and right part joined by an “=" sign. The [&tt is the current name; the
right is the new name. Please note that after this commanaitime “Pianol” will not be available.

You can have any number of items in a list; however, they meghb last items on theaPcH line.

3Refer to NCLUDE (on page 162) for details on file placement.

137

21.2 Patch Patch Management

21.2.3 Patch List
After making changes tof4's internal tables you might want to check to make sure thattwbu meant
is what you got. For this reason there are three differersiors of the LsST command.
List=GM Lists the current values of the GM voices,
List=EXT Lists the extended voices,
List=All Lists both the GM and extended voices.
For example, the command:
Patch List=EXT
will produce a listing something like:

0.48=GrandPiano
1.48=BrightPiano
2.48=ELEC.GrandPiano

21.2.4 Ensuring It All Works
If you are going to use any of the extended patches in your MI&8 you may need to do some additional
work.

Your hardware may need to be in a “special” mode for any of #tereled patches to take effect. What we
suggest is that you use the MIDI command (see page 124) tade sitialization. For an example please
look at the fileincludes/init. mma which we include in our personal files. This file sets the vaupan
and controller values to known settings. It's easy to mothifyg file to match your hardware setup.

To use a file likencludes/init.mma just include a line like:
include init
in your mmarc file. See the Path section of this manual forildgian page 159).

To help keep things sanefa checks each track as it is closed. If an extended voice hasusssl in that
track it resets the effected controllers to a zero state.dstrwases this means that if you finish playing the
file your keyboard will be returned to a “default” state.

However, you might wish to generate some explict MIDI seqesnat the end of a generated file. Just
write another file like thénitmma file we discussed above. You can insert this file by placingealike:

include endinit
at the end of your song file. Or, use the MMAE command detailed on page 165.

You can get about as complicated as you want with all this. Saeme you might consider is to use
macros to wrap your extended patch code. For example:

138

21.2 Patch Patch Management

if def Casio
include casio-wk3000

include init.file.for.casio.mma
endif

Groove somegroove

if def Casio
Chord Voice ROtaryGuitar
Endif

1 Cm
2 Dm
more chords
if def Casio
include restore-file-for-casio.mma
endif

Now, when you compile the file define the macro on the commangd li
$ mma -SCASIO filename

This defines the macro so that your wrappers work. To compitetie GM voicing, just skip the
“-SCASIO".

An alternate method is to use theoM ETR command (detailed on page 141). Using a similar example
we’d create a song file like:

if def Casio

include casio-wk3000

include init.file.for.casio.mma

VoiceTR Pianol=RotaryGuitar ChoralAhhs=VoxHumana
endif
Groove somegroove

1 Cm

2 Dm

... more chords

if def Casio

include restore-file-for-casio.mma
endif

Notice how, in this example, we don’t need to wrap each andyé¥eicEline. We just create a translation
table with the alternate voices we want to use. Now, when tRe@vE is loaded the various voices will
be changed.

139

Chapter 22

Fine Tuning (Translations)

A program such ag#74 which is intended to be run of various computers and syr¢besi(both hardware
keyboards and software versions) suffers from a minor aefay of the MIDI standards: mainly that the
standard says nothing about what a certain instrument dfsowind like, or the relative volumes between
instruments. The GM extension helps a bit, but only a bit, dyirgy that certain instruments should be
assigned certain program change values. This means tl@aadlynths will play a "Piano” if instrument
000 is selected.

But, if one plays a GM file on a Casio keyboard, then on PC softksyand then on a Yahama keyboard
you will get three quite different sounds. The files supplrethis distribution have been created to sound
good on the author’s setup: A Casio WK-3000 keyboard.

But, what if your hardware is different? Well, there are solus! Later in this chapter commands are
shown which will change the preselected voice and tone camdmand the default volumes. At this time
there are no example files supplied witha, but your contributions are welcome.

The general suggestion is that:

1. You create a file with the various translations you needr éxample, the file might be called
yamaha.mma and contain lines like:

VoiceTR Pianol=Piano2

ToneTr SnareDrum2=SnareDruml
VoiceVolTr Piano2=120 BottleBlow=80
DrumVolTr RideBell=90 Tambourine=120

Place this file in the directoriasr/local/share/mma/includes
2. Include this file in youk ~ {}/.mmarc file. Following the above example, you would have a line:
Include yamaha
That's it! Now, whenever you compile @ file the translations will be done.

All of the following translation settings follow a similaogjic as to “when” they take effect, and that is at
the time the \WICE, VOLUME, etc. command is issued. This may confuse the unwaryrRibGvESare
being used. But, the following sequence:

140

22.1 VoiceTr Fine Tuning (Translations)

1. You set a voice with the & CE command,

2. You save that voice into ak®OVE with DEFGROOVE, |
3. You create a voice translation witho\CETR, Wrong -
4. You activate the previously definecRGOVE

does not have the desired eftelet the above sequence the@WETR will have no effect. For the desired
translations to work the ®ICE (or whatever) command must corager the translation command.

22.1 \oiceTr

In previous section you saw how to set a voice for a track bygigs standard MIDI name. TheQICETR
command sets up a translation table that can be used in tieoatif situations:

J1 It permits creation of your own names for voices (perhapsffareign language),
71 It lets you override or change voices used in standard lifiks.

VOICETR works by setting up a simple translation table of “name” aatias” pairs. Whenevensz
encounters a voice name in a track command it first attempptartglate this name though the alias table.

To set a translation (or series of translations):
VoiceTr Pianol=Clavinet Hmmm=18

Note that you additional ¥ICETR commands will add entries to the existing table. To cleatale use
the command with no arguments:

VoiceTr // Empty table

Assuming the first command, the following will occur:
Chord-Main Voice Hmmm

The Voick for the Chord-Maintrack will be set to “18” or “Organ3”.
Chord-2 Voice Pianol

The Voick for the Chord-2track will be set to “Clavinet”.

If your synth does not follow standard GM-MIDI voice namingnwentions you can create a translation
table which can be included in all yomz song files via an RC file. But, do note that the resulting files
will not play properly on a synth conforming to the GM-MIDI egification.

Following is an abbreviated and untested example for usingbsolete and unnamed synth:

VoiceTr Pianol=3 \

Piano2=4 \
Piano3=5 \

\
Strings=55 \

141

22.2 DrumIr Fine Tuning (Translations)

Notes: the translation is only done one time and no verificais done when the table is created. The
table contains one-to-one substitutions, much like macros

For translating drum tone values, see theUM TR command (page 142).

22.2 DrumTr

It is possible to create a translation table which will sitbs# one Drum Tone for another. This can be
useful in a variety of situations, but consider:

43 Your synth lacks certain drum tones—in this case you may ¥esgt certain RUMTR commands
inaMMA RC file.

43 You are using an existing @®OVEin a song, but don't like one or more of the Drum Tones selected
Rather than editing the library file you can set a translatightrin the song. Note, do thisefore
any GROOVE commands.

To set a translation (or set of translations) just use a fidramtone values or symbolic names with each
pair separated by white space. For example:

ToneTR SnareDrum2=SnareDruml HandClap=44

will use a “SnareDrum1” instead of a “SnareDrum?2” and theigd¥4” (actually a “PedalHiHat”) instead
of a “HandClap”.

You can turn off all drum tone translations with an empty line
ToneTR

The syntax and usage ofAUMTR is quite similar to the WICETR command (see page 141).

22.3 \VoiceVolTr

If you find that a particular voice, i.e., Piano2, is too loudsoft you can create an entry in the “Voice
Volume Translation Table”. The concept is quite simpléa checks the table whenever a track-specific
VOLUME command is processed. The table is created in a similar mémitee VOICETR command:

VoiceVolTr Piano2=120 105=75

Each voice pair must contain a valid MIDI voice (or numeridueg, an “=" and a volume adjustment
factor. The factor is a percentage value which is applietieéaiormal volume. In the above example two
adjustments are created:

1. Piano2 will be played at %120 of the normal value,

2. Banjo (voice 105) will be played at %75 of the normal value.

142

22.4 DrumVolTr Fine Tuning (Translations)

The adjustments are made when a tracklMME command is encountered. For example, if the above
translation has be set andz encounters the following commands:

Begin Chord
Voice Piano2
Volume mp
Sequence 1 4 90
End

the following adjustments are made:

1. Alook up is done in the global volume table. The volume “nsftdetermined to be %85 for the set
MIDI velocity,

2. the adjustment of %120 is applied to the %85, changingtth#t102.

3. Assuming that no other volume adjustments are being npadbdbly there will be a global volume
and, perhaps, a\®WLUME) the MIDI velocity in the sequence will be changed from 90 th 9
Without the translation the 90 would have been changed to 76.

To disable all volume translations:

VoiceVolTr // Empty table

22.4 DrumVolTr

You can change the volumes of individual drum tones with tir&/VOLTR translation. This command
works just like the \OICEVOLTR command described above. It just uses drum tones insteadtaiment
voices.

For example, if you wish to make the drum tones “SnareDrunmt‘&landClap” a bit louder:
DrumVolITr SnareDrum1=120 HandClap=110

The drum tone names can be symbolic constants, or MIDI valsés the next example:
DrumVolITr 44=90 31=55

All drum tone translations can be disabled with:
DrumVolTr // Empty table

143

Chapter 23

Other Commands and Directives

In addition to the “Pattern”, “Sequence”, “Groove” and “Rapeand other directives discussed earlier,
and chord dataja supports a number of directives which affect the flavor ofryausic.

The subjects presented in this chapter are ordered alptalhet

23.1 AllTracks

Sometimes you want to apply the same command to all the diyrr@efined tracks; for example, you
might want to ensure thab tracks have S8QRND set. Yes, you could go though each track (and hope you
don’t miss any) and explicitly issue the command:

Bass SeqRnd Off
Chord SeqRnd Off

But,
AllTracks SegRnd Off

is much simpler. Similarly, you can set the articulationdtitracks with:
AllTracks Articulate 80

You can even combine this with a8 IN/END like:

Begin AllTracks
Articulate 80
SegRnd Off
Rskip O

End

This command is handy when you are changing an existiRgQ@/E.
Note thatonly currently defined tracks are effected by this command.

A further option is to limit ALLTRACKS to specific tracks type. For example, you might want to sehall
DRuUM track volumes to “FF”:

AllTracks Drum Volume ff

Or to set the articulation onA&s and WALK tracks:

144

23.2 Articulate Other Commands and Directives

AllTracks Bass Walk Articulate 55

It is assumed that all the arguments following the initialneoand which are valid track types (Bass,
Chord, Arpeggio, Scale, Drum, Walk, Melody, or Solo) are kriygpe limiters.

23.2 Articulate

When a7 processes a music file, all the note lengths specified in arpaite converted to MIDI lengths.
For example in:
Bass Define BB 1 4 1 100; 2 4 5 90; 341 80; 445 90

bass notes on beats 1, 2, 3 and 4 are define. All are quarter nate being quite literal about things, will
make each note exactly 192 MIDI ticks long—which means thatrtote on beat 2 will start at the same
time as the note on beat 1 ends.

M has an articulate setting for each voice. This value is eggl shorten or lengthen the note length.
By default, the setting is 90. Each generated note duratitaken to be a percentage of this setting, So, a
quarter note with a MIDI tick duration of 192 will become 17&ks long.

If articulate is applied to a short note, you are guarantbatithe note will never be less than 1 MIDI tick
in length.

To set the value, use a line like:
Chord-1 Articulate 96

Articulate values must be greater than 0 and less than ol em@80. Values over 100 will lengthen the
note. Settings greater than 120 will generate a warning.

You can specify a different RTICULATE for each bar in a sequence. Repeated values can be representec
with a “/”:

Chord Articulate 50 60 / 30

Notes: The full values for the notes are saved with the patefinition. The articulation adjustment is
applied at run time. The RTICULATE setting is saved with a @OOVE.

23.3 Copy

Sometimes it is useful to duplicate the settings from oneea/td® another. The @Y command does just
that:

145

23.4 Comment Other Commands and Directives

Bass-1 Copy Bass

will copy the settings from thBasstrack to theBass-1track.
The Copy command only works between tracks of the same type.
The following settings are copied:

J1 Articulate (page 145)

J1 Compress (page 76)

JJ Direction (page 148)

71 Harmony (page 82)

J1 Invert (page 77)

71 Octave (page 150)

71 RSkip (page 69)

J1 RTime (page 70)

71 RVolume (page 103)

71 ScaleType (page 151)

71 Strum (page 152)

71 Woice (page 135) or Tone (page 30)

41 Wolume (page 99)

Warning: You are probably better off to use internal macoostiis.

23.4 Comment

As previously discussed, a commentda is anything following a “//” in a line. A second way of
marking a comment is with the @IMENT directive. This is quite useful in combination th&8IN and
END directives. For example:

Begin Comment
This is a description spanning
several lines which will be
ignored by MMA.
End

You could achieve the same with:

146

23.5 Debuy Other Commands and Directives

/[This is a description spanning
/I several lines which will be
/I ignored by MMA.

or even:

Comment This is a description spanning
Comment several lines which will be
Comment ignored by MMA.

One minor difference betwedéhand GOMMENT is that the first is discarded when the input stream is read;
the more verbose version is discarded during line procgssin

Quite often it is handy to delete large sections of a song @iBEGIN COMMENT/END on a temporary
basis.

23.5 Debug

To enable you to find problems in your song files (and, perhapsn find problems wittwaa itself)
various debugging messages can be displayed. These arellyosgt from the command line command
line (page 15).

However, it is possible to enable various debugging messayggamically in a song file using theeEBuG
directive. In a debug statement you can enable or disablefamyariety of messages. A typical directive
is:

Debug Debug=0On Expand=0Off Patterns=0On

Each section of the debug directive consists of@leand the command word ON orr®. The two parts
must be joined by a single=". You may use the values “0” for “Off” and “1” for “On” if desid.

The available modes with the equivalent command line swidre:

Mode Command Line Equivalent
Debug -d debugging messages
Filenames -o display file names
Patterns | -p pattern creation
Sequence| -s sequence creation
Runtime | -r running progress
Warnings | -w warning messages
Expand | -e display expanded lines

The modes and command are case-insensitive (althoughtimaand line switches are not).

The current state of the debug flags is saved in the variablelsig and the state prior to a change is saved
in $_LastDebug.

147

23.6 Delete Other Commands and Directives

23.6 Delete

If you are using a track in only one part of your song, espBcifit is at the start, it may be wise to free
that track’s resources when you are done with it. Tl Bre command does just that:

Solo Delete

If a MIDI channel has been assigned to that track, it is madsethvailable” and the track is deleted. Any
data already saved in the MIDI track will be written wh®f is finished processing the song file.

23.7 Direction

In tracks using chords or scales you can change the direictivhich they are applied:
Scale Direction UP
The effects differ in different track types. FOCSLE and ARPEGGIOtracks:

UP Plays in upward direction only
DOWN Plays in downward direction only
BOTH Plays upward and downwardgfaul)
RANDOM Plays notes from the chord or scale randomly

When this command is encountered in@ASE track the start point of the scale is reset.
A WALK track recognizes the following option settings:

BOTH The default. The bass pattern will go up and down a patrtial

scale. Some notes may be repeated.
UP Notes will be chosen sequentially from an ascendingigtatale.

DOWN Notes will be chosen sequentially from a descendingdjglacale.
RANDOM Notes will be chosen in a random direction from a padcale.

All four patterns are useful and create quite differentefe

The GHORD tracks DRECTION only has an effect when therT8uM setting has a non-zero value. In this
case the following applies:

UP The default. Notes are sounded from the lowest tone toitfesbt.
DOWN Notes are sounded from the highest to the lowest.
BOTH The UP and DOWN values are alternated.
RANDOM Ignored (uses UP).

You can specify a different [RECTION for each bar in a sequence. Repeated values can be representec
with a “/”:

Arpeggio Direction Up Down / Both
The setting is ignored by &s, DRuM and L0 tracks.

148

23.8 Mallet Other Commands and Directives

23.8 Mallet

Some instruments (Steel-drums, banjos, marimbas, eterjamally played with rapidly repeating notes.
Instead of painfully inserting long lists of these notes) yan use the MLLET directive. The MALLET
directive accepts a number of options, each an OPTION=VAIpdiE For example:

Solo-Marimba Mallet Rate=16 Decay=-5
This command is also useful in creating drum rolls. For eXamp

Begin Drum-Snare2
Tone SnareDruml

Volume F

Mallet Rate=32 Decay=-3

Rvolume 3

Sequence z z z 1 1 100
End

The following options are supported:

23.8.1 Rate

The RaTE must be a valid note length (i.e., 8, 16, or even 16.+8).
For example:
Solo-Marimba Mallet Rate=16
will set all the notes in the “Solo-Marimba” track to be soedd series of 16th notes.
J1 Note duration modifiers such as articulate are applied th essgultant note,
JJ Itis guaranteed that the note will sound at least once,
71 The use of note lengths assures a consistent sound indeperidee song tempo.

To disable this setting use a value of “0”.

23.8.2 Decay

You can adjust the volume (velocity) of the notes being regsbavhen MALLET is enabled:
Drum-Snare Mallet Decay=-15

The argument is a percentage of the current value to add twtieeesach time it is struck. In this example,
assuming that the note length calls for 4 “strikes” and thigainvelocity is 100, the note will be struck
with a velocity of 100, 85, 73 and 63.

Important: a positive value will cause the notes to get loudegative values cause the notes to get softer.

149

23.9 Octave Other Commands and Directives

Note velocities will never go below 1 or above 255. Note, hesvethat notes with a velocity of 1 will
most likely be inaudible.

The decay option value must be in the range -50 to 50; howbkeearautious using any values outside the
range -5 to 5 since the volume (velocity) of the notes willrdp@ quite quickly. The default value is 0 (no
decay).

23.9 Octave

When 264 initializes and after the SQCLEAR command all track octaves are set to “4”. This will place
most chord and bass notes in the region of middle C.

You can change the octave for any voice witd@VvE command. For example:
Bass-1 Octave 3
Sets the notes used in the “Bass-1" track one octave lowembiamal.

The octave specification can be any value from 0 to 10. Vamaumsbinations of NVERT, TRANSPOSE
and CcTAVE can force notes to be out of the valid MIDI range. In this casedwest or highest available
note will be used.

You can specify a different OTAVE for each bar in a sequence. Repeated values can be represéhted
a “/”:

Chord Octave 4 5 / 4

23.10 Off

To disable the generation of MIDI output on a specific track:
Bass Off

This can be used anywhere in afile. Use it to override the tedfiez predefined groove, if you wish. This
is simpler than resetting a voice in a groove. The only waeset this command is with aNOdirective.

23.11 On

To enable the generation of MIDI output on a specific trackotinas been disabled with arFrdirective:

Bass On

150

23.12 Print Other Commands and Directives
23.12 Print

The RRINT directive will display its argument to the screen when itne@untered. For example, if you
want to print the file name of the input file while processingy gould insert:

Print Making beautiful music for MY SONG
No control characters are supported.

This can be useful in debugging input files.

23.13 PrintActive

The RRINTACTIVE directive will the currently active @ oVE and the active tracks. This can be quite
useful when writing groove files and you want to modify andsérg groove.

Any parameters given are printed as single comment at thefehé header line.

This is strictly a debugging tool. NOoRFPNTACTIVE statements should appear in finalized grooves or song
files.

23.14 ScaleType

This option is only used by GALE tracks. It can be set for other tracks, but the setting is setiu
By default, the 8ALETYPEIs set to AJTO. The settings permissible are:

CHROMATIC Forces use of a chromatic scale
AUTO Uses scale based on the current chord (default)

When this command is encountered in@ASE track the start point of the scale is reset.

23.15 Seq

If your sequence, or groove, has more than one patterny@e have set SeqSize to a value other than 1),
you can use this directive to force a particular pattern omile used. The directive:

Seq

resets thesequence countdo 1. This means that the next bar will use the first patterrhedurrent
sequence. You can force a specific pattern point by using@ongpvalue after the directive. For example:

151

23.16 Strum Other Commands and Directives

Seq 8

forces the use of pattern point 8 for the next bar. This carutte gseful if you have a multi-bar sequence
and, perhaps, the eight bar is variation which you want used/esight bars, but also for a transition bar,
or the final bar. Just put&EQ8 at those points. You might also want to puteQ at the start of sections
to force the restart of the count.

If you have enable sequence randomization with tE@FND ON command, the randomization will be
disabled by a 8¢ command. However, settings of tracke®QRND will not be effected. One difference
between E§QRND OFF and EQis that the current sequence point is set with the latteh) 88#QRND OFF

it is left at a random point.

Note: Using a value greater than the curreBQSIZE is not permitted.

This is a very useful command! For example, look at the fournfaoduction of the song “Exactly Like
You™

Groove BossanovaEnd
seq 3

1C

seq 2

2 Am7

seq 1

3 Dm7

seq 3

4 G7 | G7#5

In this example the four bar “ending groove” has been useddate an interesting introduction.

23.16 Strum

By defaultaf plays all the notes in a chord at the same time. To make thalehore like something a
guitar or banjo might play, use therS8um directive. For example:

Chord-1 Strum 5
sets the strumming factor to 5 for track Chord-1.

Setting the $RUM in any track other than a KORD track will generate a warning message and the
command will be ignored.

The strum factor is specified in MIDI ticks. Usually valuesand 10 to 15 work just fine. The valid range
for STRUM is 0 to 100.

You can specify a different&RuM for each bar in a sequence. Repeated values can be represéhtad
“/”:

LA warning message will also be displayed.

152

23.17 Synchronize Other Commands and Directives

Chord Strum 20 5 / 10

Note: When chords have bothssrRuM and INVERT applied, the order of the notes played will not
necessarily be root, third, etc. The notes are sorted irderasng order, so for a C major scale with and
INVERT of 1 the notes played would be “E G C”. That is, unless theEZ TION (see page 148) has been
set to “DOWN?” in which case the order would be reversed (butibtes would be the same).

23.17 Synchronize

The MIDI tracks generated byf are perfectly “legit” and should be playable in any MIDI file&aper.
However, there are a few programs and/or situations in wicthmight need to use th&®yNCHRONIZE
options.

First, when a program is expecting all tracks to start at #meslocation, or is intolerant of “emptiness”
at the start of a track, you can add a “tick note” at the staetawh track?

Synchronize START

will insert a one tick note on/off event at MIDI offset 1. Yoartalso generate this with the “-0” command
line option.

Second, some programs think (wrongly) that all tracks sheund at the same poiftAdding the com-
mand:

Synchronize END

will delete all MIDI data past the end of the last bar in youpun file and insert MIDI “all notes off”
events at that point. You can also generate this effect Wwet41l” command line option.

The commands can be combined in any order:
Synchronize End Start

is perfectly valid.

23.18 Transpose

You can change the key of a piece with the “Transpose” commé&iwd example, if you have a piece
notated in the key of “C” and you want it played back in the key»T.

Transpose 2

will raise the playback by 2 semi-tones. Sinue?'s author plays tenor saxophone

2Timidity truncates the start of tracks up to the first MIDI av@vhen splitting out single tracks.
3Seq24 does strange looping if all tracks don’t end ideritical

153

23.19 Unify Other Commands and Directives

Transpose -2
which puts the MIDI keyboard into the same key as the horngisan uncommon directive

You can use any value between -12 and 12. All tracks (withdheal exception of the drum tracks) are
effected by this command.

23.19 Unify

The UNIFY command is used to force multiple notes of the same voice @cdk @ be combined into a
single, long, tone. This is very useful when creating a sosthvoice track. For example, consider the
following which might be used in real groove file:

Begin Bass-Sus

Sequence 1 1190 4
Articulate 100

Unify On

Voice TremoloStrings
End

Without the INIFY ON command the strings would be sounded (or hit) four timesndueiach bar; with
it enabled the four hits are combined into one long tone. Tdne can span several bars if the note(s)
remain the same.

The use of this command depends on a number of items:

J1 The VoIcE being used. It makes sense to use enable the setting if ussogtained tone like
“Strings”; it probably doesn’t make sense if using a tone liRianol”.

71 For tones to be combined you will need to haveRTACULATE set to a value of 100. Otherwise the
on/off events will have small gaps in them which will canded effects of WIFY.

71 Ensure that RIME is not set for WiIFY tracks since the start times may cause gaps.

J1 If your pattern or sequence has different volumes in difieleeats (or bars) the effect of aNUFy
will be to ignore volumes other than the first. Only the first Nt ON and the last MTE OFF events
will appear in the MIDI file.

You can specify a different NIFY for each bar in a sequence. Repeated values can be represéhtad
“/H:

Chord Unify On / /| Off
But, you probably don’t want to use this particular feature.

Valid arguments are “On” or “1” to enable; “Off” or “0” to disde.

154

Chapter 24

Begin/End BlocKs

Entering a series of directives for a specific track can géedadious. To make the creation of library
files a bit easier, you can create a block. For example, thaniolg:

Drum Define X 0 2 100; 50 2 90
Drum Define Y 0 2 100
Drum Sequence X Y

Can be replaced with:

Drum Begin
Define X 0 2 100; 50 2 90
Define Y 0 2 100 End
Drum Sequence X Y

Or, even more simply, with:

Drum Begin Define
X 0 2 100; 50 2 90
Y 0 2 100

End

If you examine some of the library files you will see that thigscut is used a lot.

24.1 Begin

The BEGIN command requires any number of arguments. Valid exampbhsde:

Begin Drum
Begin Chord2
Begin Walk Define

Once a EGIN block has been entered, all subsequent lines have the wanmistfie BEGIN command
prepended to each line of data. There is not much magic heesHBEND is really just some syntactic
sugar.

155

24.2 End Begin/End Blocks

24.2 End

To finish off a BEGIN block, use a single &D on a line by itself.

Defining musical data, repeats, or othex@Ns inside a block (other than COMMENT blocks) will not
work.

Nesting is permitted. EQ:

Scale Begin
Begin Define
stuff
End
Sequence stuff
End

A BEGIN must be competed with aNb before the end of a file, otherwise an error will be generatée.
Useand INCLUDE commands are not permitted inside a block.

156

Chapter 25

‘Documentation Strings

It has been mentioned a few times already the importanceeaflgldocumenting your files and library
files. For the most part, you can use comments in your filesndildrary files you use the Dc directive.

In addition to the commands listed in this chapter, you sthalgdo note EFGROOVES section 6).

For some real-life examples of how to document your libradesfilook at any of the library files supplied
with this distribution.

25.1 Doc

A Doc command is pretty simple:
Doc This is a documentation string!

In most cases, Dcs are treated as@IMENTS. However, if theDx! option is given on the command
line, Docs are processed and printed to standard output.

For producing theviz Standard Library Referenc trivial Python program is used to collate the output
generated with a command like:

$ mma -DxlI -w /usr/local/lib/mma/swing

Note, the "-w’ option has been used to suppress the printimgaoning messages.

25.2 Author

As part of the documentation package, there isla#OR command:
Author Bob van der Poel

Currently AUTHOR lines are processed and the data is saved, but never usedy herused in a future
library documentation procedures, so you should use ityriarary files you write.

1See the command summary, page 15.

157

25.3 DocVar Documentation Strings

25.3 DocVar

If any variables are used to change the behavior of a libriryhiey should be documented with @DVAR
command. Normally these lines are treated as comments, leer wrocessing with the -Dx| or -Dxh
command line options the data is parsed and written to theubdbcumentation files.

Assuming that you are using tie7 variable $G1ORDV OICE as an optional voice setting in your file, you
might have the following in a library file:

Begin DocVar
ChordVoice Voice used in Chord tracks (defaults to Piano2).
End

If NDef ChordVoice
Set ChordVoice Piano2
Endif

All variables used in the library file should be documentedu ¥hould list the user variables first, and
then any variables internal to the library file. To doubleadht® see what variables are used you can add
a SHOWVARS to the end of the library file and compile. Then document theéalsdes and remove the
SHOWVARS.

158

Chapter 26

Paths, Files and Libraries

This chapter coverafa filenames, extensions and a variety of commands and/ortideeavhich effect
the way in which files are read and processed.

But, first a few comments on the location of thé Python modules.

The Python language (which was used to writel) has a very useful feature: it can include other files
and refer to functions and data defined in these files. A langeter of these files or modules are included
in every Python distribution. The programéA consists of a short “main” program and several “module”
files. Without these additional modulega will not work.

The only sticky problem in a program intended for a wider ande is where to place these modules.
Hopefully, it is a “good thing” that they should be in one ofédhk locations:

43 lusr/local/share/mma/MMA
J3 Jusr/share/mma/MMA
1 /MMA

If, when initializing itself, M7 cannot find one of the above directories, it will terminatéman error
message.

If you are usingv on a Windows platform please see the comments about thelteddius (on page 168).

26.1 File Extensions

For most files the use of a the file name extension “.mma” isoopti However, it is suggested that most
files (with the exceptions listed below) have the extensi@s@nt. It makes it much easier to identifga
song and library files and to do selective processing on tlilese

In processing an input song fite can encounter several different types of input files. Fofilak, the
initial search is done by adding the file name extension “.irbtméile name (unless it is already present),
then a search for the file as given is done.

For files included with the BE directive, the directory set witeeTL 1B PATH is first checked, followed by
the current directory.

For files included with theNCLUDE directive, the directory set witBETINCPATH is first checked, fol-
lowed by the current directory.

159

26.2 Tilde Expansion Paths, Files and Libraries

Following is a summary of the different files supported:

Song Files The input file specified on the command line should always besgiawith the “.mma” exten-
sion. Whemviz searches for the file it will automatically add the extensidhe file name specified
does not exist and doesn’t have the extension.

Library Files Library filesreally shouldall be named with the extensiom#z will find non-extension
names when used in adg or INCLUDE directive. However, it will not process these files when
creating indexes with the “-g” command line option—theseei files are used by theR&OVE
commands to automatically find and include libraries.

RC Files As noted in the RC-File discussion (see page &%) will automatically include a variety of
“RC” files. You can use the extension on these files, but commageaisuggests that these files are
probably better without.

MMAstart and MMAend a7 will automatically include a file at the beginning or end obpessing
(see page 165). Typically these files are named MBWIART and MMAEND. Common usage is
to not use the extension if the file is in the current directory; usefile if it is in an “includes”
directory.

One further point to remember is that filenames specified erctmmand line are subject to wild-card
expansion via the shell you are using.

26.2 Tilde Expansion

On Unix-like systems all filenames may be prefaced with tibddea tilde with a user name. All file
operations imv honor this convention. This includes the setting of librangl include paths.

The result of this operation is system dependent. See thefents.path.expandusér the Python library
reference.

26.3 Eof

Normally, a file is processed until its end. However, you charscircuit this behavior with the &
directive. If #m finds a line starting with BF no further processing will be done on that file ... it's just
as if the real end of file was encountered. Anything on the daragafter the ©F is also discarded.

You may find this handy if you want to test process only a pa#d ble, or if you making large edits to a
library file. It is often used to quit when using theREL and GoTo directives to simulate constructs like
D.C. al Coda etc.

160

26.4 LibPath Paths, Files and Libraries

26.4 LibPath

The search for library files can be set with the LibPath véeiabo set LB PATH:
SetLibPath PATH

You can have only one path in th&®.1BPATH directive.

When a7 starts up it sets the library path to the first valid directiorthe list:
93 lust/local/share/mmallib
J3 lusr/share/mmallib
93 b

The last choice lets you rumiz directly from the distribution directory.

You are free to change this to any other location in a RCFilee d&%.

LiBPATH is used by the routine which auto-loads grooves from thathrand the $E directive. The -g
command line option is used to maintain the library datahsasge 17).

The current setting can be accessed via the madribRBath.

26.5 AutoLibPath

The sub-directory containing the current library files tdocmoatically load is determined by the current
setting of AUTOLIBPATH. Please see the library file discussion on page 166 for detail

You can change the automatic include directory by resettigyvariable. It must be a sub-directory of
LiBPATH for it to work.

The command to reset the variable is:
SetAutoLibPath mydir
The current setting can be accessed via the mad&uotBLibPath. By default the setting is “stdlib”.

Any existing GRoOoOVE definitions are deleted from memory when this command i@ $this it to avoid
name conflicts between libraries).

26.6 MIDIPlayer

When using the -P command line optiona uses the MIDI file player defined withESMIDI PLAYER to
play the generated file. By default the program is set to “apldy. You can change this to anything you
want.

161

26.7 OutPath Paths, Files and Libraries

SetMIDlIplayer /usr/local/kmid

You will probably want to use this command in an RC file.

26.7 OutPath

MIDI file generation is to an automatically generated fileeaisee page 15). If the W@ PATH variable is
set, that value will be prepended to the output filename. Ttheevalue:

SetOutPath PATH

Just make sure that “PATH” is a simple path name withspaces in it. The variable is case sensitive
(assuming that your operating system supports case semfdginames). This is a common directive in a
RC file (see page 165). By default, it has no value.

You can disable the QrPATH variable quite simply: just issue the command without amargnt.

If the name set by this command begins with a “.”, “/” df it is prepended to the complete filename
specified on the command line. For example, if you have thetifilpnametest mma and the output path
is~/mids —the output file will belhome/bob/mids/test.mid

If the name doesn't start with the special characters nateda preceding paragraph the contents of the
path will be inserted before the filename portion of the inflename. Again, an example: the input
filename ismmal/rock/crying and the output path is “midi"—the output file will lema/rock/midi/
crying.mid

The current setting can be accessed via the macatPath.

Note that this option is ignored if you use the -f command 6pé&on (page 17) or if an absolute name for
the input file (one starting with a “/” or a “™) is used.

26.8 Include

Other files with sequence, pattern or music data can be iadlatiany point in your input file. There is
no limit to the level of includes.

Include Filename

A search for the file is done in th&lCPATH directory (see below) and the current directory. The “.mma”
filename extension is optional (if a flename exists both \aitldl without the “.mma” extension, the file
with the extension will be used).

The use of this command should be quite rare in user files; VEwee is used extensively in library files
to include standard patterns.

162

26.9 IncPath Paths, Files and Libraries

26.9 IncPath

The search for include files can be set with tRePATH variable. To setNCPATH:
SetincPath PATH
You can have only one path in th&e8 NCPATH directive.
When s initializes it sets the include path to first found directory
43 lusr/local/share/mmalincludes
J3 lusr/share/mmalincludes
J3 .Jlincludes
The last location lets you rumfa from the distribution directory.
If this value is not appropriate for your system, you are feeehange it in a RC File.

The current setting can be accessed via the mad¢naRath.

26.10 Use

Similar to INCLUDE, but a bit more useful. The £ command is used to include library files and their
predefined grooves.

Compared toMCLUDE, USE has important features:
J1 The search for the file is done in the paths specified by thedtibPariable,

J1 The current state of the program is saved before the libriarjsfread and restored when the opera-
tion is complete.

Let's examine each feature in a bit more detail.
When a WsE directive is issued, eg:
use stdlib/swing

M first attempts to locate the file “stdlib/swing” in the direst specified by LBPATH or the current
directory. As mentioned abovea automatically added the “.mma” extension to the file and kbdaor
the non-extension filename if that can’t be found.

If things aren’t working out quite right, check to see if tHeffiame is correct. Problems you can encounter
include:

J1 Search order: you might be expecting the file in the currergctiry to be used, but the same
filename exists in the IBPATH, in which case that file is used.

J3 Not using extensions: Remember that fiteth the extension added are first checked.

163

26.11 MmaStart Paths, Files and Libraries

J1 Case: The filename isase sensitiveThe files “Swing” and “swing” are not the same. Since most
things ina7 are case insensitive, this can be an easy mistake to make.

J1 Thefile is in a sub directory of thelBPATH. In a standard distribution the actual library files are in
lusr/local/share/mma/lib/stdlib , but the libpath is set ttusr/local/share/mma/lib . In
this case you must name the file to be usest@i/rhumba notrhumba.

As mentioned above, the current state of the compiler istsdueing a WEE. 21 accomplishes this by
issuing a slightly modified BFGROOVE and GRooVE command before and after the reading of the file.
Please note thahicLUDE doesn’t do this. But, don't let this feature fool you—since #ffects of defining
grooves are cumulative yaeally shouldhave $QCLEAR statements at the top of all your library files.
If you don’t you'll end up with unwanted tracks in the groowesi are defining.

In most cases you will not need to use thee directive in your music filedf you have properly installed
M and keep the database up-to-date by using the command:

$ mma -g

grooves from library files will be automatically found ancdtted. Internally, the BE directive is used, so
existing states are saved.

If you are developing new or alternate library files you witidithe UsE directive handy.

26.11 MmaStart

If you wish to process a certain file or files before your mapuirfile, set the MiA START filename in an
RCFile. For example, you might have a number of files in a dirgatdich you wish to use certainaR
settings. In that directory, you just need to have anfibearc which contains the following command:

MmasStart setpan
The actual filesetpan has the following directives:

Bass Pan O
Bassl Pan 0O
Bass2 Pan O
Walk Pan 0O
Walkl Pan 0O
Walk2 Pan 0

So, before each file in that directory is processed, e for the bass and walking bass voices are set to
the left channel.

If the file specified by a MiA START directive does not exist a warning message will be printeid (& not
an error).

Also useful is the ability to include a generic file with allettMIDI files you create. For example, you
might like to have a MIDI reset at the start of your files—simpust include the following in younmarc
file:

164

26.12 MmaEnd Paths, Files and Libraries

MMAstart reset
This includes the fileesetmma located in the “includes” directory (see page 163).

Multiple MMA START directives are permitted. The files are processed in ther @elgared. You can
have multiple flenames on a MM#YART line.

One caution with MMASTART files: the file is processed after the RC file, just before theaaong file.

26.12 MmaEnd

Just the opposite of MA START, this command specifies a file to be included at the end of a mput
file. See the comments above for more details.

To continue this example, in yoamarc file you would have:
MmaEnd nopan
and in the filenopan have:

Bass Pan 64
Bassl Pan 64
Bass2 Pan 64
Walk Pan 64
Walkl Pan 64
Walk2 Pan 64

If the file specified by a MiIAEND directive does not exist a warning message will be printeid (s not
an error).

Multiple MMA END directives are permitted and processed in the order declai@i can have multiple
filenames on a MMAND line.

26.13 RC Files

When 267 starts it checks for initialization files. Only the first fadifile is processed. The following
locations/files are checked (in order):

1. mmarc — this is a normal file in the current directory.

2. \~{{.mmarc —this is an “invisible” file in the users home directory.
3. lusr/localletc/mmarc

4. letc/mmarc

Only the firstfound file will be processed. This means you can override aldgl’ RC file with a user
specific one. If you just want to override some specific conasaou might want to:

165

26.14 Library Files Paths, Files and Libraries

1. Create the filenmarc in a directory witha# files,
2. As the first line in that file have the command:
include \ ~{}/.mmarc
to force the inclusion of your global stuff,
3. Now, place your directory specific commands in your cusiifile.

By default, no RC files are installed. You may want to create aptehr {}/. mmarc file to eliminate a
warning message.

An alternate method for using a different RC file is to spedify hame of the file on the command line
by using the-i option (see page 17). Using this option you can have severdll&Cn a directory and
compile your songs differently depending on the RC file yolcgpe

The RC file is processed as7#4 input file. As such, it can contain anything a normal input &,
including music commands. However, you should limit theteats of RC files to things like:

SetOutPath
SetLibPath
MMAStart
MMAENd

A useful setup is to have your source files in one directoryMidl files saved into a different directory.
Having the filemmarc in the directory with the source files permits setting®ATH to the MIDI path.

26.14 Library Files

Included in this distribution are a number of predefinedgraf, sequences and grooves. They are in
different files in the “lib” directory.

The library files should be self-documenting. A list of stardtifile and the grooves they define is included
in the separate document, supplied in this distributiomasd-lib.ps ”

26.14.1 Maintaining and Using Libraries

The basicaia distribution comes with a set of pattern files which are ithestiin the mma/lib/stdlib
directory. Each one of these files has a number abGvEs defined in them. For example, the file
mma/lib/stdlib/rhumba.mma contains the groovdRhumbaRhumbaEndnd many more.

If you are writing GROOVES with the intention of adding them to the standard library gbould ensure
that none of the names you choose duplicate existing namessiglused.

If you are creating a set of alternate grooves to duplicaesttisting library you might do the following:

166

26.14 Library Files Paths, Files and Libraries

1. Create a directory with your name or other short id innine/lib/ hierarchy. For example, if your
name is “Bob van der Poel” you might create the directoma/lib/bvdp

2. Place all your files (or modified files) in that directory.
3. Now, when your song wants to use a groove, you have two esoic

(&) Include the file with the Qe directive. For example, if you have created therikk.mma and
want to use th&aROOVErock8you would:

i. place the directive WE BVDP/ROCK near the top of the song file. Note: it might not be
apparent from the typeface here, but the filename here Isvadircase In Unix/Linux
case is important, so please make sure of the case of thenfiégena commands like &E.

ii. enable the groove with the directiveRGOVE ROCKB (and here the case is not important
sinceafA thinks that upper and lower case are the same).

(b) Forcear to useyour groove directory by resetting the auto-lib directory (agaihe case for
the path is important):

SetAutoLibPath bvdp

You will have to update theva database with the -g or -G command line options for this
to work. If you elect this route, please note that the fileshi standard library will not be
available, but you can use both with something like this:

Groove Metronome2-4
z *x 2

SetAutoLibPath bvdp

Groove BossaNova // the bossa from lib/bvdp, not stdlib!
chords...

The nice thing about this method is that you can have mulsSgks of library filesall us-

ing the sameGROOVE names To create a different version you just need to change the
SETAUTOLIBPATH variable in your song file ... or, for a collection of songs thé variable

in your MMARC file.

For those who “really need to know”, here are the steps Mtgttakes when it encounters aRGOVE
command:

1. if the named groove has been loaded/created alregalyist switches to the internal version of that
groove.

2. if the groove can't be found in memory, a search of the geadstabase (created with the -g com-
mand line option) is done. If no database is in memory it isiémhfrom the directory pointed to by
the LIBPATH and AUTOL IBPATH variables. This database is then searched for the neeRed\G.
The database contains the filenames associated with eagb\& and that file is then read with the
USE code.

The database is a filenmaDBstored in each sub directory ofik PATH. This is a “hidden” file (due to
the leading “.” in the filename). You cannot change the nanthisffile. If there are sub-directories the
entries for them will be stored in the database file for themtrage.

167

26.15 Paths on Windows Platforms Paths, Files and Libraries

By using ausEedirective or by resetting AToLIBDIR you force the loading of your set of grooves.

26.15 Paths on Windows Platforms

To makear as platform independent as possible a number of additiataksghave been defined. When
starting up, in addition to the standard Linux paths disedsgove, the following are also checked:

J3 Modules can be ig:\mma\MMA ,
43 Include files can be in:\\mma\lincludes ,

J1 Library files can be ir:\mma\\lib

168

Chapter 27

Creating Effects

It's really quite amazing how easy and effective it is to teedifferent patterns, sequences and special
effects. Asaiga was developed lots of silly things were tried. .. this chapean attempt to display and
preserve some of them.

The examples don’t show any music to apply the patterns aresexgs to. The manual assumes that if
you've read this far you'll know that you should have somegflike:

1C
2 G
3G
4 C

as a simple test piece to apply tests to.

27.1 Overlapping Notes

As a general rule, you should not create patterns in whicashoverlap. However, here’s an interesting
effect which relies on ignoring that rule:

Begin Scale
define S1 1 1+1+1+1 90
define S32 S1 * 32
Sequence S32
ScaleType
Direction Both
Voice Accordion
Octave 5

End

“S1” is defined with a note length of 4 whole notes (1+1+1+1}lsat when it is multiplied for S32 a
pattern of 32 8th notes is created. Of course, the notesapzeRunning this up and down a chromatic
scale is “interesting.” You might want to play with this a bitd try changing “S1” to:

define S1 1 1 90

to see what the effect is of the notes overlapping.

169

27.2 Jungle Birds Creating Effects
27.2 Jungle Birds

Here’s another use forcQ\LEs. Someone (certainly not the author) decided that somégsognds would
be perfect as an introduction to “Yellow Bird”.

groove Rhumba

Begin Scale
define S1 1 1 90
define S32 S1 * 32
Sequence S32
ScaleType Chromatic
Direction Random
Voice BirdTweet
Octave 5 6 4 5
RVolume 30
Rtime 2 3 4 5
Volume pp pp ppp ppp

End

DefGroove BirdRhumba

The above is an extract from timg score. The entire song is included in the “songs” directdrihis
distribution.

A neat trick is to create the bird sound track and then addthéaexisting Rhumba groove. Then define a

new groove. Now one can select either the library “rhumbaherenhanced “BirdRhumba” with a simple
GRoOoOVEdirective.

170

Chapter 28

Frequency Asked Questions

This chapter will serve as a container for questions askesbbhye enthusiastigf users. It may make
some sense in the future to distribute this information sspasate file.

28.1 Chord Octaves

I've keyed in a song but some of the chords sound way too higbwQr

When a real player plays chords he or she adjusts the posititre @hords so that they don't “bounce”
around between octaves. One wasA tries to do the same is with the “Voicing Mode=Optimal” seti
However, sometimes the chord range of a piece is too largii®ito work properly. In this case you'll
have to use the octave adjustments in chords. For moresiséalpage 75.

28.2 AABA Song Forms

How can one define parts as part "A”, part "B” ... and arrangedim at the end of the file? An option to
repeat a “solo” section a number of times would be nice as well.

Using M variables and some simple looping, one might try somethieg |

171

28.3 Where's the GUI?

Groove Swing
/I Set the music into a
/I series of macros
mset A
Print Section A
C
G
endmset
mset B
print Section B
Dm
Em
endmset
mset Solo
Print Solo Section $Count
Am / B7 Cdim

Note that the “Print” lines are used for debugging purposBEse case of the variable nhames has been

Frequency AsKed Questions

endmset
/I Use the macros for an
/I "A, A, B, Solo * 8, A"
/l form
$A
$A
$B
set Count 1
label a

$solo

inc COUNT

if le $count 8

goto A

endif

$A

mixed to illustrate the fact that “Solo” is the same as “SOIM@iich is the same as “solo”.

Now, if you don't like things that look like old BASIC progracode, you could just as easily duplicate

the above with:

Groove Swing
repeat
repeat
Print Section A
C
G
If Def count
eof

Endif
Endrepeat
Print Section B

The choice is up to you.

28.3 Where’'s the GUI?

Dm
Em
Set Count 1
Repeat
Print Solo $Count
Am
Inc Count
Repeatending 7
Repeatend
Repeatend

| really think thata#7 is a cool program. But, it needs@UI. Are you planning on writing one? Will you

help me if | start to write one?

Thanks for the kind comments! The author likesz too. A lot!

172

28.4 Where's the manual index? Frequency AsKed Questions

Some attempts have been made to write a numb&Wifs for 2. But, nothing seemed to be much
more useful than the existing text interface. So, why wastentuch time? There is nothing wrong with
graphical programming interfaces, but perhaps not in sec

But, | may well be wrong. If you think it'd be better with@UI ... well, this is open source and you are
more than welcome to write one. If you do, I'd suggest thatyake your program a front-end which lets
a user compile standard files. If you find that more error reporting, etc. is requiredrteract properly
with your code, let me know and I'll probably be quite willibhggmake those kind of changes.

28.4 \Where's the manual index?

Yes,this manual needs an index. | just don’t have the timetthgugh and do all the necessary work. Is
there a volunteer?

173

Appendix A

Symbols and Constants

This appendix is a reference to the chords tht recognizes and name/value tables for drum and instru-
ment names. The tables have been auto-generatefidaysing the -D options.

A.1 Chord Names

M recognizes standard chord names as listed below. The nameas® sensitive and must be entered
in uppercase letters as shown:

A Ct Eb
At Ch F

Ab D =
B Dt Fb
B Db G

Bb E Gt
C Et Gb

Please note that in your input files you must use a lowercdser‘dn “&” to represent @ and a “#” for a

1.

All “7th” chords are “dominant 7th” unless specifically ndtas “major”. A dominant 7th has a flattened
7th note (in a C7 chord this is a;ba C Major 7th chord has ap

For a more detailed listing of the chords, notes and scalessyould download the documewtvw.
mellowood.ca/mma/chords.pdf.gz

The following types of chords are recognized (these are ssstive and must be in the mixed upper and
lowercase shown):

5 Augmented triad.

(v5) Major triad with flat 5th.

+ Augmented triad.

+7 An augmented chord (raised 5th) with a dominant 7th.

174

A.1 Chord Names Symbols and Constants

+7p9411
+9
+9M7
+M7
11
119
13
13411
1349
135
139
13sus
13su$9
5

6
6(add9)
69

7

7111
715
74549
7859
719
719111
76913
7(omit3)
7+
7+5
7+9
7-5
7-9
7alt
75
75549
755h9
759
79411
7omit3
7sus
7sus2
7sus4
7su$9
9

911
915

Augmented 7th with flat 9th and sharp 11th.

7th plus 9th with sharp 5th (same as aug9).

An augmented chord (raised 5th) with a major 7th and 9th.
Major 7th with sharp 5th.

9th chord plus 11th (3rd not voiced).

7th chord plus flat 9th and 11th.

7th (including 5th) plus 13th (the 9th and 11th are not vojced
7th plus sharp 11th and 13th (9th not voiced).

7th (including 5th) plus 13th and sharp 9th (11th not voiced)
7th with flat 5th, plus 13th (the 9th and 11th are not voiced).
7th (including 5th) plus 13th and flat 9th (11th not voiced).
7sus, plus 9th and 13th

7sus, plus flat 9th and 13th

Altered Fifth or Power Chord; root and 5th only.

Major tiad with added 6th.

6th with added 9th. This is sometimes notated as a slash aménd form “6/9”.
6th with added 9th. This is sometimes notated as a slash ahtnd form “6/9”.
7th.

7th plus sharp 11th (9th omitted).

An augmented chord (raised 5th) with a dominant 7th.

7th with sharp 5th and sharp 9th.

An augmented chord (raised 5th) with a dominant 7th and flat 9t
7th with sharp 9th.

7th plus sharp 9th and sharp 11th.

7th with sharp 9th and flat 13th.

7th with unvoiced 3rd.

An augmented chord (raised 5th) with a dominant 7th.

An augmented chord (raised 5th) with a dominant 7th.

7th with sharp 9th.

7th, flat 5.

7th with flat 9th.

7th with flat 5th and flat 9th.

7th, flat 5.

7th with flat 5th and sharp 9th.

7th with flat 5th and flat 9th.

7th with flat 9th.

7th plus flat 9th and sharp 11th.

7th with unvoiced 3rd.

7th with suspended 4th, dominant 7th with 3rd raised hakton
A sus2 with dominant 7th added.

7th with suspended 4th, dominant 7th with 3rd raised hakton
7th with suspended 4th and flat 9th.

7th plus 9th.

7th plus 9th and sharp 11th.

7th plus 9th with sharp 5th (same as aug9).

175

A.1 Chord Names Symbols and Constants

9+5
9-5
»H5
9sus
9sus4
M

M13
M13411
M6

M7
M7411
M745

7th plus 9th with sharp 5th (same as aug9).

7th plus 9th with flat 5th.

7th plus 9th with flat 5th.

7sus plus 9th.

7sus plus 9th.

Major triad. This is the default and is used in the absensengfogher chord type
specification.

Major 7th (including 5th) plus 13th (9th and 11th not voiced)
Major 7th plus sharp 11th and 13th (9th not voiced).

Major tiad with added 6th.

Major 7th.

Major 7th plus sharp 11th (9th omitted).

Major 7th with sharp 5th.

M7(add13) 7th (including 5th) plus 13th and flat 9th (11th not voiced).

M7+5
M7-5
M7b5
M9
M9111
add9
aug
aug’
aug7n9
augm9
aug9
augomM7
dim
dim3
dim7

Major 7th with sharp 5th.

Major 7th with a flat 5th.

Major 7th with a flat 5th.

Major 7th plus 9th.

Major 9th plus sharp 11th.

Major chord plus 9th (no 7th.)

Augmented triad.

An augmented chord (raised 5th) with a dominant 7th.

An augmented chord (raised 5th) with a dominant 7th and sbtarp
An augmented chord (raised 5th) with a dominant 7th and flat 9t
7th plus 9th with sharp 5th (same as aug9).

An augmented chord (raised 5th) with a major 7th and 9th.

A dim7, not a triad!

Diminished triad (non-standard notation).

Diminished seventh.

dim7(addMDiminished tirad with added Major 7th.

m
mg5
mg7

m(add9)
m(b5)
m(maj7)

m(sus9)
m+5
m+7

Minor triad.

Minor triad with augmented 5th.

Minor Triad plus Major 7th. You will also see this printed a®(maj7)”, “m+7”,
“min(maj7)” and “ming7” (which a7 accepts); as well as thef invalid forms:
“-(A7)", and “ming7”.

Minor triad plus 9th (no 7th).

Minor triad with flat 5th (aka dim).

Minor Triad plus Major 7th. You will also see this printed an(maj7)”, “m+7~,
“min(maj7)” and “ming7” (which a7 accepts); as well as thef invalid forms:
“-(A7)", and “ming7”.

Minor triad plus 9th (no 7th).

Minor triad with augmented 5th.

Minor Triad plus Major 7th. You will also see this printed an(maj7)”, “m+7~,
“min(maj7)” and “ming7” (which a1 accepts); as well as thefz invalid forms:
“-(A7)", and “ming7”.

176

A.1 Chord Names Symbols and Constants

m+749 Augmented minor 7 plus sharp 9th.
m+7»9 Augmented minor 7 plus flat 9th.
m+7v9411 Augmented minor 7th with flat 9th and sharp 11th.

mll 9th with minor 3rd, plus 11th.

m2115 Minor 7th with flat 5th plus 11th.

m13 Minor 7th (including 5th) plus 13th (9th and 11th not voiced)

m6 Minor 6th (flat 3rd plus a 6th).

m6(add9) Minor 6th with added 9th. This is sometimes notated as a stheid in the form
m69 Minor 6th with added 9th. This is sometimes notated as a sthshd in the form
m7 Minor 7th (flat 3rd plus dominant 7th).

m749 Minor 7th with added sharp 9th.

m7(%9) Minor 7th with added sharp 9th.
m7(add11) Minor 7th plus 11th.

m7(add13) Minor 7th plus 13th.

m7(9) Minor 7th with added flat 9th.
m7(omit5) Minor 7th with unvoiced 5th.

m7-5 Minor 7th, flat 5 (aka 1/2 diminished).
m7b5 Minor 7th, flat 5 (aka 1/2 diminished).
m7b5h9 Minor 7th with flat 5th and flat 9th.
m7»9 Minor 7th with added flat 9th.

m7b9411 Minor 7th plus flat 9th and sharp 11th.
m7omit5 Minor 7th with unvoiced 5th.

m9 Minor triad plus 7th and 9th.

m9ill Minor 7th plus 9th and sharp 11th.

m%5 Minor triad, flat 5, plus 7th and 9th.

mM7 Minor Triad plus Major 7th. You will also see this printed awn(maj7)”, “m+7~,

“min(maj7)” and “ming7” (which a7 accepts); as well as thefg invalid forms:
“(A7)", and “mim7”.

mM7(add9)Minor Triad plus Major 7th and 9th.

maj13 Major 7th (including 5th) plus 13th (9th and 11th not voiced)

maj7 Major 7th.

maj9 Major 7th plus 9th.

mb5 Minor triad with flat 5th (aka dim).

ming7 Minor Triad plus Major 7th. You will also see this printed amn(maj7)”, “m+7~,

“min(maj7)” and “ming7” (which a7 accepts); as well as thef invalid forms:
“-(A7)", and “ming7”.

min(maj7) Minor Triad plus Major 7th. You will also see this printed aw(maj7)”, “m+7”,
“min(maj7)” and “ming7” (which 2, accepts); as well as thefz invalid forms:
“-(A7)", and “ming7”.

omit3(add9Yriad: root, 5th and 9th.

omit3add9 Triad: root, 5th and 9th.

sus Suspended 4th, major triad with the 3rd raised half tone.
sus2 Suspended 2nd, major triad with the major 2nd above the rdasttguted for 3rd.
sus4 Suspended 4th, major triad with the 3rd raised half tone.

177

A.1 Chord Names Symbols and Constants
sus9 7sus plus 9th.

In modern pop charts the “M” in a major 7th chord (and otheranehords) is often represented by/s'*
When entering these chords, just replace tewith an “M”. For example, change “G7” to “GM7”.

A chord name without a type is interpreted as a major chordri@ad). For example, the chord “C” is
identical to “CM”.

M has an large set of defined chords. However, you can add yauwath the DEFCHORD command,
see page 79.

A.1.1 Octave Adjustment

Depending on the key and chord sequence, a chord may end b wrbng octave. This is caused by
MA's internal routines which create a chord: all of the tablesmaaintained for a “C” chord and the others
are derived from that point by subtracting or adding a caristBo compensate you can add a leading “-”
or “+” to the chordname to force the movement of that chordsoale up or down an octave.

For example, the following line will move the chord up and ddier the third and fourth beats:
Cm Fm -Gm +D7
The effect of octave shifting is also highly dependent ornviieing options in effect for the track.

You'll have to listen to them output to determine when and where to use this adjustmergetdthy, it
won't be needed all that much.

If you have a large number of chords to adjust, use th@ RDADJUSTcommand (page)75.

A.1.2 Altered Chords

According toStandardized Chord Symbol Notatialtered chords should be written in the form é@ﬁ).
However, this is pretty hard to type (and parse). So, weslube convention that the altered intervals
should be written in numerical order: GB29. Also, note that we use “m” for “minor” which appears to
be more the conventional method than “mi”.

A.1.3 Diminished Chords

In most pop and jazz charts it is assumed that a diminishedlde@lways a diminished 7th ... a dimin-
ished triad is never playedyiz continues this, sometimes erroneous assumptidou can change the

1Sometimes a reliable source agrees with us ... in this Sas®lardized Chord Symbol Notatismuite clear that “dim” is
a Diminished 7th and a diminished triad should be notatedi&8'm

178

A.1 Chord Names Symbols and Constants

behaviour in several ways: change the chord notes and seae'dim” from a dim7 to a triad by follow-
ing the instructions on page 79; use the slightly oddbakhtiot of “mb5” which generates a “diminished
triad”; or use the more-oddball notation “dim3”.

Notational notes: In printed music a “diminished” chord @reetimes represented with a small circle
symbol (eg. “F") and a “half-diminished” as a small slashed circle (e.§2".

A half-diminished chord im# is specified with the notation “m3”.

A.1.4 Slash Chords

Charts sometimes ustash chordsn the form “Am/E”. This notation is used, mainly, to indieathord
inversions. For example, the chord notes in “Am/E” becomk “& and "C” with the “E” taking the root
position. M will accept chords of this type. However, you may not notiog difference in the generated
tracks due to the inversions used by the current pattern.

You may also encounter slash chords where the slash-pédmt ahord isnota note in the chord. Consider
the ambiguous notation “Dm/C”. The composer (or copyist)ithigean to add a “C” bass note to a “Dm”
chord, or she might mean “Dm7”, or even an inverted “Dm##a will handle these ... almost perfectly.
When the “slash” part of the chord indicates a note whichasa note in the chordyz assumes that

the indicated note should be used in the bass line. Sinceakext generated by also has a “scale”

associated with it for use by bass and scale patterns thisswéor example, a C Major chord will have
the scale “c, d, e, f, g, &, b”; a C Minor chord has the same stalewith an é. If the slash note is

contained in the scale, the scale will be rotated so thatalte lmecomes the “root” note.

A warning message will be printed if the note is not in both¢herd and the scale.

Another notation you may see is something like “Dm/9”. Agdime meaning is not clear. It probably
means a “Dm9”, or “Dm9/E” ... but sincefs isn’t sure this notation will generate an error.

Please note that for fairly obvious reasons you cannot hatle dlash notation and an inversion (see the
next section).

For more details on “slash chords” your favorite music tigdmyok or teacher is highly recommended!

A.1.5 Chord Inversions

Instead of using a slash chord you can specify an inversioseavith a chord. The notation is simply an
“>"and a number between -5 and 5 immediately following the dh@me.

The chord will be “rotated” as specified by the value afterthé.

For example, the chord “€2” will generate the notes G, C and E;*F1” gives C, F and A.

There is an important difference between this option andshsthord: in inversions neither the root note
nor the associated scale are modified.

179

4.2 MIDI Voices Symbols and Constants

A.2 MIDI Voices

When setting a voice for a track (IE Bass Voice NN), you can $pdbe patch to use with a symbolic
constant. Any combination of upper and lower case is peeditThe following are the names with the
equivalent voice numbers:

A.2.1 \Voices, Alphabetically

5thSawWave 86 EPiano 5 Organ2 17
Accordion 21 Fantasia 88 Organ3 18
AcousticBass 32 Fiddle 110 OverDriveGuitar 29
AgogoBells 113 FingeredBass 33 PanFlute 75
AltoSax 65 Flute 73 Pianol 0
Applause/Noise 126 FrenchHorn 60 Piano2 1
Atmosphere 99 FretlessBass 35 Piano3 2
BagPipe 109 Glockenspiel 9 Piccolo 72
Bandoneon 23 Goblins 101 PickedBass 34
Banjo 105 GuitarFretNoise 120 PizzicatoString 45
BaritoneSax 67 GuitarHarmonics 31 PolySynth 90
Bass&lLead 87 GunShot 127 Recorder 74
Bassoon 70 HaloPad 94 ReedOrgan 20
BirdTweet 123 Harmonica 22 ReverseCymbal 119
BottleBlow 76 HarpsiChord 6 RhodesPiano 4
BowedGlass 92 HelicopterBlade 125 Santur 15
BrassSection 61 Honky-TonkPiano 3 SawWave 81
BreathNoise 121 IceRain 96 SeaShore 122
Brightness 100 JazzGuitar 26 Shakuhachi 77
Celesta 8 Kalimba 108 Shamisen 106
Cello 42 Koto 107 Shanai 111
Charang 84 Marimba 12 Sitar 104
ChifferLead 83 MelodicTom1 117 SlapBassl 36
ChoirAahs 52 MetalPad 93 SlapBass2 37
ChurchOrgan 19 MusicBox 10 SlowStrings 49
Clarinet 71 MutedGuitar 28 SoloVoice 85
Clavinet 7 MutedTrumpet 59 SopranoSax 64
CleanGuitar 27 NylonGuitar 24 SoundTrack 97
ContraBass 43 Oboe 68 Space\oice 91
Crystal 98 Ocarina 79 SquareWave 80
DistortonGuitar 30 OrchestraHit 55 StarTheme 103
EchoDrops 102 OrchestralHarp 46 SteelDrums 114
EnglishHorn 69 Organl 16 SteelGuitar 25

180

4.2 MIDI Voices

Strings
SweepPad
SynCalliope
SynthBassl
SynthBass2
SynthBrassl
SynthBrass2
SynthDrum
SynthStringsl
SynthStrings2

48
95
82
38
39
62
63

118
50
51

SynthVox 54
TaikoDrum 116
TelephoneRing 124
TenorSax 66
Timpani 47
TinkleBell 112
TremoloStrings 44
Trombone 57
Trumpet 56
Tuba 58

A.2.2 \oices, By MIDI Value

Pianol
Piano2
Piano3

RhodesPiano
EPiano
HarpsiChord
Clavinet
Celesta
Glockenspiel
MusicBox
Vibraphone
Marimba
Xylophone
TubularBells
Santur
Organl
Organ2
Organ3
ChurchOrgan
ReedOrgan
Accordion
Harmonica
Bandoneon
NylonGuitar
SteelGuitar
JazzGuitar
CleanGuitar

O© oo ~NOoO ol WDNPEFLO

NNNNNNNNRPRREPRRERRRR
N~NO U BRWNRPOOONOODUNWNERO

Honky-TonkPiano

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

MutedGuitar
OverDriveGuitar
DistortonGuitar
GuitarHarmonics
AcousticBass
FingeredBass
PickedBass
FretlessBass
SlapBassl
SlapBass2
SynthBassl
SynthBass2
Violin

Viola

Cello
ContraBass
TremoloStrings
PizzicatoString
OrchestralHarp
Timpani

Strings
SlowStrings
SynthStrings1
SynthStrings2
ChoirAahs
\VoiceOohs
SynthVox
OrchestraHit

Symbols and Constants

TubularBells 14
Vibraphone 11
Viola 41
Violin 40
VoiceOohs 53
WarmPad 89
Whistle 78
WoodBlock 115
Xylophone 13
56 Trumpet

57 Trombone

58 Tuba

59 MutedTrumpet
60 FrenchHorn
61 BrassSection
62 SynthBrassl
63 SynthBrass2
64 SopranoSax
65 AltoSax

66 TenorSax

67 BaritoneSax
68 Oboe

69 EnglishHorn
70 Bassoon

71 Clarinet

72 Piccolo

73 Flute

74 Recorder

75 PanFlute

76 BottleBlow
77 Shakuhachi
78 Whistle

79 Ocarina

80 SquareWave
81 SawWave

82 SynCalliope
83 ChifferLead

181

4.2 MIDI Voices

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Charang
SoloVoice
5thSawWave
Bass&Lead
Fantasia
WarmPad
PolySynth
Space\oice
BowedGlass
MetalPad
HaloPad
SweepPad
IceRain
SoundTrack
Crystal

99 Atmosphere

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Brightness
Goblins
EchoDrops
StarTheme
Sitar

Banjo
Shamisen
Koto
Kalimba
BagPipe
Fiddle
Shanai
TinkleBell
AgogoBells

114
115
116
117
118
119
120
121
122
123
124
125
126
127

Symbols and Constants

SteelDrums
WoodBlock
TaikoDrum
MelodicTom1
SynthDrum
ReverseCymbal
GuitarFretNoise
BreathNoise
SeaShore
BirdTweet
TelephoneRing
HelicopterBlade
Applause/Noise
GunShot

182

4.3 Drum Notes Symbols and Constants

A.3 Drum Notes

When defining a drum tone, you can specify the patch to use vajmdoolic constant. Any combination
of upper and lower case is permitted. In addition to the drame name and the MIDI value, the equivalent
“name” in SUPErsCrPlis included. The “names” may help you find the tones on youbkayd.

A.3.1 Drum Notes, Alphabetically

Cabasa &d LongLowWhistle 78 OpenSudro 88
Castanets &4 LowAgogo 68° OpenTriangle 8k
ChineseCymbal 52 LowBongo 6P PedalHiHat an
Claves 75" LowConga 6k RideBell 53

ClosedHiHat 49 LowTimbale 66> RideCymbal1l 58
CowBell 56Y LowTom1 4% RideCymbal2 58

CrashCymball 4% LowTom2 a¥ ScratchPull 30
CrashCymbal?2 5¥ LowWoodBlock 7T ScratchPush 79
HandClap 3y Maracas 78 Shaker 8
HighAgogo 6F MetronomeBell 3 ShortGuiro 78
HighBongo 66 MetronomeClick 33 ShortHiWhistle 7%

HighQ 27 MidTom1 4P SideKick 3P’
HighTimbale 65 MidTom2 43\ Slap 2&

HighTom1 5® MuteCuica 78 SnareDruml1 3R
HighTom2 48 MuteHighConga 62 SnareDrum2 49
HighWoodBlock 76 MuteSudro 8B SplashCymbal 55
JingleBell 8% MuteTriangle 8¢® SquareClick 32
KickDrum1 36 OpenCuica 79 Sticks 3F
KickDrum2 35 OpenHighConga 63 Tambourine 5%’
LongGuiro ey OpenHiHat 48 VibraSlap 58

A.3.2 Drum Notes, by MIDI Value

27 HighQ™ 37 SideKicl” 47 MidTom®B

28 Slaf 38 SnareDrumi 48 HighTom?%

29 ScratchPush 39 HandClap’ 49 CrashCymbaf’
30 ScratchPuff’ 40 SnareDrum2 50 HighTom?®

31 Stick§ 41 LowTomZ 51 RideCymbal®
32 SquareClick® 42 ClosedHiH&® 52 ChineseCymbél
33 MetronomeClick 43 LowTom®P 53 RideBelf

34 MetronomeBel’ 44 PedalHiH&Y 54 Tambourin€
35 KickDrumZ 45 MidTom2* 55 SplashCymb&i
36 KickDrumL 46 OpenHiH&#® 56 CowBelf¥

183

A.3 Drum Notes

57
58
59
60
61
62
63
64
65
66

CrashCymbaf2
VibraSlap’
RideCymbal2
HighBong&
LowBong®”
MuteHighConga
OpenHighCond&d
LowCong&
HighTimbal&
LowTimbalé

67
68
69
70
71
72
73
74
75
76

HighAgog®
LowAgogd®
Cabasa
Maraca®
ShortHiWhistI&
LongLowWhistl&
ShortGuir&”
LongGuir®
Clave§’
HighWoodBlock

77
78
79
80
81
82
83
84
85
86

Symbols and Constants

LowWoodBlock
MuteCuic&’
OpenCuica
MuteTriang|&’
OpenTriangt®
Shakée?
JingleBef?
Castanets
MuteSudr8’
OpenSudrd

184

A.4 MIDI Controllers Symbols and Constants

A.4 MIDI Controllers

When specifying a MIDI Controller in a MbISEQ or MIDIVOICE command you can use the absolute
value in (either as a decimal number or in hexadecimal byxpngfihe value with a “0x”), or the symbolic
name in the following tables. The tables have been extrdtedinformation ahttp://www.midi.org/
about-midi/table3.shtml . Note that all the values in these tables are in hexadeciotation.

Complete reference for this is not a partia#a. Please refer to a detailed text on MIDI or the manual for
your synthesizer.

A.4.1 Controllers, Alphabetically

AlINotesOff 123 Ctrl15 15 Ctrl79 79
AllSoundsOff 120 Ctrl20 20 Ctrl85 85
AttackTime 73 Ctrl21 21 Ctrl86 86
Balance 8 Ctrl22 22 Ctrl87 87
BalancelLSB 40 Ctrl23 23 Ctri88 88
Bank 0 Ctrl24 24 Ctrl89 89
BankLSB 32 Ctrl25 25 Ctrl9 9
Breath 2 Ctrl26 26 Ctrl90 90
BreathLSB 34 Ctrl27 27 Data 6
Brightness 74 Ctrl28 28 DataDec 97
Chorus 93 Ctrl29 29 Datalnc 96
Ctrl102 102 Ctrl3 3 DataLSB 38
Ctrl103 103 CtrI30 30 DecayTime 75
Ctrl104 104 Ctri31 31 Detune 94
Ctrl105 105 Ctrl35 35 Effectl 12
Ctrl106 106 Ctrl41 41 Effect1LSB 44
Ctrl107 107 Ctrl46 46 Effect2 13
Ctrl108 108 Ctrla7 47 Effect2LSB 45
Ctrl109 109 Ctrl52 52 Expression 11
Ctrl110 110 Ctrl53 53 ExpressionLSB 43
Ctrl111 111 Ctri54 54 Foot 4
Ctrl112 112 Ctrl55 55 FootLSB 36
Ctrl113 113 Ctrl56 56 Generall 16
Ctrl114 114 Ctrl57 57 GenerallLSB 48
Ctrl115 115 Ctrl58 58 General2 17
Ctrl116 116 Ctrl59 59 General2LSB 49
Ctrl117 117 Ctrle0 60 General3 18
Ctrl118 118 Ctrlel 61 General3LSB 50
Ctrl119 119 Ctrl62 62 Generald 19
Ctrl14 14 Ctrl63 63 General4dLSB 51

185

4.4 MIDI Controllers

General5
General6
General7
General8
Hold2
Legato
LocalCtrl
Modulation

ModulationLSB

NonRegLSB
NonRegMSB
OmniOff
OmniOn

A.4.2 Controllers, by Value

Bank
Modulation
Breath
Ctrl3

Foot
Portamento
Data
Volume
Balance
Ctrl9

Pan
Expression
Effectl
Effect2
Ctrl14
Ctrl15
Generall
General2
General3
General4
Ctrl20
Ctrl21
Ctrl22
Ctrl23
Ctrl24

O oo ~NOoO ok~ wbNPELO

NNNNNRRRPRRRRRPERRR
RWNRPROOWONOOUDNWNIEREO

80
81
82
83
69
68
122
1
33
98
99
124
125

Pan

PanLSB
Phaser

PolyOff
PolyOn
Portamento
PortamentoCitrl

10
42
95
126
127
65
84

PortamentoLSB 37

RegParLSB
RegParMSB
ReleaseTime
ResetAll
Resonance

100
101

72
121
71

Symbols and Constants

Reverb
SoftPedal
Sostenuto
Sustain
Tremolo
Variation
VibratoDelay
VibratoDepth
VibratoRate
Volume
VolumeLSB

91
67
66
64

92

70

78

77
76

4

39

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Ctrl25

Ctrl26

Ctrl27

Ctrl28

Ctrl29

Ctrl30

Ctrl31
BankLSB
ModulationLSB
BreathLSB
Ctrl35

FootLSB
PortamentoLSB
DataLSB
VolumeLSB
BalancelLSB
Ctrl41

PanLSB
ExpressionLSB
Effect1LSB
Effect2LSB
Ctrl46

Ctrla7
GenerallLSB
General2LSB

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

General3LSB
General4LSB
Ctrl52

Ctrl53

Ctrl54

Ctrl55

Ctrl56

Ctrl57

Ctrl58

Ctrl59

Ctrle0

Ctrlel

Ctrl62

Ctrl63
Sustain
Portamento
Sostenuto
SoftPedal
Legato

Hold2
Variation
Resonance
ReleaseTime
AttackTime
Brightness

186

4.4 MIDI Controllers

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

DecayTime
VibratoRate
VibratoDepth
VibratoDelay
Ctrl79
General5
General6
General7
General8
PortamentoCitrl
Ctrl85

Ctrl86

Ctrl87

Ctrl88

Ctrl89

Ctrl90
Reverb
Tremolo

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Chorus
Detune
Phaser
Datalnc
DataDec
NonRegLSB
NonRegMSB
RegParLSB
RegParMSB
Ctrl102
Ctrl103
Ctrl104
Ctrl105
Ctrl106
Ctrl107
Ctrl108
Ctrl109
Ctrl110

111
112
113
114
115
116
117
118
119

Symbols and Constants

Ctrl111
Ctrl112
Ctrl113
Ctrl114
Ctrl115
Ctrl116
Ctrl117
Ctrl118
Ctrl119

120 AllSoundsOff

121
122

ResetAll
LocalCtrl

123 AlINotesOff

124
125
126
127

OmniOff
OmniOn
PolyOff
PolyOn

187

Appendix ‘B

Bibliography and ThanKs

I've had help from a lot of different people and sources ingdeping this program. If I have missed listing
you in theCONTRIBfile shipped with theniz distribution, please let me know and I'll add it right away.
really want to do this!

I've also had the use of a number of reference materials:
Craig AndersonMIDI for Musicians.Amsco Publishing, New York, NY.
William Duckworth. Music FundamentaldtVadsworth Publishing, Belomnt, CA.
Michael EsterowitzHow To Play From A Fakeboolekay Music, Inc. Katonah, NY.
Pete Goodliffe MIDI documentation (for the TSES3 libraryhitp:/tse3.sourceforge.net/
Norman Lloyd.The Golden Encyclopedia Of Musi@olden Press, New York, NY.

The MIDI Manufacturers Associatiovarious papers, tables and other informatidttp://www.
midi.org/

Victor Lopez.Latin Rhythms: Mystery Unraveledlfred Publishing Company. These are handout
notes from the 2005 Midwest Clinic 59th Annual Conference, &g lllinois, December 16, 2005.
A PDF of this document is available on various Internet sites

Carl Brandt and Clinton Roemegtandardized Chord Symbol NotatiodRoerick Music Co. Sher-
man Oaks, CA.

And, finally, to all those music teachers my parents and | f@idand the many people who have helped
by listening and providing helpful suggestions and encgaim@ent in my musical pursuits for the last 40
plus years that I've been banging, squeezing and blowing.Krow who you are—thanks.

188

Appendix C

Command Summary

TrRAck Accent <beat adj Adjust volume for specified beat(s) in each bar of a tr&k.
AdjustVolume <name=valug Set the volume ratios for named volume@s.
AllTracks <cmds> Applies cmds(s) to all active tracks44

TrAck Articulate <value> ... Duration/holding-time of notesl45

Author <stuff> A specialized comment used by documentation extract6i.
AutoSoloTracks <tracks> Set the tracks used in auto assigning solo/melody néts.
BarNumbers Leading<number> on data line (ignored)51

BarRepeat Data bars can repeat with a “* nn'’52

BeatAdjust <beats- Adjust current pointer by<beats-. 87

Begin Delimits the start of a blockL55

Track ChShare <track> Force track to share MIDI track121

Track Channel <1..16> Force the MIDI channel for a track120

Track ChannelPref<1..16> Set a preferred channel for track21
ChordAdjust <Tonic=adj> Adjust center point of selected chord&

Comment <text> ignore/discard<text-. 146

TrAack Compress<value> ... Enable chord compression for track6é

TrAck Copy <source- Overlay<source- track to specified trackL45

[TrRAckK] Cresc<|start] end count Decrease volume over bars00

[TRAcK] Cut <beat> Force all notes off atcbeat> offset.90

Debug<options> Selectively enable/disable debugging levaikz

Dec<name> [value] Decrement the value of variablename- by 1 or<value-. 111
[TrRACK] Decresc<|[start] end count Increase volume over bars00

DefAlias Create an alias name for a Groov45

DefChord <name notelist scalelist Define a new chordz9

DefGroove <name> [Description] Define a new groovetl

Track Define <pattern- Define a pattern to use in a track3

Track Delete Delete specified track for future use48

189

Command Summary

TrAck Direction [Up | Down | BOTH | RANDOM] ... Set direction of runs in Scale, Arpeggio and
Walk tracks.148
Doc <stuff> A special comment used by documentation extracidg.

DocVar <description- A specialized comment used to document user variables maayifile. 158
DrumTR <old>=<new> translates MIDI drum tonezold> to <new>. 142

TrRAck DrumType Force a solo track to be a drum track5

DrumVolITr <tone-=<adj> ... adjusts volume for specified drum tori&.3

TrRAck DUpRoOOt <octave- Duplicate the root note in a chord to lower/higher octavé.

End Delimits the end of a block.55

EndIf End processing of “IF”.116

EndMset End of a “Mset” section.110

EndRepeat[count] End a repeated sectio05

Eof Immediately stop/end input fil&60

Fermata <beat- <count- <adjustment Expand<beat> for <count> by <adjustment percentage.
88

TrAck ForceOut Force voicing and raw data output for track22
Goto <name> jump processing tecname>. 119

Groove <name- Enable a previously defined groows
GrooveClear Delete all current Grooves from memo#6

TrAck Harmony [Option] ... Set harmony for Bass, Walk, Arpeggio, Scale, Solo and Métadys.
82

TrAck HarmonyOnly <Option> ... Force track to sound only harmony notes from current pattern
83

TrAck HarmonyVolume <Percentage ... Set the volume used by harmony no&.
If <test- <cmds> Test condition and processcmds>. 116

IfEnd End processing of “IF”.116

InC <name> [value] Increment the value of variablename> by 1 or<value-. 111
Include <file> Include a file.162

TRACK Invert <value- ... setthe inversion factor for chords in track7

KeySig <sig> Set the key signaturé4

Label <name> Set<name- as a label for “GOTO". 118

TrRAcK Limit <value> Limit number of notes used in a chord4walue>. 78

Lyric <options> Set various lyrics option&5

MIDI <values> Send raw MIDI commands to MIDI meta-track24
Track MIDIClear <Beat Controller Data Set command (or series) of MIDI commands to send
when track is completed.25

MIDIFile <option> Set various MIDI file generation option$25

190

Command Summary

Track MIDIGIis <1..127 Set MIDI portamento (glissando) value for trad6
TrAck MIDIINnC <File> <Options> Include an existing MIDI file into a trackL26
MIDIMark [offset] Label Inserts Label into the MIDI track128

TrRAck MIDIPan <0..127- Set MIDI pan/balance for trackL28

TrAck MIDISeq <Beat Controller Data options> ... Set MIDI controller data for a track130
MIDISplit <channel list- Force split output for track131

TrAck MIDITName <string> Assigns an alternate name to a MIDI track32
Track MIDIVoice <Beat Controller Data Set “one-time” MIDI controller command for trackL32
Track MIDIVolume <1..128> Set MIDI volume for track133

TrAck Mallet <Rate=nn Decay=nns- Set mallet repeat for trackL49

MmaEnd <file> Set filename to process after main file compleféh

MmasStart <file> Set file to include before processing main filé4

Mset <name> <lines> Set<variable> to series of lines110

MsetEnd End of a “Mset” section.110

NewSet<name- <stuff> Set the variablecname- to <stuff>. 109

TrAck NoteSpan<start- <end> set MIDI range of notes for track’8

TrAack Octave<0..10> ... Set the octave for track.50

Track Off Disable note generation for specified trad&0

TrRAck On Enable note generation for specified tradi&0

Patch <options> Patch/Voice managemerit35

Print <stuff> Print <stuff> to output during compile. Useful for debuggirig1
PrintActive Print list of active tracks to outputl51

PrintChord <name(s) Print the chord and scale for specific chord typ84.

TrRACK RSKip <Value> ... Skip/silence random percentage of nog3.

TrAack RTime <Value] ... 70

Track RVolume <adj> ... Set volume randomization for track03

TrRAck Range<value> Set number of octaves used in Scale and Arpeggio traéks.
Repeat Start a repeated sectiol05

RepeatEnd[count] End a repeated sectio05

RepeatEnding Start a repeat-endingL05

Track RIff <pattern- Define a special pattern to use in track for next %8,
RndSeed<Value> ... Seed random number generat6@

RndSet<variable> <list of values> Randomly set variablel 10

TrRACK ScaleType<Chromatic| Auto> ... Set type of scale. Only for Scale track$.1
Se(Set the sequence point (bar pattern numb&)

191

Command Summary

[TrAcK] SeqClear Clears sequence for track (or all tracks§7

[TrRACK] SeqRnd<On/Off/Tracks> Enable random sequence selection for track (or all track8).
[TrACk] SeqRndWeight<list of values- Sets the randomization weight for track or glob4Q
SeqSizecvalue> Set the number of bars in a sequende.

TRACK Sequencecpattern- ... Set pattern(s) to use for tracB5

Set<name- <stuff> Set the variablecname> to <stuff>. 109

SetAutoLibPath <path> Set the Auto-Include file path61

SetincPath <path> Set the path for included file463

SetLibPath <path> Set the path to the style file librarg61

SetMIDlplayer <program- Set the MIDI file player prograni61

SetOutPath<path> Set the output filenamé62

ShowVars Display user defined variable$11

StackValue <stuff> Push<stuft> onto a temporary stack. Remove with special ma&tackValue.
113
TRACK Strum <value> ... Set the strumming factor for Chord trackic2

[TrRAack] Swell <[start] end count Change and restore volume over bat§2
SwingMode <on/off> Set swing mode timin@3

Synchronize<START | END> Insert a start/end synchronization mar&3
Tempo <rate> Set the rate in beats per minu@s

Time <count> Set number of beats in a b6

TimeSig <nn dd> Set the MIDI time signature (not used by MMB&§.
TrRAcK TOne <Note> ... Setthe drum-tone to use in a sequerlte.
Transpose<value> Transpose all tracks to a different key63
UnSet<name- Remove the variablename-. 111

[TrRACK] Unify <On| Off> ... Unify overlapping notesl54

Use<file> Include/import an existing .mma fil&63

VEXxpand <on/off> Set variable expansiori11l

TrAck Voice <instrument- ... Set MIDI voice for track135

VoiceTr <old=new> ... - translates MIDI instrumentold> to <new>. 141
VoiceVolTr <voice>=<adj> ... - adjusts volume for specified voidet2
TrRACK Voicing <options. Set the voicing for a chord track2

[TRACK] Volume <value> ... Set the volume for a track or all track89

192

